JPS58120427A - Electrical discharge machining device - Google Patents

Electrical discharge machining device

Info

Publication number
JPS58120427A
JPS58120427A JP123182A JP123182A JPS58120427A JP S58120427 A JPS58120427 A JP S58120427A JP 123182 A JP123182 A JP 123182A JP 123182 A JP123182 A JP 123182A JP S58120427 A JPS58120427 A JP S58120427A
Authority
JP
Japan
Prior art keywords
processing
machining
rocking
radius
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP123182A
Other languages
Japanese (ja)
Other versions
JPH034335B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP123182A priority Critical patent/JPS58120427A/en
Publication of JPS58120427A publication Critical patent/JPS58120427A/en
Publication of JPH034335B2 publication Critical patent/JPH034335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/28Moving electrode in a plane normal to the feed direction, e.g. orbiting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To highly effectively apply rocking processing by performing electrical discharge machining while providing a relative rocking motion between an electrode and a workpiece, and changing said processing from a rough to a finishing conditon when the amplitude of said rocking motion reaches to a set value. CONSTITUTION:A relative rocking motion is provided between an electrode 1 and a workpiece 2 to perform electrical discharge processing. The radius (r) of the rocking motion is controlled such that it is small in the first place and becomes larger with the progress of the processing. The rocking motion is performed by driving a table 3 in the X, Y directions with an NC control device 6. The processing condition is set in a rough processing condition in the beginning, and when the rocking radius (r) reaches the value set by a setting circuit 8, a signal is issued from a switching circuit 15 to change the time interval of a pulse generating circuit 13, permitting the processing condition to be changed to a finish processing condition. When the rocking radius reaches the final value, the processing is stopped. In this way, the processing efficiency of the rocking processing is improved.

Description

【発明の詳細な説明】 本発明は加工電極と被加工体に相対的接近送りを与えて
加工する放電加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus that performs machining by applying relatively close feed to a machining electrode and a workpiece.

例えば、電極の送り方向と垂直な平面内で被加工体との
間に相対的な揺動運動をさせて電極形状と相似な形状穴
の加工を放電加工により行なうことが知られている。こ
の相対的揺動運動を行なわせる場合、例えば所定半径の
公転運動をさせる場合、公転半径が大きいと加工速度が
公転運動半径に追従できないからアーク、短絡が発生し
て安定加工できない。したがって公転半径を1μ量程度
の微小値で徐々に増加させて目的の所定半径まで拡大さ
せるとか、加工間隙の信号、例えば電圧を検出してサー
ボ制御しながら徐々に加工拡大していくよう制御する方
式がとられる。そして所定半径まで拡大したところで公
転運動半径の増加を停止して仕上げる。しかしこの揺動
加工中、電極と被加工体との加工間隙には一定加工条件
のパルスが加えられ、荒加工条件で加工すれば加工速度
は早いが加工面粗さ、加工制度が悪く、仕上加工条件で
は加工速度が遅い欠点がある。、 本発明はこのような点に鑑みて提案されるもので、電極
、被加工体間に与える相対的な運動をNC制御により駆
動し、相対的運動距離が設定した最終設定距離になった
とき荒加工条件で始まった加工パルスを所定の加工条件
になるよう少なくとも2段階に加工用電極の切換えを行
なうようにしたものである。
For example, it is known that a hole having a shape similar to the electrode shape is machined by electric discharge machining by making a relative oscillating motion between the workpiece and the workpiece in a plane perpendicular to the feeding direction of the electrode. When performing this relative oscillation motion, for example, when making a revolution movement with a predetermined radius, if the revolution radius is large, the machining speed cannot follow the revolution radius, and arcing and short circuits occur, making stable machining impossible. Therefore, the revolution radius can be gradually increased by a small value of about 1 μ to enlarge it to the desired predetermined radius, or the machining gap signal, for example, voltage can be detected and the machining can be gradually expanded while being controlled by servo control. A method is adopted. Then, when the radius of rotation reaches a predetermined radius, the radius of revolution stops increasing. However, during this oscillating machining, pulses with constant machining conditions are applied to the machining gap between the electrode and the workpiece, and if machining is performed under rough machining conditions, the machining speed is high, but the machined surface roughness, machining accuracy is poor, and the finish is poor. The disadvantage of machining conditions is that the machining speed is slow. The present invention has been proposed in view of these points, and involves driving the relative motion given between the electrode and the workpiece by NC control, and when the relative motion distance reaches the final set distance. The machining electrodes are switched in at least two stages so that a machining pulse that starts under rough machining conditions becomes a predetermined machining condition.

以十図面の一実施例によって本発明を説明する。The present invention will now be described with reference to an embodiment shown in ten drawings.

1は加工形状をした電極、2は被加工体で、予じめ穴が
形成され、そこに図示するよう電極1を挿入し、所定半
径の相対的公転運動を行なわせている。3は被加工体2
を固定する加工テーブル、4゜5uX軸及びY軸駆動装
曽テ、NC11JIIl装w6によって制御する。7は
出力パルスをNC制御装置に供給するパルス発生回路、
8は相対的公転運動の最終半径を設定するプリセット装
置、9は加工間隙の電圧信号を判別して判別信号を供給
する判別回路、10は加工パルスを発生するオン、オフ
スイッチ素子、11が直流電源、12は高周波のパルス
発生回路、13は低周波のパルス発生回路で、この両出
力パルスをアンドゲート14で結合したパルスをスイッ
チ素子10に加えてオン、オフill IIIする。1
5はNCIIJIII置6から出力装る公転半径の変化
に対応した信号を検出して前記パルス発生回路13の出
力パルス巾、体止巾、またはその両方の切換制御回路で
iる。
Reference numeral 1 denotes an electrode having a machined shape, and 2 a workpiece in which a hole is formed in advance, into which the electrode 1 is inserted as shown, and is caused to perform relative orbital movement with a predetermined radius. 3 is the workpiece 2
The processing table is fixed, the 4°5u X-axis and Y-axis drive system is controlled by the NC11JII system w6. 7 is a pulse generation circuit that supplies output pulses to the NC control device;
8 is a preset device for setting the final radius of relative revolution, 9 is a discrimination circuit that discriminates the voltage signal of the machining gap and supplies a discrimination signal, 10 is an on/off switch element that generates a machining pulse, and 11 is a DC A power supply, 12 is a high frequency pulse generation circuit, 13 is a low frequency pulse generation circuit, and a pulse obtained by combining both output pulses by an AND gate 14 is applied to the switch element 10 to turn it on and off. 1
Reference numeral 5 is a control circuit which detects a signal corresponding to a change in the revolution radius output from the NCIIJIII device 6 and switches the output pulse width, body stop width, or both of the output pulse width of the pulse generation circuit 13.

以−トにより電極1、被加工体2の間隙に加えられる加
工パルスは発生回路12の発生する高周波パルス列とパ
ルス発生回路13の発生する低周波パルスとがアンドゲ
ート14でアンド結合するから、低周波パルスのパルス
中に相当する時間高周波パルス列が続き、低周波パルス
の休止中に相当する時間高周波パルス列が中断する制御
パルスがスイッチ10に加わり直流電源11をオン、オ
フして制御パルスに相当する繰返数の加工パルスを加工
間隙に加えて放電加工が行なわれる。電極1と被加工体
2IIlにはNCIIJIIIにより相対的公転運動が
行なわれる。公転運動は第2図に示すように電極1の点
pが回転中心0.半径「をもって回転するように公転運
動を与えp点が被加工体2に接近動作を繰返すことによ
り電極全周が対応する被加工体2の各部に接近動作し放
電加工が行なわれることによって電極1形状に相似する
拡大形状の加工穴が被加工体2に形成される。なお、公
転半径rは相対的接近動作の最終設定値になるまで徐々
に拡大する。最終設定値は装置8によりプリセットしN
G装置6内のメモリーに保存されていて。
As a result, the processing pulse applied to the gap between the electrode 1 and the workpiece 2 is low because the high frequency pulse train generated by the generation circuit 12 and the low frequency pulse generated by the pulse generation circuit 13 are AND-coupled at the AND gate 14. The high-frequency pulse train continues for a time corresponding to the pulse of the frequency pulse, and the high-frequency pulse train is interrupted for the time corresponding to the pause of the low-frequency pulse.A control pulse is applied to the switch 10 and turns on and off the DC power supply 11, corresponding to the control pulse. Electric discharge machining is performed by applying a repetitive number of machining pulses to the machining gap. The electrode 1 and the workpiece 2IIl undergo relative orbital movement due to NCIIJIII. As shown in FIG. 2, the orbital movement is such that the point p of the electrode 1 is the rotation center 0. The electrode 1 is caused to rotate with a radius of 100 mm, and repeats the movement of the point p approaching the workpiece 2, so that the entire circumference of the electrode approaches each part of the workpiece 2, and electrical discharge machining is performed. A machined hole with an enlarged shape similar to the shape is formed in the workpiece 2.The revolution radius r gradually expands until it reaches the final setting value of the relative approach operation.The final setting value is preset by the device 8. N
It is stored in the memory of G device 6.

回路9から加工間隙の判別信号によって連続的或いはス
テップ状に最終設定値まで拡大することになる。公転運
動は相対的接近運動の軌道の複数の基本パターンをNC
制御装置6のメモリに記載してあり、それを図示しない
スイッチで選択し選択パターンを指定入力することによ
って指定パターンの接近運動を行なわせることができ、
第2図の公転運動を指定することにより相対的公転運動
が行なえるr> Gノである。指定された公転運動のパ
ターンとプリセット装置8によって設定された最終公転
半径「とがNG制御装置6内のcup等により論理、演
粋の処理が行なわれ、軌跡データがメモリされ、放電加
工のスタートにより発振回路7が作動しパルスをNC制
御装置6のプログラムカウンタ等に入力し、分配信号を
X、Y軸制御回路に出力して駆動装置4,5を制御しテ
ーブル3を電極1の対向方向に垂直X−Y平面に移動制
御し相対的公転運動を与えることになる。公転運動にょ
る被加二[体2の加工進行によって電極1と被加工体2
間の間隙が広がりこれに共なって電圧等の検出信号が増
大し判別回路9から判別出力が入力してこの信号に伴な
って公転半径が徐々に拡大し、設定値まで拡大するとス
トップする。公転半径がストップした状態で公転運動は
続けられ最終仕上間隙に至ると判別回路9の出力で公転
運動も停止し加工完了する。この公転運動による加工中
、公・、転半径の変更に伴なう信号がNCIIJIII
I@16がら順次用される。
Depending on the machining gap discrimination signal from the circuit 9, the gap is expanded continuously or stepwise to the final set value. The orbital motion is based on multiple basic patterns of orbits of relative approaching motion.
It is written in the memory of the control device 6, and by selecting it with a switch (not shown) and inputting the selected pattern, the approaching movement of the specified pattern can be performed.
Relative orbital motion can be performed by specifying the orbital motion shown in FIG. 2, where r>G. The specified orbital movement pattern and the final orbital radius set by the preset device 8 are processed logically and logically by the cup in the NG control device 6, the locus data is memorized, and electrical discharge machining is started. The oscillation circuit 7 operates, inputs pulses to the program counter of the NC control device 6, outputs distribution signals to the X and Y axis control circuits, controls the drive devices 4 and 5, and moves the table 3 in the direction opposite to the electrode 1. The robot is controlled to move in the vertical X-Y plane and given relative orbital motion.Due to the machining progress of the workpiece 2, the electrode 1 and the workpiece 2 are
As the gap between them widens, detection signals such as voltage increase accordingly, a discrimination output is input from the discrimination circuit 9, and the revolution radius gradually expands in accordance with this signal, and stops when it expands to a set value. The revolution continues with the revolution radius stopped, and when the final finishing gap is reached, the revolution is stopped by the output of the discrimination circuit 9 and the machining is completed. During machining due to this orbital movement, the signal associated with the change in orbital radius is NCIIJIII
It is used sequentially starting with I@16.

しかし図においては装w8でプリセットした公転半径に
なったときだけ信号出力し制御回路15に加える。制御
回路15はのときパルス発生回路13の切換えを行ない
パルス巾、体止巾の切換制御をする。加工の開始時には
パルス発生回路13はパルス中を大きくし、または休止
中を小さく設定し、パルス発生回路12の発生するパル
ス列の継続時間を長く、または中断時間を短かくした荒
加工条件に設定してあり、この荒加工条件での放電加工
が続けられるが、最終的に公転半径が設定値に達したと
きはパルス列の継続時間を短かく、または中断時間を長
くしたプリセットした仕上加]条付に切換えを行ないこ
の仕上加工条件で加工を行なって終了させる。したがっ
て始めには荒加]−条着で高速度の加工をし最終的には
仕上加工条件で表面粗さを良好に精度良く仕上げて加工
完了させることができ、加工能率を極めて向上させるこ
とができる。勿論加工条件は2段階の切換えに限らず、
3段階以上の加工条件をパルス発生回路13、III御
回路15にプリセットしておき、NC61l ’m装置
16から順次比される信号によって制御回路15が作動
してパルス発生回路13の加工条件の切換をするように
することができる。又加工条件の変更はパルス発生回路
12の出力するパルスの切換え変更とか、電源11の電
圧とかスイッチ素子10の並列数或いは回路抵抗の変更
制御によって放電パルスのは波高値を制御し波高値の大
きい荒加工条件から波高値の小さい仕上げ加工条件への
切換えを行なうようにすることができる。
However, in the figure, a signal is outputted and added to the control circuit 15 only when the revolution radius reaches the preset radius in w8. At this time, the control circuit 15 switches the pulse generating circuit 13 to control switching of the pulse width and stop width. At the start of machining, the pulse generation circuit 13 sets the pulse during the pulse to be large or the pulse during the pause to be small, and the rough machining conditions are set such that the duration of the pulse train generated by the pulse generation circuit 12 is lengthened or the interruption time is shortened. The electric discharge machining continues under these rough machining conditions, but when the revolution radius finally reaches the set value, the preset finishing machining with a shorter pulse train duration or longer interruption time is applied. The processing is then switched to and the processing is completed under these finishing processing conditions. Therefore, it is possible to first perform high-speed machining using rough machining and strip welding, and then finally complete the machining with good surface roughness and accuracy under finishing machining conditions, greatly improving machining efficiency. can. Of course, the machining conditions are not limited to two-stage switching.
Three or more stages of machining conditions are preset in the pulse generation circuit 13 and the III control circuit 15, and the control circuit 15 is activated by signals sequentially output from the NC61l'm device 16 to switch the machining conditions of the pulse generation circuit 13. can be made to do so. Further, the machining conditions can be changed by changing the pulse output from the pulse generation circuit 12, or by controlling the voltage of the power source 11, the number of parallel switch elements 10, or the circuit resistance to control the peak value of the discharge pulse, so that the peak value of the discharge pulse is large. It is possible to switch from rough machining conditions to finishing machining conditions with a small wave height value.

なお以上は一実施例によって説明したが、パルス発生回
路7を加工間隙の状態、即ち電圧信号等によって発振状
態を制御すれば、公転運動が加工間隙の状態により制御
され、間隙が狭まったときは速度が低下し、広がったと
きは速度が速(なり、或いはこの逆にも制御できるが、
公転運動を加工間隙の状態によってサーボにより行なわ
せることができ、安定した加工ができる。また公転運動
半径のステップ拡大を加工条件に対して予じめ実験した
ステップ量及び回転数をもってマニアル設定ステップに
したがって広げながら加工するようにしてもよい。
Although the above has been explained using one embodiment, if the oscillation state of the pulse generating circuit 7 is controlled by the state of the machining gap, that is, the voltage signal, etc., the revolution movement will be controlled by the state of the machining gap, and when the gap narrows, When the speed decreases and spreads, the speed increases (or vice versa can be controlled,
The revolution movement can be performed by servo depending on the state of the machining gap, allowing stable machining. Further, the machining may be performed while expanding the radius of revolution in steps according to manually set steps using a step amount and a rotational speed that have been previously experimented with respect to the machining conditions.

NG制御装置による揺動パターンは公転運動に限らず、
X軸、Y軸方向に寄せる場合、X−Y平面を任意の放射
形状に移動させる場合、X−Y平面を少な(とも4象限
に分け、各象限別に各パターンを組合せて移動させる場
合等が考えられる。加工間隙に加工パルスを加える電源
は他の公知のパルス又電源を利用することができる。
The oscillation pattern by the NG control device is not limited to orbital movement,
When moving the X-Y plane in the X-axis and Y-axis directions, when moving the X-Y plane in an arbitrary radial shape, when dividing the X-Y plane into four quadrants and moving each pattern in combination in each quadrant, etc. Other known pulses or power sources can be used as the power source for applying machining pulses to the machining gap.

電極は断面が総型形状をしたもの、先端が総型形状のも
、或いは単純形の棒状、線状、パイプ状のものを用いる
ことができ、抜型、庭付、ワイヤーカット等の加工態様
の加工が任意にでき、いずれも^能率に高精度に加工す
ることができる。
The electrodes can be of a general shape in cross section, with a general shape in the tip, or in the form of a simple rod, wire, or pipe, and can be processed by cutting, cutting, wire cutting, etc. Machining can be done as desired, and all processes can be performed efficiently and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例回路構成図、第2図は相
対的接近動作を説明する断面図である。 1、電極 2.被加工体 4,5駆動装置6、NC1,
III!l装置 8.接近距離設定装置 10゜11.
12.13.14.加工用電源 15.加工条件切換装
置 特  許  出  願  人 株式会社井上ジャパックス研究所 手続補正書(方式) 1.  :I)f’lのノ(示 昭和57年    特許願第1,231   号2、発
明の名称 放電加工装置 3 補正をする者 昭和57年4 月27日
FIG. 1 is a circuit configuration diagram of one embodiment of the device of the present invention, and FIG. 2 is a sectional view illustrating the relative approach operation. 1. Electrode 2. Workpiece 4, 5 Drive device 6, NC1,
III! l device 8. Approach distance setting device 10°11.
12.13.14. Power supply for processing 15. Processing Condition Switching Device Patent Applicant: Inoue Japax Co., Ltd. Procedural Amendment (Method) 1. :I) f'l no (1982 Patent Application No. 1,231 2, Name of Invention Electrical Discharge Machining Apparatus 3 Amended by: April 27, 1982)

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工体間に加工パルスを供給する加工用電源と
、前記電極と被加工体に相対的接近動作を与えるNC制
御装置と、該NC制御装置に最終接近距離を設定する装
置と、該装置により設定した最終接近距離になったとき
荒加工条件で始まった加工パルスを所定の仕上加工条件
になるよう少なくとも2段階に切換える前記加工用電源
の切換装置とから成ることを特徴とする放電加工装置。
A processing power source that supplies processing pulses between the electrode and the workpiece, an NC control device that provides a relative approach movement between the electrode and the workpiece, a device that sets a final approach distance to the NC control device, and and a switching device for the machining power source, which switches the machining pulse that started under rough machining conditions to at least two stages so that predetermined finishing machining conditions are reached when the final approach distance set by the device is reached. Device.
JP123182A 1982-01-06 1982-01-06 Electrical discharge machining device Granted JPS58120427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP123182A JPS58120427A (en) 1982-01-06 1982-01-06 Electrical discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP123182A JPS58120427A (en) 1982-01-06 1982-01-06 Electrical discharge machining device

Publications (2)

Publication Number Publication Date
JPS58120427A true JPS58120427A (en) 1983-07-18
JPH034335B2 JPH034335B2 (en) 1991-01-22

Family

ID=11495694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP123182A Granted JPS58120427A (en) 1982-01-06 1982-01-06 Electrical discharge machining device

Country Status (1)

Country Link
JP (1) JPS58120427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH03251315A (en) * 1990-03-01 1991-11-08 Shizuoka Seiki Co Ltd Control method for electrode position in electrolytic finishing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157396A (en) * 1978-06-01 1979-12-12 Cegedur Spark erosion working method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157396A (en) * 1978-06-01 1979-12-12 Cegedur Spark erosion working method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255324A (en) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp Method and device of electric discharge machining
JPH03251315A (en) * 1990-03-01 1991-11-08 Shizuoka Seiki Co Ltd Control method for electrode position in electrolytic finishing

Also Published As

Publication number Publication date
JPH034335B2 (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US4439660A (en) Electroerosive contour-machining method and apparatus with a rotary tool electrode
US4476369A (en) EDM Method of and apparatus for machining cavities using a plurality of independently movable segmented electrodes
JPS6216772B2 (en)
US6448529B1 (en) Electro discharge machining apparatus
US4606007A (en) NC electroerosion method and apparatus
JP2020192647A (en) Machine tool and control device of machine tool
JPS58120427A (en) Electrical discharge machining device
JP2014079876A (en) Wire electric discharge machine
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JPS6254610B2 (en)
JPH02205416A (en) Electric discharging machine
US4323749A (en) Process and apparatus for machining by electrical discharges along a slant axis
JPS59169717A (en) Electric discharge machining device
JPH0521690B2 (en)
JP2870836B2 (en) Electric discharge machine
JP3856159B2 (en) Electric discharge machining method and apparatus
JPH01228727A (en) Wire cut electric discharge machining method
JP2000354914A (en) Electrical discharge machine
KR100417076B1 (en) A method of vertically setting wire in a wire electric discharging machine
JP2635431B2 (en) Swing control method of electric discharge machine
JPS6119373B2 (en)
JP2969028B2 (en) Electric discharge machining method and apparatus
JPH0360929A (en) Electric discharging machine
JPS59215291A (en) Laser working device
GB2138340A (en) Numerically controlled electroerosion method and apparatus