JPH03149134A - Electrode position control method for electric discharge machine - Google Patents

Electrode position control method for electric discharge machine

Info

Publication number
JPH03149134A
JPH03149134A JP28956889A JP28956889A JPH03149134A JP H03149134 A JPH03149134 A JP H03149134A JP 28956889 A JP28956889 A JP 28956889A JP 28956889 A JP28956889 A JP 28956889A JP H03149134 A JPH03149134 A JP H03149134A
Authority
JP
Japan
Prior art keywords
electrode
machining
abnormal discharge
workpiece
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28956889A
Other languages
Japanese (ja)
Inventor
Kazuji Nakamura
和司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28956889A priority Critical patent/JPH03149134A/en
Publication of JPH03149134A publication Critical patent/JPH03149134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To efficiently perform stable machining with an abnormal discharge condition of short-circuiting or the like quickly eliminated without destructing an electrode and a workpiece by eliminating the abnormal discharge condition with the electrode retracted in a prestored direction while reversely fed from the point end of a machining locus in the point of time the abnormal discharge condition is detected. CONSTITUTION:In a process where a workpiece 1 is electric discharge-machined while relatively moving an electrode 4 for the workpiece 1 along a predetermined machining locus, when machining is performed while retracting the electrode 4 in a direction of eliminating an abnormal discharge condition when it is detected, a direction of retracting the electrode 4 is previously stored in a memory 23 simultaneously with the machining locus left as stored following relative movement. Next at the point of time when the abnormal discharge condition is detected, the electrode 4, while it is reversely fed from the point end of the stored machining locus, is retracted in the prestored direction, so as to eliminate the abnormal discharge condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、放電加工装置における加工の安定化と加工
速度の向上を図る電極位置制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode position control method for stabilizing machining and improving machining speed in an electrical discharge machining apparatus.

[従来の技術] 第4図は放電加工装置の動作原理を示す構成図である。[Conventional technology] FIG. 4 is a configuration diagram showing the operating principle of the electrical discharge machining apparatus.

図において、(l)は被加工物で、これは加工槽(2)
内に蓄えられた絶縁性の液体(3)の中で加工用電極(
4) に対向している。被加工物(1)と電極(4)の
相対移動は、被加工物(1)を載せているテーブル(5
)の平面移動と電極(4)の上下移動とにより行なわれ
る。すわちテーブル(5)はX軸駆動アクチュエーター
(6)とY軸駆動アクチュエーター(7)により平面的
に移動される。また、電極(4)の上下移動はZ軸駆動
アクチュエーター(8)により駆動される。以上の構成
により、被加工物(1)と電極(4) とは三次元の相
対運動ができる。なお、これらのアクチュエーターは数
値制御装置(9)によって制御されている。また、(l
O)は被加工物(1)と電極(4) とに加工に要する
電気工ネルギーを供給する加工用電源である。
In the figure, (l) is the workpiece, which is the processing tank (2)
The processing electrode (
4) It is facing. The relative movement between the workpiece (1) and the electrode (4) is controlled by the table (5) on which the workpiece (1) is placed.
) and the vertical movement of the electrode (4). That is, the table (5) is moved in a plane by an X-axis drive actuator (6) and a Y-axis drive actuator (7). Further, the vertical movement of the electrode (4) is driven by a Z-axis drive actuator (8). With the above configuration, the workpiece (1) and the electrode (4) can move relative to each other in three dimensions. Note that these actuators are controlled by a numerical control device (9). Also, (l
O) is a processing power source that supplies electrical energy required for processing to the workpiece (1) and the electrode (4).

次に動作について説明する。放電加工装置における加工
は、被加工物(1)と電極(4)との間に加工用電源(
lO)によりパルス状の電圧(1))を加えることによ
り、電極(4) と被加工物(1)との間に放電を発生
させることにより被加工物(1)に電極(4)形状を転
写する加工を行なう。
Next, the operation will be explained. During machining in an electric discharge machining device, a machining power source (
By applying a pulsed voltage (1)) using lO), a discharge is generated between the electrode (4) and the workpiece (1), and the shape of the electrode (4) is formed on the workpiece (1). Perform the transfer process.

放電加工装置において安定な放電状態を維持する為には
、極間の電圧に応じて電極(4)の位置を制御する極間
サーボにより電極(4)と被加工物(1)との間隙を適
正な間隔に保つ必要がある。以下に一般的な極間サーボ
の動作について説明する。
In order to maintain a stable discharge state in an electrical discharge machining device, the gap between the electrode (4) and the workpiece (1) must be reduced by a gap servo that controls the position of the electrode (4) according to the voltage between the edges. It is necessary to maintain proper spacing. The operation of a general pole-to-pole servo will be explained below.

極間サーボは、電極(4)と被加工物(1)間の極間電
圧Vを入力し、予め決められている基準電圧VSとの差
電圧V e = V −V sを求め、その差電圧Ve
に相当する移動量分の電極(4) と被加工物【1)の
相対移動を行なう。すなわち、極間の状態が短絡状態で
あるときは電極(4)と被加工物(1)との相対距離を
離すように移動量が作成され、一方、極間の状態がオー
ブン状態であるときは電極【4) と被加工物(1)と
の相対距離を近づけるように移動量が作成される。ここ
で、加工が進行しているときには指定された加工軌跡を
電極(4)は移動量に基づいて移動するが、極間の状態
が短絡状態となったときは移動量に基づき電極(4)を
後退させることにより短絡状態を回避し、極間状態がオ
ーブン状態となったとき移動量に基づき後退開始位置ま
で復帰を行ない再び加工を行なう。
The gap servo inputs the gap voltage V between the electrode (4) and the workpiece (1), calculates the difference voltage V e = V - V s from a predetermined reference voltage VS, and calculates the difference. Voltage Ve
The electrode (4) and the workpiece [1] are moved relative to each other by an amount of movement corresponding to . That is, when the state between the electrodes is a short-circuit state, the amount of movement is created so as to increase the relative distance between the electrode (4) and the workpiece (1), while when the state between the electrodes is an oven state. The amount of movement is created so as to reduce the relative distance between the electrode [4] and the workpiece (1). Here, when the machining is in progress, the electrode (4) moves along the specified machining trajectory based on the amount of movement, but when the state between the electrodes becomes a short circuit state, the electrode (4) moves based on the amount of movement. By retracting, a short circuit state is avoided, and when the machining gap state becomes an oven state, the machining machine returns to the retraction start position based on the amount of movement and performs processing again.

従来、極間状態が短絡状態となったときの電極(4)の
後退および後退開始位置までの復帰時の電極(4)の動
作は第5図(b)もしくは第5図(c)に示すような電
極位置制御方法が用いられている。
Conventionally, the operation of the electrode (4) when the electrode (4) retreats and returns to the retreat start position when the inter-electrode state becomes a short-circuit state is shown in FIG. 5(b) or FIG. 5(c). Such an electrode position control method is used.

すなわち、第5図において、被加工物(1)を電極(4
)でA−Bの軌跡を加工するときに短絡が発生したとき
第5図(b)では電極(4)は予め決められた一方向(
12)に後退および復帰を行なうことにより底面方向の
極間距離を変化させることにより短絡を解消する。また
、第5図(c)では指定された加工軌跡を記憶しておく
ことにより、既に加工を行なった軌跡(13)上で後退
右よび復帰を行なうことにより加工方向の極間距離を変
化させることにより短絡を解消する。
That is, in FIG. 5, the workpiece (1) is connected to the electrode (4).
) When a short circuit occurs when machining the trajectory A-B in Figure 5(b), the electrode (4) moves in one predetermined direction (
12) By performing retreat and return, the distance between the poles in the bottom direction is changed, thereby eliminating the short circuit. In addition, in Fig. 5(c), by memorizing the specified machining trajectory, the machining distance in the machining direction can be changed by backing up and returning to the right on the already machined trajectory (13). This will eliminate the short circuit.

また。特開昭59−30622号公報のように電極(4
)をその先端移動軌跡の法線方向に回避させるか、又は
その法線方向回避運動と電極先端軌跡の接線と法線とに
垂直な方向とに垂直な方向への電極回避運動とを複合し
て行い、電極(4)と被加工物(1)の短絡を解消する
方法が考えられている。この特開昭59〜30622号
公報の短絡発生時の電極(4)の動きを第6図に示す。
Also. Electrodes (4
) in the normal direction of the tip movement trajectory, or combine the normal direction avoidance movement with the electrode avoidance movement in the direction perpendicular to the tangent and normal of the electrode tip trajectory, and the electrode avoidance movement in the direction perpendicular to the tangent to the electrode tip trajectory and the normal line. A method has been considered in which the short circuit between the electrode (4) and the workpiece (1) is eliminated. FIG. 6 shows the movement of the electrode (4) when a short circuit occurs in this Japanese Unexamined Patent Publication No. 59-30622.

第6図では電極(4)の先端を被加工物(1)の面上の
等高線Mを形成するようにxy平面内で移動させ加工を
行なっている。短絡が発生した時、電極(4)Sま電極
先端移動軌跡の接線Tに垂直な法線方向で被加工物(1
)から離れる向きにΔNだけ回避運動を行なう。更によ
り効果的な方法として、ΔNに同期して主平面に垂直な
方向すなわちZ軸方向にΔZだけ回避運動を行なわせる
ことにより結果として合成ベクトルΔLの方向に回避運
動を行なう。
In FIG. 6, processing is performed by moving the tip of the electrode (4) within the xy plane so as to form a contour line M on the surface of the workpiece (1). When a short circuit occurs, the electrode (4) S moves toward the workpiece (1) in the normal direction perpendicular to the tangent T of the electrode tip movement locus.
) and performs an avoidance movement by ΔN in the direction away from the target. An even more effective method is to perform an avoidance movement by ΔZ in a direction perpendicular to the main plane, that is, in the Z-axis direction, in synchronization with ΔN, thereby resulting in an avoidance movement in the direction of the resultant vector ΔL.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放電加工装置の電極位置制御方法は以上のように
構成されているので、電極(4)と被加工物(1)との
間に短絡が発生した場合、第5図(b)に示すような電
極位置制御方法では底面方向の極間距離は増大するが加
工進行方向の極間距離は変化しない。一方、第5図(c
)に示すような電極位置制御方法では加工進行方向の極
間距離は増大するが底面方向の極間距離は変化しない。
Since the conventional electrode position control method of the electrical discharge machining apparatus is configured as described above, when a short circuit occurs between the electrode (4) and the workpiece (1), the short circuit shown in FIG. 5(b) occurs. In such an electrode position control method, the distance between the electrodes in the direction of the bottom surface increases, but the distance between the electrodes in the direction of machining progress does not change. On the other hand, Fig. 5 (c
), the distance between the electrodes in the direction of machining progress increases, but the distance between the electrodes in the direction of the bottom surface does not change.

したがって、短絡を解消するのが遅いため加工が不安定
になり加工速度が低下する、あるいは短絡を解消できず
定常アークとなってしまう。また、電極(4)をその先
端移動軌跡の接線に対する法線力向に回避させるか、又
は、その法線方向回避運動と、電極先端軌跡の接線と法
線とに垂直な方向とに垂直な方向への電極回避運動とを
複合して行い、電極(4)と被加工物(1)の短絡を解
消する方法では、第7図(a)に示すような[送り込み
量〈極間ギャップ長」となり電極(4)が被加工物(1
)に対して食い込みが生じないないような加工の場合に
は第7図(c)に示す様に有効であるが、i般に行なわ
れる第7図(b)に示すような[送り込み量〉極間キャ
ップ長」となり食い込みが生じる様な加工では第7図(
d)に示す様に電極回避運動によって電極(4) と被
加工物(1)が衝突し、電極(4)及び被加工物(1)
を破壊することになる。よって、電極(4)をその先端
移動軌跡の法線方向に回避させる方式では加工の送り込
み量が極めて小さくしか取れないため加工能率が極めて
悪くなる等の解決すべき課題があった。
Therefore, since it is slow to eliminate the short circuit, machining becomes unstable and the machining speed decreases, or the short circuit cannot be eliminated and a steady arc occurs. In addition, the electrode (4) can be avoided in a direction normal to the tangent to its tip movement locus, or the normal avoidance movement is perpendicular to the direction perpendicular to the tangent and normal to the electrode tip locus. In the method of eliminating the short circuit between the electrode (4) and the workpiece (1) by combining the electrode avoidance movement in the direction shown in FIG. ”, and the electrode (4) is connected to the workpiece (1
) is effective as shown in Fig. 7(c), but it is effective when machining does not cause biting against Figure 7 (
As shown in d), the electrode (4) and workpiece (1) collide due to the electrode avoidance movement, and the electrode (4) and workpiece (1) collide.
will be destroyed. Therefore, in the method in which the electrode (4) is avoided in the normal direction of the locus of movement of its tip end, the feed amount for machining can only be extremely small, resulting in extremely low machining efficiency, which is a problem that needs to be solved.

この発明は上記の様な課題を解決するためになされたも
ので、電極及び被加工物を破壊することなく素早く短絡
等の異常放電状態を解消して安定した加工が行えると共
にスラッジ排出を効率良く行い加工能率の高い放電加工
装置の電極位置制御方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems. It quickly eliminates abnormal discharge conditions such as short circuits without destroying the electrode or workpiece, allows stable machining, and efficiently discharges sludge. The purpose of this invention is to obtain a method for controlling the electrode position of an electrical discharge machining device with high machining efficiency.

【課題を解決するための手段] この発明に係る放電加工装置の電極位置制御方法は、所
定の加工軌跡に沿って電極を被加工物に一対して相対的
に移動させつつ上記被加工物を放電加工する過程で、異
常放電状態が検出された時に上記異常放電状態を解消さ
せる方向に上記電極を退避させつつ加工を行う方法にお
いて、上記電極を退避させる方向を予め記憶する段階と
、上記相対移動に伴い上記加工軌跡を記憶して行く段階
と。
[Means for Solving the Problems] A method for controlling the electrode position of an electric discharge machining apparatus according to the present invention moves the electrode relative to the workpiece along a predetermined machining trajectory while moving the workpiece. In the method of performing machining while retracting the electrode in a direction to eliminate the abnormal discharge state when an abnormal discharge state is detected in the process of electrical discharge machining, the step of memorizing in advance the direction in which the electrode is retracted; A step of memorizing the machining trajectory as the machine moves.

上記異常放電状態が検出された時点で、上記電極を上記
記憶された加工軌跡の先端から逆行させつつ上記予め記
憶された方向に退避させて上記異常放電状態を解消させ
る段階とからなるものである。
When the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-stored direction to eliminate the abnormal discharge state. .

又、この発明の別の発明に係る放電加工装置の電極位置
制御方法は、所定の加工軌跡に沿って電極を被加工物に
対して相対的に移動させつつ上記被加工物を放電加工す
る過程で、異常放電状態が検出された時に上記異常放電
状態を解消させる方向に上記電極を退避さた後上記電極
を加工進行方向に移動させる方法において、上記電極を
移動させる方法を予め記憶する段階と、上記相対移動に
伴い・上記加工軌跡を記憶して行く段階と、上記異常放
電状態が解消された時点において、上記電極を上記記憶
された加工軌跡に沿ってその先端方向に移動させつつ上
記予め記憶された方向に移動させる段階とからなるもの
である。
Further, an electrode position control method for an electrical discharge machining apparatus according to another aspect of the present invention includes a process of electrical discharge machining the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory. In the method of retracting the electrode in a direction to eliminate the abnormal discharge state when an abnormal discharge state is detected, and then moving the electrode in the machining progress direction, the method includes a step of storing in advance a method for moving the electrode. , in the step of memorizing the machining trajectory along with the relative movement, and at the time when the abnormal discharge state is resolved, the electrode is moved in the direction of its tip along the memorized machining trajectory while and moving in the memorized direction.

又、この発明の更に別の発明に係る放電加工装置の電極
位置制御方法は、所定の加工軌跡に沿って電極を被加工
物に対して相対的に移動させつつ上記被加工物を放電加
工する過程で、異常放電状態が検出された時に上記異常
放電状態を解消させる方向に上記電極を退避させつつ加
工を行う方法において、上記電極を退避させる方向を予
め記憶する段階と、上記相対移動に伴い上記加工軌跡を
記憶して行く段階と、上記異常放電状態が検出された時
点で、上記電極を上記記憶された加工軌跡の先端から逆
行させつつ上記予め記憶された方向に退避させて上記異
常放電状態を解消させる段階と、上記異常放電状態が解
消された時点において。
Further, a method for controlling the electrode position of an electrical discharge machining apparatus according to still another aspect of the present invention includes electrical discharge machining the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory. In the process, when an abnormal discharge state is detected, a method of performing processing while retracting the electrode in a direction to eliminate the abnormal discharge state includes a step of memorizing in advance the direction in which the electrode is to be retracted, and a step of memorizing in advance the direction in which the electrode is to be retracted; At the step of memorizing the machining trajectory, and at the time when the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-memorized direction to discharge the abnormal discharge. At the stage of eliminating the condition and at the time when the abnormal discharge condition is eliminated.

上記電極を上記記憶された加工軌跡に沿ってその先端方
向に移動させつつ上記予め記憶された方向と反対方向に
移動させる段階とからなるものである。
The method comprises the steps of moving the electrode toward its tip along the memorized machining trajectory and in a direction opposite to the previously memorized direction.

[作用] この発明においては、所定の加工軌跡に沿って電極を被
加工物に対して相対的に移動させつつ上記被加工物を放
電加工する過程で、異常放電状態が検出された時に上記
異常放電状態を解消させる方向蓄こ上記電極を退避させ
つつ加工を行う時に、上記電極を退避させる方向を予め
記憶すると共に上記相対移動に伴い上記加工軌跡を記憶
しておき、上記異常放電状態が検出された時点で、上記
電極を上記記憶された加工軌跡の先端から逆行させつつ
上記予め記憶された方向に退避させて上記異常放電状態
を解消させる。
[Operation] In the present invention, when an abnormal discharge state is detected in the process of electric discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, the abnormality Storing a direction to eliminate the discharge state When machining is performed while retracting the electrode, the direction in which the electrode is retracted is memorized in advance, and the machining trajectory is memorized along with the relative movement, and the abnormal discharge state is detected. At that point, the electrode is moved backward from the tip of the memorized machining trajectory and retracted in the previously memorized direction to eliminate the abnormal discharge state.

この発明の別の発明においては、所定の加工軌跡に沿っ
て電極を被加工物に対して相対的に移動させつつ上記被
加工物を放電加工する過程で、異常放電状態が検出され
た時に上記異常放電状態を解消させる方向に上記電極を
退避さた後上記電極を加工進行方向に移動させる時に、
上記電極を移動させる方向を予め記憶すると共に上記相
対移動に伴い上記加工軌跡を記憶しておき、上記異常放
電状態が解消された時点において、上記電極を上記記憶
された加工軌跡に沿ってその先端方向に移動させつつ上
記予め記憶された方向に移動させスラッジ排出を容易に
する。
In another aspect of the present invention, when an abnormal electrical discharge state is detected during electric discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, When moving the electrode in the machining progress direction after retracting the electrode in a direction to eliminate the abnormal discharge state,
The direction in which the electrode is moved is memorized in advance, and the machining locus is memorized along with the relative movement, and when the abnormal discharge condition is eliminated, the electrode is moved along the memorized machining locus at its tip. The sludge discharge is facilitated by moving the sludge in the pre-stored direction.

この発明の更に別の発明においては、所定の加工軌跡に
沿って電極を被加工物に対して相対的に移動させつつ上
記被加工物を放電加工する過程で。
In still another aspect of the present invention, in the process of electric discharge machining the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory.

異常放電状態が検出された時に上記異常放電状態を解消
させる方向に上記電極を退避させつつ加工を行う時に、
上記電極を退避させる方向を予め肥憶すると共に、上記
相対移動に伴い上記加工軌跡な配憶しておき、上記異常
放電状態が検出された時点で、上記電極を上記記憶され
た加工軌跡の先端から逆行させつつ上記予め記憶された
方向に退避させて上記異常放電状態を解消させ、上記異
常放電状態が解消された時点において、上記電極を上記
記憶された加工軌跡に沿ってその先端方向に移動させつ
つ上記予め記憶された方向と反対方向に移動させスラッ
ジ排出を容易にする。
When processing is performed while retracting the electrode in a direction to eliminate the abnormal discharge state when an abnormal discharge state is detected,
The direction in which the electrode is to be retracted is memorized in advance, and the machining trajectory is memorized along with the relative movement. When the abnormal discharge state is detected, the electrode is moved to the tip of the memorized machining trajectory. The abnormal discharge state is resolved by retracting the electrode in the pre-stored direction while reversing the process, and at the time when the abnormal discharge state is resolved, the electrode is moved in the direction of its tip along the memorized machining trajectory. The sludge is moved in the opposite direction to the pre-stored direction while the sludge is being moved in the opposite direction to facilitate the sludge discharge.

〔発明の実施例』 以下、この発明の−実!fllを図について説明する。[Embodiments of the invention] Below are the fruits of this invention! fll will be explained with reference to the figure.

第1図はこの発明の一実施例における短絡発生時の電極
の回避動作を説明する為の図、第2図はこの発明の一実
施例における動作の流れを示すフローチャート、第3図
はこの発明の一実施例による方法を実行する為のハード
ウェア構成を示す図であり、第3図において、(Is)
は加工の軌跡を指令するたのNCプログラム、(16)
はNCプログラム(15)を入力し指令位置を作成する
加工軌跡作成部、(17)は加工軌跡作成部(16)に
よって作成された各軸に対する指令位置、(18)は極
間電圧V。
Fig. 1 is a diagram for explaining the avoidance operation of electrodes when a short circuit occurs in an embodiment of the present invention, Fig. 2 is a flowchart showing the flow of operation in an embodiment of the invention, and Fig. 3 is a diagram of the invention. 3 is a diagram illustrating a hardware configuration for executing the method according to an embodiment, and in FIG. 3, (Is)
is the NC program that commands the machining trajectory, (16)
(17) is the command position for each axis created by the machining trajectory creation unit (16), and (18) is the voltage V between the electrodes.

(19)は基準電圧Vs、(20)は極間電圧V (1
8)と基準電圧V s (19)より移動量を作成する
極間サーボ移動量作成部、(21)は極間サーボ移動量
作成部(20)により作成された移動量に基づき各軸の
アクチュエーター(6) 、 (7) 、 (g)への
出力を作成する電極位置制御部、 (22)は予め指定
された各軸の極間サーボ方向ベクトル成分、 (23)
は各軸の加工軌跡を記憶するための軌跡記憶メモり、(
24)は各アクチュエーター(6) 、(7) 、 (
8)への出力量である。なお、これらは従来例を示す第
4図の数値制御装置(9)で行なわれる。
(19) is the reference voltage Vs, (20) is the electrode-to-electrode voltage V (1
8) and the reference voltage V s (19), a pole-to-pole servo movement amount creation section (21) is an actuator for each axis based on the travel amount created by the pole-to-pole servo travel amount creation section (20). (6) , (7) , and an electrode position control unit that creates output to (g); (22) is a prespecified interpole servo direction vector component for each axis; (23)
is a trajectory memory memory for memorizing the machining trajectory of each axis, (
24) is each actuator (6), (7), (
8). Incidentally, these are performed by a numerical control device (9) shown in FIG. 4, which shows a conventional example.

加工軌跡はNCプログラム(15)によって指令され、
加工軌跡作成部(16)がNGプログラムを入力し、こ
れを解析し直線補間あるいは円弧補間により各軸に対す
る指令位置(17)を作成する。極間サーボ移動量作成
部(20)は極間電圧V (18)と基準電圧V s 
(19)を入力し、それらの差電圧に相当する移動量を
作成する。これらについてば従来のものと同様である。
The machining trajectory is commanded by the NC program (15),
A machining trajectory creation section (16) inputs the NG program, analyzes it, and creates command positions (17) for each axis by linear interpolation or circular interpolation. The inter-electrode servo movement amount creation unit (20) generates an inter-electrode voltage V (18) and a reference voltage V s
(19) is input, and the amount of movement corresponding to the voltage difference between them is created. These are the same as the conventional ones.

以下にこの発明の特徴を有する電極位置制御部(21)
の動作を第2図に示すフローチャートを用いて説明する
。電極位置制御部(21)はステップ(27)で極間サ
ーボ移動量作成部(20)で作成された移動量を入力す
る6ステップ(2g)、 (29)では入力した移動量
と現在のサーボ後退量によって加工軌跡更新移動処理を
行なうか、サーボ後退処理を行なうか、あるいはサーボ
復帰処理を行なうかを決定する。分岐(30)において
は、移動量が前進指令(≧0〕かつ後退量がゼロの場合
すなわち、加工軌跡を更新し加工が進むとぎはステップ
C31)で加工軌跡作成部(16)で作成した指令位置
(17)に向かって各軸が移動するように各軸のアクチ
ュエーター(6) 、 (7) 、 (8)への出力を
作成する。このとき、ステップ(32)において加工軌
跡を記憶するために各軸のアクチュエーター(6) 、
(7)。
Electrode position control section (21) having the following features of the present invention:
The operation will be explained using the flowchart shown in FIG. In step (27), the electrode position control unit (21) inputs the movement amount created by the inter-electrode servo movement amount creation unit (20) in step 6 (2g), and in (29) inputs the input movement amount and the current servo movement amount. Depending on the amount of retraction, it is determined whether to perform machining trajectory update movement processing, servo retraction processing, or servo return processing. In branch (30), if the movement amount is a forward command (≧0) and the backward amount is zero, the command created by the machining trajectory creation unit (16) in step C31) is used to update the machining trajectory and proceed with machining. Create outputs to actuators (6), (7), and (8) for each axis so that each axis moves toward position (17). At this time, in order to memorize the machining trajectory in step (32), the actuator (6) of each axis,
(7).

〔8)への出力xn、yn、znを軌跡記憶メモり(2
3)に記憶しておく。又、分岐(33)においては。
The output xn, yn, zn to [8] is stored in the trajectory memory (2
3). Also, at branch (33).

移動量が後退指令(〈0)のとき(短絡が発生したとき
)は、ステップ(34)〜C36)において、予め各軸
の極間サーボ方向ベクトル成分(22)で指定された極
間サーボ方向Pへ移動量X極間サーボ方向後退ゲインG
sb分の極間サーボ方向後退量Lsbを作成し、さらに
各軸の加工軌跡を記憶した軌跡記憶メモり(23)より
加工軌跡上を移動量X軌跡上後退ゲインGkb分後退す
る加工軌跡上後退量Lkbを作成する。次にステップ(
37)でステップC35)およびステップ(36)で作
成した極間サーボ方向後退量と加工軌跡上後退量を合成
し各軸のアクチュエーター(6) 、 (7) 、 (
8)への出力を作成する。こうすることにより、第1図
(c)に示すように極間の間隙を加工軌跡と予め決めら
れた方向との合成方向(25)に電極位置を変化させる
ことができる。また、分岐(38)に示す様に移動量が
前進指令かつ後退量がゼロでないとき(後退開始位置へ
の復帰)は、後退時の極間サーボ方向後退ゲインGsb
および加工軌跡上後退ゲインGkbの代わりにそれぞれ
極間サーボ方向復帰ゲインGsrと加工軌跡上復帰ゲイ
ンGkrを用い、極間サーボ方向復帰量=移動量×極間
サーボ方向復帰ゲインGsr、加工軌跡上後退量=移動
量X加工軌跡上復帰ゲインGkrとして復帰量を作成し
、後退時と同様に合成方向に電極位置を変化させる。こ
のように後退時と復帰時のゲインを切り換えることによ
って、第1図に示す復帰軌跡(26)の様に後退時の軌
跡と異なる経路とする事ができる。後退と復帰の経路を
異ならせることで加工液の撹拌が促進される事とボンブ
効果の促進により、極間のスラッジの排出能力を高める
ことでがき、安定放電が維持できる事になり加工速度が
向上する。
When the movement amount is a backward command (<0) (when a short circuit occurs), in steps (34) to C36), the inter-pole servo direction specified in advance by the inter-pole servo direction vector component (22) of each axis is Movement amount to P X Interpole servo direction backward gain G
Create a retraction amount Lsb in the interpole servo direction for sb, and further retract on the machining trajectory by the amount of movement on the machining trajectory Create the amount Lkb. Then step (
In step C35) and step (36), the amount of retraction in the machining path servo direction and the amount of retraction on the machining trajectory are combined in step C35) and step (36), and the actuators (6), (7), (
8) Create output to By doing so, as shown in FIG. 1(c), the electrode position can be changed in the direction (25) that is the result of the machining trajectory and a predetermined direction. In addition, as shown in branch (38), when the movement amount is a forward command and the backward amount is not zero (return to the backward start position), the backward gain Gsb in the pole-to-pole servo direction during backward movement
In place of the machining trajectory retraction gain Gkb, the machining servo direction return gain Gsr and machining trajectory return gain Gkr are used, respectively, and the machining servo direction return amount = travel amount x machining servo direction return gain Gsr, machining trajectory retraction A return amount is created as amount=movement amount x return gain on machining trajectory Gkr, and the electrode position is changed in the composite direction as in the case of retreat. By switching the gain during retraction and return in this manner, it is possible to create a path different from the return trajectory (26) shown in FIG. 1. By differentiating the retreat and return paths, agitation of the machining fluid is promoted and the bomb effect is promoted, increasing the ability to discharge sludge between the machining holes, maintaining stable electrical discharge, and increasing machining speed. improves.

なお、上記実施例では、制御軸数ば3軸の場合について
示したが2軸以上であれば上記のものと同様の効果を奏
する。
In the above embodiment, the case where the number of control axes is three is shown, but if the number of control axes is two or more, the same effect as described above can be obtained.

又、上記実施例では電極(4)の復帰経路を後退経路と
異なる経路としたが、必ずしも異ならせる必要はなく同
一経路としても良いことは言う迄もない。
Further, in the above embodiment, the return path of the electrode (4) is different from the retraction path, but it goes without saying that the return path does not necessarily have to be different and may be the same path.

〔発明の効果] 以上の様に、この発明によれば所定の加工軌跡に沿って
電極を被加工物に対して相対的に移動させつつ上記被加
工物を放電加工する過程で、異常放電状態が検出された
時に上記以上放電状態を解消させる方向に上記電極を退
避させつつ加工を行う時に、上記電極を退避させる方向
を予め記憶すると共に上記相対移動に伴い上記加工軌跡
を記憶しておき、上記異常放電状態が検出された時点で
、上記電極を上記記憶された加工軌跡の先端から逆行さ
せつつ上記予め記憶された方向に退避させて上記異常放
電状態を解消させる様にしたので、電極及び被加工物を
破壊することなく素早く短絡等の異常放電状態を解消し
て安定した加工が能率良く行えるものが得られるという
効果がある。
[Effects of the Invention] As described above, according to the present invention, in the process of electric discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, an abnormal electric discharge state is detected. When machining is performed while retracting the electrode in a direction that eliminates the discharge state above when is detected, the direction in which the electrode is retracted is memorized in advance, and the machining trajectory is memorized along with the relative movement, When the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-stored direction to eliminate the abnormal discharge state. This has the effect of quickly eliminating abnormal discharge conditions such as short circuits without destroying the workpiece, and allowing stable and efficient machining to be performed.

又、この発明の別の発明によれば所定の加工軌跡番ご沿
って電極を被加工物に対して相対的に移動させつつ上記
被加工物を放電加工する過程で、異常放電状態が検出さ
れた時に上記異常放電状態を解消させる方向に上記電極
を退避さた後上記電極を加工進行方向に移動させる時に
、上記電極を移動させる方向を予め記憶すると共に、上
記相対移動に伴い上記加工軌跡を記憶しておき、上記異
常放電状態が解消された時点において、上記電極を上記
記憶された加工軌跡に沿ってその先端方向に移動させつ
つ上記予め記憶された方向に移動させスラッジ排出を容
易にする様にしたので、スラッジに起因する加工不安定
状態が解消でき安定した加工が能率良く行えるものが得
られるという効果がある。
According to another aspect of the present invention, an abnormal electrical discharge state is detected during electrical discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory number. When the electrode is moved in the machining progress direction after retracting the electrode in a direction that eliminates the abnormal discharge state, the direction in which the electrode is moved is memorized in advance, and the machining trajectory is changed along with the relative movement. The electrode is memorized, and when the abnormal discharge state is resolved, the electrode is moved toward its tip along the memorized machining trajectory and moved in the previously memorized direction to facilitate sludge discharge. As a result, unstable machining caused by sludge can be eliminated and stable machining can be performed efficiently.

又、この発明の更に別の発明によれば所定の加  4工
軌跡に沿って電極を被加工物に対して相対的に移動させ
つつ上記被加工物を放電加工する過程で、異常放電状態
が検出された時に上記異常放電状態を解消させる方向に
上記電極を退避させつつ加工を行う時に、上記電極を退
避させる方向を予め記憶すると共に上記相対移動に伴い
上記加工軌跡を記憶しておき、上記異常放電状態が検出
された時点で、上記電極を上記記憶された加工軌跡の先
端から逆行させつつ上記予め記憶された方向に退避させ
て上記異常放電状態を解消させ、上記異常放電状態が解
消された時点において、上記電極を上記電極を上記記憶
された加工軌跡に沿ってその先端方向に移動させつつ上
記予め記憶された方向と反対方向に移動させスラッジ排
出を容易にする様にしたので、電極及び被加工物を破壊
することなく素早く短絡等の異常放電状態を解消できる
と共にスラッジに起因する加工不安定状態を解消でき、
安定した加工が能率良く行えるものが得られるという効
果がある。
According to still another aspect of the present invention, an abnormal electrical discharge state occurs during electrical discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining locus. When machining is performed while retracting the electrode in a direction that eliminates the abnormal discharge state when detected, the direction in which the electrode is retracted is memorized in advance, and the machining trajectory is memorized along with the relative movement, and the When the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-stored direction to eliminate the abnormal discharge state, and the abnormal discharge state is eliminated. At this point, the electrode was moved in the direction opposite to the previously memorized direction while moving the electrode toward its tip along the memorized machining trajectory to facilitate sludge discharge. It is possible to quickly eliminate abnormal discharge conditions such as short circuits without destroying the workpiece, and it is also possible to eliminate unstable machining conditions caused by sludge.
This has the effect of providing stable and efficient processing.

、図面の簡単な説明 第1図はこの発明の一実施例による放電加工装置の電極
位置制御方法を説明する為の図、第2図はこの発明の一
実施例による放電加工装置の電極位置制御方法を実行す
る為のフローチャート、第3図はこの発明の一実施例に
よる放電加工装置の電極位置制御方法を実施する為のハ
ードウェアを示すブロック図、第4図は従来の放電加工
装置を示す構成図、第5図は従来の放電加工装置の電極
位置制御方法を説明する為の図、第6図は従来の別の放
電加工装置の電極位置制御方法を説明する為の図、第7
図は第6図に示した方法の欠点を説明する為の図である
, Brief Description of the Drawings FIG. 1 is a diagram for explaining a method for controlling the electrode position of an electric discharge machining apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining the electrode position control method of an electric discharge machining apparatus according to an embodiment of the present invention. FIG. 3 is a block diagram showing hardware for implementing the method for controlling the electrode position of an electric discharge machining apparatus according to an embodiment of the present invention, and FIG. 4 shows a conventional electric discharge machining apparatus. 5 is a diagram for explaining the electrode position control method of a conventional electric discharge machining apparatus, FIG. 6 is a diagram for explaining another conventional electrode position control method of an electric discharge machining apparatus, and FIG.
The figure is a diagram for explaining the drawbacks of the method shown in FIG. 6.

図において、(1)は被加工物、(4)は電極、(15
)はNCプログラム、 (1G)は加工軌跡作成部、(
17)は各軸に対する指令位置、 (18)は極間電圧
V、(19)は基準電圧Vs、(20)は極間サーボ移
動量作成部。
In the figure, (1) is the workpiece, (4) is the electrode, and (15) is the workpiece.
) is the NC program, (1G) is the machining trajectory creation section, (
17) is the command position for each axis, (18) is the inter-electrode voltage V, (19) is the reference voltage Vs, and (20) is the inter-electrode servo movement amount creation section.

121)は電極位置制御部、(22)は予め指定された
各軸の極間サーボ方向ベクトル成分、(23)は軌跡記
憶メモり、C24)は各アクチュエーターへの出力量。
121) is an electrode position control unit, (22) is a prespecified interpole servo direction vector component of each axis, (23) is a trajectory memory, and C24) is an output amount to each actuator.

(25)は後退軌跡、 (26)は復帰軌跡である。(25) is the backward trajectory, and (26) is the return trajectory.

なお、図中、同一符号は同一、または相当部分を示す。In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

   ・

Claims (3)

【特許請求の範囲】[Claims] (1)所定の加工軌跡に沿って電極を被加工物に対して
相対的に移動させつつ上記被加工物を放電加工する過程
で、異常放電状態が検出された時に上記異常放電状態を
解消させる方向に上記電極を退避させつつ加工を行う放
電加工装置の電極位置制御方法において、上記電極を退
避させる方向を予め記憶する段階と、上記相対移動に伴
い上記加工軌跡を記憶して行く段階と、上記異常放電状
態が検出された時点で、上記電極を上記記憶された加工
軌跡の先端から逆行させつつ上記予め記憶された方向に
退避させて上記異常放電状態を解消させる段階とからな
ることを特徴とする放電加工装置の電極位置制御方法。
(1) When an abnormal discharge condition is detected during electrical discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, the abnormal discharge condition is resolved. A method for controlling an electrode position of an electrical discharge machining apparatus that performs machining while retracting the electrode in a direction, the method comprising: storing in advance the direction in which the electrode is retracted; and storing the machining trajectory along with the relative movement; When the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-stored direction to eliminate the abnormal discharge state. Electrode position control method for electric discharge machining equipment.
(2)所定の加工軌跡に沿って電極を被加工物に対して
相対的に移動させつつ上記被加工物を放電加工する過程
で、異常放電状態が検出された時に上記異常放電状態を
解消させる方向に上記電極を退避さた後上記電極を加工
進行方向に移動させる放電加工装置の電極位置制御方法
において、上記電極を移動させる方向を予め記憶する段
階と、上記相対移動に伴い上記加工軌跡を記憶して行く
段階と、上記異常放電状態が解消された時点において、
上記電極を上記記憶された加工軌跡に沿ってその先端方
向に移動させつつ上記予め記憶された方向に移動させる
段階とからなることを特徴とする放電加工装置の電極位
置制御方法。
(2) When an abnormal discharge state is detected in the process of electrical discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, the abnormal discharge state is resolved. A method for controlling the electrode position of an electrical discharge machining apparatus in which the electrode is moved in the machining progress direction after the electrode is retracted in the direction, includes a step of storing in advance the direction in which the electrode is to be moved, and a step of storing the machining trajectory in accordance with the relative movement. At the memorization stage and when the abnormal discharge state is resolved,
A method for controlling the electrode position of an electrical discharge machining apparatus, comprising the steps of moving the electrode in the direction stored in advance while moving the electrode toward its tip along the stored machining trajectory.
(3)所定の加工軌跡に沿って電極を被加工物に対して
相対的に移動させつつ上記被加工物を放電加工する過程
で、異常放電状態が検出された時に上記異常放電状態を
解消させる方向に上記電極を退避させつつ加工を行う放
電加工装置の電極位置制御方法において、上記電極を退
避させる方向を予め記憶する段階と、上記相対移動に伴
い上記加工軌跡を記憶して行く段階と、上記異常放電状
態が検出された時点で、上記電極を上記記憶された加工
軌跡の先端から逆行させつつ上記予め記憶された方向に
退避させて上記異常放電状態を解消させる段階と、上記
異常放電状態が解消された時点において、上記電極を上
記記憶された加工軌跡に沿ってその先端方向に移動させ
つつ上記予め記憶された方向と反対方向に移動させる段
階とからなることを特徴とする放電加工装置の電極位置
制御方法。
(3) When an abnormal discharge state is detected in the process of electrical discharge machining of the workpiece while moving the electrode relative to the workpiece along a predetermined machining trajectory, the abnormal discharge state is resolved. A method for controlling an electrode position of an electrical discharge machining apparatus that performs machining while retracting the electrode in a direction, the method comprising: storing in advance the direction in which the electrode is retracted; and storing the machining trajectory along with the relative movement; When the abnormal discharge state is detected, the electrode is moved backward from the tip of the memorized machining trajectory and retreated in the pre-stored direction to eliminate the abnormal discharge state; an electric discharge machining apparatus comprising the step of moving the electrode toward its tip along the memorized machining trajectory and in a direction opposite to the previously memorized direction at the time when this is resolved. Electrode position control method.
JP28956889A 1989-11-07 1989-11-07 Electrode position control method for electric discharge machine Pending JPH03149134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28956889A JPH03149134A (en) 1989-11-07 1989-11-07 Electrode position control method for electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28956889A JPH03149134A (en) 1989-11-07 1989-11-07 Electrode position control method for electric discharge machine

Publications (1)

Publication Number Publication Date
JPH03149134A true JPH03149134A (en) 1991-06-25

Family

ID=17744915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28956889A Pending JPH03149134A (en) 1989-11-07 1989-11-07 Electrode position control method for electric discharge machine

Country Status (1)

Country Link
JP (1) JPH03149134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461211A (en) * 1993-03-25 1995-10-24 Bridgestone Corporation Groove forming method by discharge machining
KR100906299B1 (en) * 2009-03-02 2009-07-07 이정군 Electrode guide for electric discharge machine drill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461211A (en) * 1993-03-25 1995-10-24 Bridgestone Corporation Groove forming method by discharge machining
KR100906299B1 (en) * 2009-03-02 2009-07-07 이정군 Electrode guide for electric discharge machine drill

Similar Documents

Publication Publication Date Title
US4649252A (en) Wire-cut electric discharge machining method
JPS6216772B2 (en)
KR980000727A (en) Electric Discharge Processing Equipment and Method
KR920006509B1 (en) Electric discharge machine control method
US5051554A (en) Electric discharge machine
JPH03149134A (en) Electrode position control method for electric discharge machine
JP3838199B2 (en) Wire electrical discharge machine
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JPH04764B2 (en)
JPH06277949A (en) Wire cut discharge machining device
JPH0521690B2 (en)
JPH01240219A (en) Method for wire electric discharge machining
JPH05277832A (en) Electric discharge machining method and its device
JPS6324535A (en) Electron beam machining device
JP2741860B2 (en) Control device for wire electric discharge machine
JPS5851021A (en) Backing control system in electric discharge machine
JP2605427B2 (en) Processing condition setting method
WO2002000383A1 (en) Method of electrodischarge wire machining
JPS6026650B2 (en) Short circuit release device for wire cut electrical discharge machine
JPH01289624A (en) Finishing controller for electrospark machining
JPS61121829A (en) Electric wire discharge machining method
JPH03117519A (en) Wire electric discharge machining
JPS6161712A (en) Method of controlling electrode for electric discharge machining
JPH0360925A (en) Wire electric discharging machine
JPS58120427A (en) Electrical discharge machining device