JPH0570708B2 - - Google Patents

Info

Publication number
JPH0570708B2
JPH0570708B2 JP61118599A JP11859986A JPH0570708B2 JP H0570708 B2 JPH0570708 B2 JP H0570708B2 JP 61118599 A JP61118599 A JP 61118599A JP 11859986 A JP11859986 A JP 11859986A JP H0570708 B2 JPH0570708 B2 JP H0570708B2
Authority
JP
Japan
Prior art keywords
layer
ceramic
sprayed layer
ceramic sprayed
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61118599A
Other languages
Japanese (ja)
Other versions
JPS62274062A (en
Inventor
Noritaka Myamoto
Takashi Tomota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61118599A priority Critical patent/JPS62274062A/en
Publication of JPS62274062A publication Critical patent/JPS62274062A/en
Publication of JPH0570708B2 publication Critical patent/JPH0570708B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ガスタービン部品あるいは自動車
エンジン部品の如く、高温にさらされる雰囲気で
使用される部材に適したセラミツク被覆部材の製
造方法に関し、特に溶射によつて断熱、遮熱等の
ために比較的厚いセラミツク層を形成するにあた
つて、部材使用時の熱応力を緩和し得るようにし
たセラミツク被覆部材の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing ceramic coated parts suitable for parts used in atmospheres exposed to high temperatures, such as gas turbine parts or automobile engine parts, and particularly relates to a method for manufacturing ceramic coated parts suitable for parts used in atmospheres exposed to high temperatures, such as gas turbine parts or automobile engine parts. The present invention relates to a method of manufacturing a ceramic coated member that can alleviate thermal stress during use of the member when forming a relatively thick ceramic layer for heat insulation, heat shielding, etc.

従来の技術 ガスタービン部品や自動車部品等においては、
耐熱性、耐食性向上や断熱、遮熱等の目的から金
属製母材の表面にセラミツク層を形成する方法が
知られており、その場合特に厚いセラミツク層を
得るためのセラミツク被覆方法としては溶射によ
つてセラミツク層を形成する方法が広く実用化さ
れている。
Conventional technology For gas turbine parts, automobile parts, etc.
A method of forming a ceramic layer on the surface of a metal base material is known for the purpose of improving heat resistance, corrosion resistance, heat insulation, heat shielding, etc. In this case, the ceramic coating method to obtain a particularly thick ceramic layer is thermal spraying. Therefore, methods for forming ceramic layers have been widely put into practical use.

ところでガスタービン部品や自動車エンジン部
品は、機関作動時には高温にさらされるが非作動
時には室温付近まで冷却され、したがつて大きな
熱サイクルを受けるのが通常である。一方セラミ
ツクは一般に母材として用いられている金属と比
較して熱膨張係数が著しく小さい。そのため金属
母材にセラミツク溶射層を形成したガスタービン
部品や自動車エンジン部品においては、前述の熱
サイクルによつてセラミツク溶射層に大きな熱応
力が生じ、その結果熱サイクルを繰返し受けるう
ちにセラミツク溶射層に亀裂が発生し、遂にはセ
ラミツク溶射層の剥離に至ることが多く、そのた
め耐久性に未だ問題があつたのが実情である。
By the way, gas turbine parts and automobile engine parts are exposed to high temperatures when the engine is in operation, but are cooled to near room temperature when the engine is not in operation, and therefore are usually subjected to large thermal cycles. On the other hand, ceramics have a significantly smaller coefficient of thermal expansion than metals that are generally used as base materials. Therefore, in gas turbine parts and automobile engine parts in which a ceramic sprayed layer is formed on a metal base material, large thermal stress is generated in the ceramic sprayed layer due to the above-mentioned thermal cycle, and as a result, as the ceramic sprayed layer is repeatedly subjected to the thermal cycle, the ceramic sprayed layer The reality is that cracks often occur in the ceramic coating, which often leads to peeling of the ceramic sprayed layer, and as a result, there are still problems with durability.

従来、セラミツク溶射層の剥離を防止するべ
く、金属母材とセラミツク溶射層との間の熱膨張
差による熱応力を緩和する方法としては、予め金
属母材表面に熱膨張率が母材金属とセラミツクと
の中間でしかもセラミツクとの密着性が良好な金
属、例えばNi−Cr−Al合金、Ni−Cr−Al−Y合
金、ni−Co−Cr−Al−Y合金などを薄く溶射し
てボンド層あるいはアンダーコート層と称される
中間層を形成しておき、そのボンド層の上に目的
とするセラミツクを溶射する方法(例えば「溶接
学会誌」第54巻(1985)第3号、p164〜168、
“プラズマ技術の応用”参照)が知られている。
あるいはまた、セラミツクを溶射して未だその溶
射層が高温のうちに冷却用の不活性ガスを溶射層
に吹付けて急冷させ、これによりセラミツク溶射
層に微細な割れを発生させ、その微細な割れによ
り使用時の熱応力を緩和する方法(例えば特開昭
58−87273号公報参照)も知られている。
Conventionally, in order to prevent the ceramic sprayed layer from peeling off, the method of alleviating the thermal stress caused by the difference in thermal expansion between the metal base material and the ceramic sprayed layer was to prepare the surface of the metal base material in advance so that the coefficient of thermal expansion differs from that of the base metal. Bond is made by thermal spraying a thin layer of metal that is intermediate to ceramic and has good adhesion to ceramic, such as Ni-Cr-Al alloy, Ni-Cr-Al-Y alloy, and ni-Co-Cr-Al-Y alloy. A method in which an intermediate layer called an undercoat layer is formed and the desired ceramic is thermally sprayed onto the bond layer (for example, "Journal of the Welding Society" Vol. 54 (1985) No. 3, p. 164 - 168,
(See “Applications of Plasma Technology”) is known.
Alternatively, when ceramic is sprayed and the sprayed layer is still at a high temperature, a cooling inert gas is sprayed onto the sprayed layer to rapidly cool it down, thereby causing minute cracks in the ceramic sprayed layer. A method of alleviating thermal stress during use (for example, JP-A-Sho
58-87273) is also known.

発明が解決すべき問題点 セラミツク溶射層の剥離を防止するべく熱応力
を緩和するための前述の方法のうち、前者のボン
ド層(中間層)を形成する方法は、ある程度は有
効ではあるものの、その方法を単独で実施しただ
けでは未だ充分に剥離を防止することはできず、
したがつてより一層の寿命延長を図り得る方法の
開発が望まれいる。また後者の方法もある程度は
熱応力の緩和に有効ではあるが、セラミツク層の
厚みが1〜350μmと薄い溶射膜の場合に限られ
る問題がある。すなわち断熱、遮熱を目的とする
場合はセラミツク溶射層を1mm程度まで厚くする
ことが望ましいが、このような厚いセラミツク層
の場合には単に溶射後に不活性ガスを吹付けただ
けではそのセラミツク層内部まで充分に急冷され
ず、そのため生じる割れは粗大となり、熱応力の
緩和に役立つような微細な割れを生成できず、し
たがつてこのように比較的厚いセラミツク溶射層
では寿命延長も充分に図り得なかつたのである。
Problems to be Solved by the Invention Among the above-mentioned methods for alleviating thermal stress to prevent peeling of a ceramic sprayed layer, the former method of forming a bond layer (intermediate layer) is effective to some extent; Executing this method alone still cannot sufficiently prevent peeling.
Therefore, it is desired to develop a method that can further extend the service life. Although the latter method is effective to some extent in alleviating thermal stress, it has the problem that it is limited to the case where the ceramic layer is a thin thermal sprayed film with a thickness of 1 to 350 .mu.m. In other words, if the purpose is heat insulation or heat shielding, it is desirable to make the ceramic sprayed layer as thick as about 1 mm, but in the case of such a thick ceramic layer, simply spraying inert gas after spraying will damage the ceramic layer. The internal parts are not cooled down sufficiently, and as a result, the cracks that occur are coarse, and the fine cracks that would help alleviate thermal stress cannot be generated.Therefore, with such a relatively thick ceramic sprayed layer, it is not possible to sufficiently extend the service life. It was not profitable.

この発明は以上の事情を背景としてなされたも
ので、セラミツク溶射層の厚みが0.3〜1mm程度
と厚い場合でも、セラミツク溶射層の熱応力を充
分かつ確実に緩和して、セラミツク溶射層の剥離
が可及的に生じないようにし、これによつて従来
よりも格段に耐久性を高めたセラミツク溶射層を
有するセラミツク被覆部材を製造する方法を提供
することを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and even when the thickness of the ceramic sprayed layer is as thick as 0.3 to 1 mm, the thermal stress of the ceramic sprayed layer can be sufficiently and reliably alleviated, and the peeling of the ceramic sprayed layer can be prevented. It is an object of the present invention to provide a method for manufacturing a ceramic coated member having a ceramic sprayed layer, which prevents this occurrence as much as possible, thereby making the durability significantly higher than in the past.

問題点を解決するための手段 この発明は、母材を金属とし、かつ表面に溶射
によるセラミツク層が形成されているセラミツク
被覆部材の製造方法において、溶射によつて所定
厚みのセラミツク層を形成した後、そのセラミツ
ク溶射層の表面に高密度エネルギを照射してセラ
ミツク溶射層の最表面層のみを急速溶融・急速再
凝固させることにより、その最表面層に微細なク
ラツクを発生させ、しかる後セラミツク溶射層に
冷熱サイクルを与えて前記クラツクをセラミツク
溶射層の実質的に全厚みにわたつて成長させるこ
とを特徴とするものである。
Means for Solving the Problems The present invention provides a method for manufacturing a ceramic coated member in which the base material is a metal and a ceramic layer is formed on the surface by thermal spraying. Then, by irradiating the surface of the ceramic sprayed layer with high-density energy to rapidly melt and rapidly resolidify only the outermost layer of the ceramic sprayed layer, fine cracks are generated in the outermost layer, and then the ceramic The method is characterized in that the cracks are grown through substantially the entire thickness of the ceramic sprayed layer by subjecting the sprayed layer to a thermal cycle.

作 用 この発明の方法においては、先ず第1図に示す
ように、金属からなる母材1上に必要に応じてボ
ンド層2を形成した後、常法にしたがつてプラズ
マ溶射法などによりセラミツク溶射層3を形成し
ておく。
Function In the method of the present invention, as shown in FIG. 1, first, a bond layer 2 is formed as necessary on a base material 1 made of metal, and then a ceramic is bonded by a plasma spraying method or the like according to a conventional method. A sprayed layer 3 is formed in advance.

母材1の金属は部材の用途に応じて定めれば良
く、例えばガスタービン部品の場合には主として
耐熱性の観点から耐熱合金鋼等の鉄系材料を、ま
た自動車エンジン用部品の場合には主として軽量
性等の観点からAl−Ci合金等のアルミニウム系
材料などを選択すれば良い。前記ボンド層2は必
ずしも形成しなくても良いが、これを形成してお
けば熱応力をより一層緩和することができる。こ
のボンド層は、セラミツクと母材金属との中間の
熱膨張係数を有しかつセラミツクとの密着性が優
れた金属を溶射して形成すれば良い。ボンド層の
金属としてはNi基合金、例えばNi−Cr−Al合
金、Ni−Cr−Al−Y合金、Ni−Co−Cr−Al−
Y合金等が最適であるが、これらに限らないこと
は勿論である。またセラミツク溶射層3を構成す
るセラミツクは、用途や耐熱温度等に応じて、酸
化物系セラミツク例えばZrO2(Y2O3、CaO、
MgOなどにより安定化したものを含む)、Al2O3
MgO、あるいはSi3N4、BN、AlN等の窒化物系
セラミツク、SiC等の炭化物系セラミツクTiB2
CrB2などのホウ化物系セラミツク、さらにはそ
れらの混合物等を用いることができる。なおボン
ド層の厚みは特に限定しないが、通常は30μm〜
200μm程度とすれば良い。またセラミツク溶射
層の厚みも特に限定しないが、この発明の方法は
特に断熱や遮熱等を目的として比較的厚いセラミ
ツク溶射層を形成する場合に有効であり、その観
点から通常は0.3mm〜1.0mm程度とすることが望ま
しい。なおまた、母材1の表面は予めシヨツトブ
ラスト等によつて粗面としておき、ボンド層の結
合強度を高めることが望ましい。
The metal of the base material 1 may be determined depending on the intended use of the part. For example, in the case of gas turbine parts, iron-based materials such as heat-resistant alloy steel are used mainly from the viewpoint of heat resistance, and in the case of parts for automobile engines, iron-based materials such as heat-resistant alloy steel are used. An aluminum material such as an Al-Ci alloy may be selected mainly from the viewpoint of light weight. The bond layer 2 does not necessarily need to be formed, but if it is formed, thermal stress can be further alleviated. This bond layer may be formed by thermal spraying a metal that has a thermal expansion coefficient intermediate between that of the ceramic and the base metal and has excellent adhesion to the ceramic. The metal of the bond layer is Ni-based alloy, such as Ni-Cr-Al alloy, Ni-Cr-Al-Y alloy, Ni-Co-Cr-Al-
Although Y alloy and the like are most suitable, it is needless to say that the material is not limited to these. The ceramic constituting the ceramic sprayed layer 3 may be oxide-based ceramic such as ZrO 2 (Y 2 O 3 , CaO,
(including those stabilized with MgO etc.), Al 2 O 3 ,
MgO, nitride ceramics such as Si 3 N 4 , BN, AlN, carbide ceramics such as SiC, TiB 2 ,
A boride ceramic such as CrB 2 or a mixture thereof can be used. The thickness of the bond layer is not particularly limited, but is usually 30 μm or more.
It may be about 200 μm. The thickness of the ceramic sprayed layer is also not particularly limited, but the method of the present invention is particularly effective when forming a relatively thick ceramic sprayed layer for the purpose of heat insulation or heat shielding, and from that point of view, the thickness is usually 0.3 mm to 1.0 mm. It is desirable to set it to about mm. Furthermore, it is desirable that the surface of the base material 1 be roughened in advance by shot blasting or the like to increase the bonding strength of the bond layer.

なおセラミツク溶射層3の内部には、溶射法の
特性上、第1図に示すように多数の気孔4が分散
しており、この気孔4は後に説明する微細なクラ
ツクとともに熱応力緩和の役割を担う。
Due to the characteristics of the thermal spraying method, a large number of pores 4 are dispersed inside the ceramic sprayed layer 3, as shown in FIG. take charge

上述のようにしてセラミツク溶射層3を形成し
た後、この発明の方法では第2図に示すようにセ
ラミツク溶射層3の表面にレーザ、プラズマある
いはTIGアーク等の高密度エネルギ5を照射す
る。高密度エネルギ5の照射は、そのエネルギビ
ームと対象物(セラミツク溶射層)を相対的に移
動させつつ行えば良い。このようなレーザ等の高
密度エネルギは、そのエネルギ密度が高いため
に、照射されたセラミツク溶射層の最表面層3A
が急速に溶融されるが、その照射位置を移動させ
ることによりその溶融した部分は母材側への熱移
動により急速に凝固され、再凝固層3Bとなる。
このようにセラミツク溶射層3の最表面の再凝固
層3Bはその冷却・凝固速度が高いため、微細な
クラツク6が多数発生する。なおこの再凝固層3
Bにおいては、高密度エネルギによる再溶融・再
凝固処理前に内部に存在していた気孔4はその殆
んどが消滅する。
After forming the ceramic sprayed layer 3 as described above, in the method of the present invention, the surface of the ceramic sprayed layer 3 is irradiated with high-density energy 5 such as laser, plasma, or TIG arc, as shown in FIG. Irradiation with the high-density energy 5 may be performed while relatively moving the energy beam and the object (ceramic sprayed layer). Since the high-density energy of such a laser has a high energy density, the outermost surface layer 3A of the irradiated ceramic sprayed layer
is rapidly melted, but by moving the irradiation position, the melted portion is rapidly solidified by heat transfer to the base material side, and becomes a re-solidified layer 3B.
As described above, since the resolidified layer 3B on the outermost surface of the ceramic sprayed layer 3 has a high cooling and solidifying rate, many fine cracks 6 are generated. Note that this resolidified layer 3
In case B, most of the pores 4 that existed inside before the remelting/resolidifying treatment using high-density energy disappear.

次いでセラミツク溶射層3の全体に適切な加熱
冷却の冷熱サイクルを繰返し加える。このよう
に冷熱サイクルを加える行ことによつてセラミツ
ク溶射層内部に熱応力が生じ、前述のような最表
面層のクラツク6がセラミツク溶射層3内の再溶
融・再凝固処理を施していない層3Cに伝播し、
その層内でもクラツクがさらに伝播し、遂にはボ
ンド層2にまで至る。すなわち第3図に示すよう
に微細なクラツク6がセラミツク溶射層3の全厚
みにわたつて成長することになる。
Next, the entire ceramic sprayed layer 3 is repeatedly subjected to appropriate heating and cooling cycles. By applying the cooling/heating cycle in this way, thermal stress is generated inside the ceramic sprayed layer, and the cracks 6 in the outermost layer as described above are caused by the layers in the ceramic sprayed layer 3 that have not been subjected to remelting/resolidification treatment. Propagates to 3C,
The crack further propagates within that layer and finally reaches the bond layer 2. That is, as shown in FIG. 3, fine cracks 6 grow over the entire thickness of the ceramic sprayed layer 3.

このようにしてセラミツク溶射層3の全厚みに
わたつて成長した微細なクラツク6は、ほぼセラ
ミツク溶射層3の厚み方向に沿つている。一方ガ
スタービン部品や自動車エンジン部品としての使
用時における熱応力は、セラミツク溶射層3の厚
み方向に対し直角な方向に作用するから、前述の
ような方向性を有する微細なクラツクは、使用時
の熱応力を緩和するに有効に機能する。またセラ
ミツク溶射層3の全厚みのうち、再溶融・再凝固
処理が施されていない下側の層3Cにおいては、
溶射時に導入された多数の気孔4がそのまま残つ
ており、この気孔4も熱応力を緩和する作用をも
たらす。
The fine cracks 6 that have grown over the entire thickness of the ceramic sprayed layer 3 in this manner are substantially along the thickness direction of the ceramic sprayed layer 3. On the other hand, thermal stress during use as gas turbine parts or automobile engine parts acts in a direction perpendicular to the thickness direction of the ceramic sprayed layer 3. Effectively functions to relieve thermal stress. Furthermore, among the total thickness of the ceramic sprayed layer 3, in the lower layer 3C which has not been subjected to remelting and resolidification treatment,
A large number of pores 4 introduced during thermal spraying remain as they are, and these pores 4 also have the effect of relieving thermal stress.

上述のように、レーザ等の高密度エネルギの照
射による再溶融・再凝固処理によつてセラミツク
溶射層の最表面層に形成された微細なクラツク
は、セラミツク溶射層の厚みが大きい場合でもそ
の後の冷熱サイクルによつてセラミツク溶射層の
全厚みにわたつて厚み方向に成長され、しかも最
表面層以外の部分には溶射時に形成された気孔も
残つているから、セラミツク溶射層が厚い場合で
も有効に熱応力を緩和することが可能となるので
ある。
As mentioned above, fine cracks formed on the outermost surface layer of a ceramic sprayed layer due to remelting and resolidification treatment by irradiation with high-density energy such as a laser will cause damage to the subsequent ceramic sprayed layer, even if the thickness of the ceramic sprayed layer is large. It grows in the thickness direction over the entire thickness of the ceramic sprayed layer through cooling and heating cycles, and pores formed during spraying remain in areas other than the outermost layer, so it is effective even when the ceramic sprayed layer is thick. This makes it possible to alleviate thermal stress.

ここで、レーザ等の高密度エネルギによつて溶
融・再凝固させる厚みが厚過ぎれば、溶射時に導
入された気孔が残つている層が少なくなり、その
ため熱応力緩和効果が少なくなる。そこで高密度
エネルギにより再溶融・再凝固させる層3Bの厚
みはセラミツク溶射層3の全厚みの1/2以下、よ
り望ましくは1/3以下とすることが好ましい。こ
のように再凝固層3Bの厚みを調整するために
は、例えばレーザを用いる場合、レーザ出力およ
びab値を制御すれば良い。ここで、ab値とは、レ
ーザ装置のレンズの焦点距離をl0、レンズから対
象物までの距離をlとすれば、ab=l/L0で表わ
される値である。なお再凝固層3Bの厚みがセラ
ミツク溶射層3の全厚みの1/10未満となるような
条件では、安定して微細なクラツクを導入するこ
とができないから、再凝固層3Bの厚みはセラミ
ツク溶射層3の全厚みの1/10以上とすることが好
ましい。
Here, if the thickness that is melted and resolidified by high-density energy such as a laser is too thick, there will be fewer layers in which the pores introduced during thermal spraying will remain, and therefore the thermal stress relaxation effect will be reduced. Therefore, the thickness of the layer 3B to be remelted and resolidified by high-density energy is preferably 1/2 or less, more preferably 1/3 or less of the total thickness of the ceramic sprayed layer 3. In order to adjust the thickness of the resolidified layer 3B in this way, for example, when using a laser, the laser output and the a b value may be controlled. Here, the a b value is a value expressed by a b =l/L 0 , where l 0 is the focal length of the lens of the laser device, and l is the distance from the lens to the object. Note that under conditions where the thickness of the resolidified layer 3B is less than 1/10 of the total thickness of the ceramic sprayed layer 3, it is not possible to stably introduce fine cracks. The thickness is preferably 1/10 or more of the total thickness of layer 3.

また高密度エネルギ照射により微細クラツクを
発生させた後にその微細なクラツクを成長させる
ための冷熱サイクルの望ましい条件は、母材の材
質によつて異なるが、要は100℃以下程度の低温
域と母材金属に悪影響を与えない程度の高温域と
の間で適切な加熱速度、冷却速度で加熱−冷却を
繰返せば良い。加熱速度、冷却速度は、大き過ぎ
れば急激に大きな割れがセラミツク層に発生して
しまい、逆に小さ過ぎればクラツクの成長が困難
となるから、これらの条件を考慮して定める必要
がある。例えば母材が耐熱鋼等のFe系材料の場
合には、50〜100℃の低温域と700〜900℃の高温
域との間で加熱速度5〜15℃/sec、冷却速度5
〜20℃/secで加熱−冷却を繰返せば良い。また
母材がAl−Si合金などのAl系材料の場合には、
50〜100℃の低温域と350〜400℃の高温域との間
で加熱速度5〜15℃/sec、冷却速度5〜20℃/
secで加熱冷却を繰返せば良い。また冷熱サイク
ルの繰返し回数は、要はクラツク6がセラミツク
溶射層3の全厚みにわたつて確実に成長するまで
とすれば良く、特に限定はしないが、通常は100
回〜1000回程度とすれば良い。
In addition, the desirable conditions for the cooling and heating cycle to grow fine cracks after they are generated by high-density energy irradiation vary depending on the material of the base material, but the key is to use a low temperature range of about 100℃ or less and a temperature range of about 100℃ or less. Heating and cooling may be repeated at appropriate heating and cooling rates within a high temperature range that does not adversely affect the material metal. If the heating rate and cooling rate are too high, large cracks will suddenly occur in the ceramic layer, and if they are too low, it will be difficult for cracks to grow, so these conditions must be taken into consideration when determining the heating rate and cooling rate. For example, when the base material is Fe-based material such as heat-resistant steel, the heating rate is 5 to 15℃/sec and the cooling rate is 5 to 15℃/sec between the low temperature range of 50 to 100℃ and the high temperature area of 700 to 900℃.
It is sufficient to repeat heating and cooling at ~20°C/sec. In addition, when the base material is Al-based material such as Al-Si alloy,
Between the low temperature range of 50 to 100℃ and the high temperature range of 350 to 400℃, the heating rate is 5 to 15℃/sec, and the cooling rate is 5 to 20℃/sec.
All you have to do is repeat heating and cooling at sec. In addition, the number of repetitions of the cooling/heating cycle should be set until the cracks 6 are reliably grown over the entire thickness of the ceramic sprayed layer 3. Although there is no particular limitation, the number of repetitions is usually 100.
The number of times may be approximately 1000 times.

実施例 ガスタービン部品、自動車エンジン部品への適
用を想定して、母材としてNi基耐熱合金鋼およ
びAl−Si(JIS AC8A)合金をそれぞれ母材とし
て用意した。
Example Assuming application to gas turbine parts and automobile engine parts, Ni-based heat-resistant alloy steel and Al-Si (JIS AC8A) alloy were prepared as base materials, respectively.

各母材の表面にシヨツトブラス処理を施した
後、ボンド層としてNi−Cr−Al合金を厚さ100μ
mに溶射し、続いてそのボンド層の上に、セラミ
ツク層としてZrO2・8Y2O3を1.0mm厚でプラズマ
溶射した。
After shot-blassing the surface of each base material, a bond layer of Ni-Cr-Al alloy is applied to a thickness of 100μ.
Then, on the bond layer, ZrO 2 .8Y 2 O 3 was plasma sprayed to a thickness of 1.0 mm as a ceramic layer.

次いで母材側を移動させながらセラミツク溶射
層の表面にレーザを照射した。ここでレーザ出力
は2KW/cm2、ab値は0.96、母材側移動速度は3
m/minとし、セラミツク層の最表面から0.3mm
深さまでの領域を急速再溶融、急速再凝固させ
た。この状態では再凝固層に微細なクラツクが多
数発生していることが確認された。
Next, the surface of the ceramic sprayed layer was irradiated with a laser while moving the base metal side. Here, the laser output is 2KW/cm 2 , the a b value is 0.96, and the base material side movement speed is 3
m/min, 0.3mm from the top surface of the ceramic layer
Rapid remelting and rapid resolidification occurred in the deep region. In this state, it was confirmed that many fine cracks were generated in the resolidified layer.

その後、Ni基耐熱合金鋼を母材とするものに
ついては、100℃と900℃との間において加熱速度
8℃/sec、冷却速度10℃/secで加熱−冷却サイ
クルを繰返し与え、またAl−Si合金を母材とす
るものについては50℃と400℃との間において加
熱速度8℃/sec、冷却速度10℃/secで加熱−冷
却サイクルを繰返し与えた。その結果第3図に示
すように微細なクラツクがボンド層まで達してい
ることが確認された。
After that, for those whose base material is Ni-based heat-resistant alloy steel, heating-cooling cycles are repeated between 100°C and 900°C at a heating rate of 8°C/sec and a cooling rate of 10°C/sec. For those whose base material was Si alloy, heating-cooling cycles were repeated between 50°C and 400°C at a heating rate of 8°C/sec and a cooling rate of 10°C/sec. As a result, as shown in FIG. 3, it was confirmed that fine cracks had reached the bond layer.

以上のようにして得られたセラミツク被覆部材
について、熱サイクル試験を行なつてセラミツク
溶射層の剥離状態を調べた。但し熱サイクル条件
は、Ni基耐熱鋼を母材とするものでは50℃と
1100℃との間において、またAl−Si合金を母材
とするものについては20℃と450℃との間におい
て、ともに加熱速度10℃/sec、冷却速度15℃/
secにて加熱−冷却を繰返した。この熱サイクル
試験の結果、第4図に示すように、この発明の実
施例により得られたセラミツク被覆部材では
10000回の熱サイクルでもセラミツク溶射層の剥
離が生じないことが判明した。比較のため、セラ
ミツク溶射を施しただけの従来のセラミツク被覆
部材、すなわち微細なクラツクを発生させなかつ
たものについて同じ熱サイクル試験を実施したと
ころ、第5図中に従来法として示したように熱サ
イクル2500回以下でセラミツク層の剥離が生じ
た。なおこれらの従来法は、いずれも各層の材
質、厚みは実施例と同じである。このような試験
結果から、この発明の方法により得られたセラミ
ツク被覆部材は、従来よりも格段にその耐用寿命
を延長し得ることが明らかである。
The ceramic coated member obtained as described above was subjected to a thermal cycle test to examine the peeling state of the ceramic sprayed layer. However, the heat cycle conditions are 50℃ for those whose base material is Ni-based heat-resistant steel.
The heating rate is 10℃/sec and the cooling rate is 15℃/sec between 1100℃ and 20℃ and 450℃ for those whose base material is Al-Si alloy.
Heating and cooling were repeated at sec. As a result of this thermal cycle test, as shown in FIG.
It was found that the ceramic sprayed layer did not peel off even after 10,000 thermal cycles. For comparison, we conducted the same thermal cycle test on a conventional ceramic-coated member that had only been subjected to ceramic spraying, that is, one that did not generate minute cracks. The ceramic layer peeled off after 2500 cycles or less. Note that in all of these conventional methods, the material and thickness of each layer are the same as in the examples. From these test results, it is clear that the ceramic coated member obtained by the method of the present invention can have a significantly longer service life than conventional ones.

発明の効果 この発明の方法によれば、セラミツク溶射層が
0.3〜1.0mmと比較的厚い場合においても、使用時
のセラミツク溶射層の熱応力を充分に緩和して、
セラミツク溶射層の剥離に至るまでの耐用寿命を
従来よりも格段に延長することができる顕著な効
果が得られる。特にこの発明の方法は上述のよう
に比較的厚いセラミツク溶射層で有効であること
から、断熱や遮熱を目的としてセラミツク被覆を
施す場合に有利である。
Effects of the invention According to the method of this invention, the ceramic sprayed layer is
Even when the thickness is relatively thick (0.3 to 1.0 mm), the thermal stress of the ceramic sprayed layer during use is sufficiently alleviated.
A remarkable effect can be obtained in that the service life of the ceramic sprayed layer until it peels off can be significantly extended compared to the conventional method. In particular, since the method of the present invention is effective for relatively thick ceramic sprayed layers as described above, it is advantageous when ceramic coating is applied for the purpose of heat insulation or heat shielding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図まではこの発明の方法を実施
する状態を段階的に示す模式的な断面図、第4図
はこの発明による実施例および従来法によるセラ
ミツク被覆部材の熱サイクル試験結果を示すグラ
フである。 1……母材、2……ボンド層、3……セラミツ
ク溶射層、4……気孔、5……高密度エネルギ、
6……クラツク。
Figures 1 to 3 are schematic sectional views showing step-by-step the state in which the method of the present invention is carried out, and Figure 4 shows the results of thermal cycle tests of ceramic coated members according to the embodiment of the present invention and the conventional method. This is a graph showing. 1... Base material, 2... Bond layer, 3... Ceramic sprayed layer, 4... Pore, 5... High density energy,
6...Kratsuku.

Claims (1)

【特許請求の範囲】 1 母材を金属とし、かつ表面に溶射によるセラ
ミツク層が形成されているセラミツク被覆部材の
製造方法において、 溶射によつて所定厚みのセラミツク層を形成し
た後、そのセラミツク溶射層の表面に高密度エネ
ルギを照射してセラミツク溶射層の最表面層のみ
を急速溶融・急速再凝固させることにより、その
最表面層に微細なクラツクを発生させ、しかる後
セラミツク溶射層に冷熱サイクルを与えて前記ク
ラツクをセラミツク溶射層の実質的に全厚みにわ
たつて成長させることを特徴とするセラミツク被
覆部材の製造方法。
[Scope of Claims] 1. A method for manufacturing a ceramic coated member in which the base material is a metal and a ceramic layer is formed on the surface by thermal spraying, comprising: forming a ceramic layer of a predetermined thickness by thermal spraying, and then spraying the ceramic layer. By irradiating the surface of the layer with high-density energy to rapidly melt and rapidly re-solidify only the outermost layer of the ceramic sprayed layer, fine cracks are generated in the outermost layer, and then the ceramic sprayed layer is subjected to a cooling and heating cycle. A method of manufacturing a ceramic coated member, characterized in that the cracks are grown over substantially the entire thickness of the ceramic sprayed layer.
JP61118599A 1986-05-23 1986-05-23 Production of ceramic coated member Granted JPS62274062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61118599A JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118599A JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Publications (2)

Publication Number Publication Date
JPS62274062A JPS62274062A (en) 1987-11-28
JPH0570708B2 true JPH0570708B2 (en) 1993-10-05

Family

ID=14740558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118599A Granted JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Country Status (1)

Country Link
JP (1) JPS62274062A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743579C2 (en) * 1997-10-02 2001-08-16 Mtu Aero Engines Gmbh Thermal barrier coating and process for its manufacture
US6180262B1 (en) * 1997-12-19 2001-01-30 United Technologies Corporation Thermal coating composition
JP4434667B2 (en) * 2002-09-06 2010-03-17 関西電力株式会社 Manufacturing method of heat shielding ceramic coating parts
JP4607530B2 (en) 2004-09-28 2011-01-05 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine
US20080166489A1 (en) * 2005-08-04 2008-07-10 United Technologies Corporation Method for microstructure control of ceramic thermal spray coating
US20100136258A1 (en) * 2007-04-25 2010-06-03 Strock Christopher W Method for improved ceramic coating
US20100028711A1 (en) * 2008-07-29 2010-02-04 General Electric Company Thermal barrier coatings and methods of producing same
JP5281995B2 (en) * 2009-09-24 2013-09-04 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
FR3013360B1 (en) 2013-11-19 2015-12-04 Snecma INTEGRATED SINTERING PROCESS FOR MICROFILERATION AND EROSION PROTECTION OF THERMAL BARRIERS

Also Published As

Publication number Publication date
JPS62274062A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
JPH0118994B2 (en)
JPH0118993B2 (en)
JPH0791660B2 (en) Ground equipment with heat-resistant walls for environmental protection
JP2000334880A (en) Article having silicon-containing substrate and calcium- containing barrier layer and production thereof
JPH0251978B2 (en)
JPH0570708B2 (en)
JP3530768B2 (en) Forming method of heat shielding film
US4695699A (en) Method of making composite member
JPS5816094A (en) Applying of strain tolerant ceramic heat barrier cover to metal substrate
JPH07243018A (en) Surface modification method for heat insulating film
US6149389A (en) Protective coating for turbine blades
JP4226669B2 (en) Heat resistant material
RU2078148C1 (en) Method of applying coating onto turbine blade
JPH09327779A (en) Method for forming crack in ceramic film, and ceramic film parts formed by the method
JP2001335915A (en) Method for depositing heat-shielding ceramic film, and heat-resistant component having the film
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPS62211387A (en) Production of ceramic coated heat resistant member
JP2001323361A (en) Radiant tube excellent in high temperature oxidation resistance and its production method
JP4313459B2 (en) High temperature exposed member and manufacturing method thereof
RU2214475C2 (en) Method of applying coats
JP4060072B2 (en) Coating interlayer to improve compatibility between substrate and aluminum-containing oxidation resistant metal coating
JPS62211390A (en) Ceramic coated heat resistant member and its production
JPH0610354B2 (en) Ceramic coated heat resistant member and method for manufacturing the same
JPH1088303A (en) Method for working alloy
CN115074652A (en) NiAl coating with long service life and high-energy-beam composite surface modification method thereof