JP4434667B2 - Manufacturing method of heat shielding ceramic coating parts - Google Patents

Manufacturing method of heat shielding ceramic coating parts Download PDF

Info

Publication number
JP4434667B2
JP4434667B2 JP2003315995A JP2003315995A JP4434667B2 JP 4434667 B2 JP4434667 B2 JP 4434667B2 JP 2003315995 A JP2003315995 A JP 2003315995A JP 2003315995 A JP2003315995 A JP 2003315995A JP 4434667 B2 JP4434667 B2 JP 4434667B2
Authority
JP
Japan
Prior art keywords
coating
heat
sprayed coating
ceramic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003315995A
Other languages
Japanese (ja)
Other versions
JP2004149915A (en
Inventor
正彦 森継
弘雅 大塚
孝二 高橋
稔 大原
雅彦 妻鹿
泰治 鳥越
明 大森
秀則 白沢
展 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003315995A priority Critical patent/JP4434667B2/en
Publication of JP2004149915A publication Critical patent/JP2004149915A/en
Application granted granted Critical
Publication of JP4434667B2 publication Critical patent/JP4434667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、発電用ガスタービン等の高温域で使用される機器に用いる熱遮蔽セラミックコーティング部品の製造方法に関する。 The present invention relates to a process for producing a heat-shielding ceramic coating unit products for use in equipment used in a high temperature range, such as a gas turbine for power generation.

ガスタービンの翼や燃焼筒等の高温域で使用される耐熱部品として、Ni基耐熱合金基材の表面に、MCrAlY(MはCo又はNi)等の耐高温酸化性・耐高温腐食性に優れる下地溶射皮膜を介して、熱遮蔽セラミック溶射皮膜を形成したものが汎用されている。一般的に、このセラミック溶射皮膜は、ZrO2 にMgO、CaO、Y23 等を加えて安定化させたものであり、プラズマ溶射によって数百μm程度の厚みに形成されるのが普通である。 As a heat-resistant component used in high-temperature areas such as gas turbine blades and combustion cylinders, it has excellent high-temperature oxidation resistance and high-temperature corrosion resistance such as MCrAlY (M is Co or Ni) on the surface of a Ni-based heat-resistant alloy substrate. What formed the heat-shielding ceramic sprayed coating through the base sprayed coating is used widely. Generally, this ceramic sprayed coating is stabilized by adding MgO, CaO, Y 2 O 3 or the like to ZrO 2 and is usually formed to a thickness of about several hundred μm by plasma spraying. is there.

しかるに、上記のような熱遮蔽セラミック溶射皮膜を設けた耐熱部品においても、熱衝撃(加熱−冷却の熱サイクル)の反復により、該セラミック溶射皮膜と下地溶射皮膜との間に界面剥離が発生し易く、苛酷な使用条件では充分な高温耐久性が得られないという問題があった。特にガスタービンの場合、発電効率の向上のために稼働温度をより高くする傾向にあり、これに伴って各部品の高温耐久性を改善して長寿命化を図ることが強く要望されている。なお、基材への熱影響を緩和するためにセラミック溶射皮膜の厚みを増加させた場合は、熱衝撃による内部応力が増大するため、上記の界面剥離はより発生し易くなる。   However, even in a heat-resistant component provided with the above-described heat-shielding ceramic sprayed coating, interfacial delamination occurs between the ceramic sprayed coating and the base sprayed coating due to repeated thermal shock (heating-cooling thermal cycle). There was a problem that sufficient high-temperature durability could not be obtained under harsh use conditions. In particular, in the case of a gas turbine, there is a tendency to increase the operating temperature in order to improve the power generation efficiency, and accordingly, there is a strong demand for improving the high temperature durability of each component and extending the life. In addition, when the thickness of the ceramic sprayed coating is increased in order to alleviate the thermal effect on the base material, the internal stress due to thermal shock increases, so that the above-described interface peeling is more likely to occur.

そこで、上記要望に対処する手段として、近年、熱遮蔽セラミック溶射皮膜に厚み方向の割れ(縦割れ)による柱状組織を形成することが提案されている。これは、前記の界面剥離を生じる主因がセラミック溶射皮膜と下地溶射皮膜及び耐熱合金基材との線膨張率の違い(線膨張率:安定化ZrO2 溶射層…10〜11×10-6/K、Ni基耐熱合金及びMCrAlY合金…16×10-6/K)にあることから、予めセラミック溶射皮膜側に割れを形成しておき、この割れによって熱サイクルに伴う膨張・収縮の差を吸収させるというものである。 Therefore, in recent years, it has been proposed to form a columnar structure due to cracks in the thickness direction (longitudinal cracks) in the heat-shielding ceramic sprayed coating as a means for coping with the above demand. This is due to the difference in linear expansion coefficient between the ceramic sprayed coating, the base sprayed coating and the heat-resistant alloy substrate (linear expansion coefficient: stabilized ZrO 2 sprayed layer: 10 to 11 × 10 −6 / K, Ni-base heat-resistant alloy and MCrAlY alloy ... 16 × 10 -6 / K), cracks are formed in advance on the ceramic sprayed coating, and the cracks absorb the difference in expansion and contraction associated with the thermal cycle. It is to let you.

しかして、従来の提案に係る熱遮蔽セラミック溶射皮膜の前記柱状組織の形成方法としては、電子ビームによる蒸着と酸素イオン照射によって安定化ZrO2 層を成膜する方法(特許文献1)、プラズマ溶射にて成膜した安定化ZrO2 層の表面に後処理としてパルスレーザを局部的に照射する方法(特許文献2)、プラズマ溶射にて安定化ZrO2 層を形成する際の溶射条件の制御によって溶射単層(1パス)毎に割れを生じさせてゆく方法(特許文献3)等がある。
特開平9−67632号公報 特開平9−327779号公報 特許第2710075号公報
Therefore, as a method of forming the columnar structure of the thermal shielding ceramic sprayed coating according to the conventional proposal, a method of forming a stabilized ZrO 2 layer by electron beam deposition and oxygen ion irradiation (Patent Document 1), plasma spraying A method of locally irradiating the surface of the stabilized ZrO 2 layer deposited by the pulse laser as a post-treatment (Patent Document 2), and by controlling the spraying conditions when forming the stabilized ZrO 2 layer by plasma spraying There is a method (Patent Document 3) in which cracks are generated for each sprayed single layer (one pass).
JP-A-9-67632 Japanese Patent Laid-Open No. 9-327779 Japanese Patent No. 2710075

しかしながら、前記の電子ビームによる蒸着と酸素イオン照射にて成膜する方法は、高コストになると共に、成膜速度が遅いために非能率である上、処理雰囲気の調整等で膜厚を300μm以上にすることが困難であるという難点があった。また前記の成膜後にパルスレーザの局部的照射を行う方法では、形成される割れが安定化ZrO2 層の厚み全体に及んでいるため、この割れを通して下地溶射皮膜まで直接に腐食性高温雰囲気の影響を受けることになり、安定化ZrO2 層本来の熱遮蔽機能が充分に発揮されず、基材の熱劣化を生じ易くなるという欠点があった。更にプラズマ溶射時の条件を制御する方法では、一回の溶射毎に温度を変える等で煩雑な制御操作が必要になるという欠点があると共に、形成する割れを基材側から安定化ZrO2 層の厚みの途中までに設定しているが、安定化ZrO2 層と下地溶射皮膜との密着性に劣る上、使用中に割れが拡大して安定化ZrO2 層を貫通する割れに発展し易く、これによって前記同様に下地溶射皮膜まで直接に腐食性高温雰囲気の影響を受けるという問題があった。 However, the method of forming a film by electron beam evaporation and oxygen ion irradiation is expensive and inefficient because the film forming speed is slow, and the film thickness is 300 μm or more by adjusting the processing atmosphere. There was a difficulty that it was difficult to make. Further, in the method in which the pulsed laser is locally irradiated after the film formation, since the formed crack reaches the entire thickness of the stabilized ZrO 2 layer, the corrosive high temperature atmosphere is directly passed through the crack to the base sprayed coating. There is a drawback that the heat shielding function inherent to the stabilized ZrO 2 layer is not fully exhibited and the base material is likely to be thermally deteriorated. Furthermore, the method of controlling the conditions during plasma spraying has the disadvantage that complicated control operations are required, such as changing the temperature for each spraying, and the formed ZrO 2 layer is stabilized from the substrate side. Although it is set in the middle of the thickness, it is inferior in adhesion between the stabilized ZrO 2 layer and the base sprayed coating, and cracks are enlarged during use and easily develop into cracks penetrating the stabilized ZrO 2 layer. As a result, there was a problem that the base sprayed coating was directly affected by the corrosive high temperature atmosphere as described above.

本発明は、上述の事情に鑑みて、発電用ガスタービン等の高温域で使用される機器に用いる熱遮蔽セラミックコーティング部品として、極めて優れた耐熱衝撃性を備えるものを容易に製造し得る方法を提供することを目的としている。 The present invention relates to a method in view of the above circumstances, the heat shield ceramic coating component for use in equipment used in a high temperature range, such as gas turbine for power generation, which can be easily produced shall comprise a very good thermal shock resistance The purpose is to provide.

上記目的を達成するために、請求項1の発明に係る熱遮蔽セラミックコーティング部品の製造方法は、金属基材の表面にMCrAlY(MはCo又はNi)合金からなる下地溶射皮膜と、ZrO2 を主体とする熱遮蔽セラミック溶射皮膜とを、順次プラズマ溶射によって形成したのち、該熱遮蔽セラミック溶射皮膜の表面にレーザビームを照射することにより、該熱遮蔽セラミック溶射皮膜の表層部に該溶射皮膜厚の2〜30%の範囲にあるガラス層を形成すると共に、該溶射皮膜に表面から当該溶射皮膜厚の30〜80%の範囲の平均深さで厚み方向へ向かう多数の縦割れを形成することを特徴とするものである。 To achieve the above object, a manufacturing method of the heat shield ceramic coating component according to a first aspect of the invention, the surface of the metal substrate, MCrAlY (M is Co or Ni) and the base thermal spray coating made of an alloy, ZrO 2 After the thermal spraying ceramic sprayed coating mainly composed of the above is formed by sequential plasma spraying, the surface of the thermally shielded ceramic sprayed coating is irradiated with a laser beam to thereby apply the sprayed coating to the surface layer portion of the thermally shielded ceramic sprayed coating. A glass layer in the range of 2 to 30% of the thickness is formed, and a number of vertical cracks are formed on the sprayed coating from the surface to the thickness direction at an average depth in the range of 30 to 80% of the thickness of the sprayed coating. It is characterized by that.

また、この請求項1の発明に係る熱遮蔽セラミックコーティング部品の製造方法の好適態様として、請求項2の発明では前記熱遮蔽セラミック溶射皮膜の縦割れ1〜5本/mmの密度で形成する構成、請求項の発明ではMCrAlY合金からなる下地溶射皮膜の厚み10〜500μm、熱遮蔽セラミック溶射皮膜の厚み10〜5000μmとする構成、請求項の発明では前記熱遮蔽セラミック溶射皮膜の平均表面粗さRa7.5μm以下とする構成、をそれぞれ採用している。 As a preferred embodiment of the method for producing a heat shielding ceramic coating component according to the invention of claim 1, in the invention of claim 2, longitudinal cracks of the thermal shielding ceramic sprayed coating are formed at a density of 1 to 5 / mm. configuration, 10 to 500 [mu] m thickness of the undercoat sprayed coating made of MCrAlY alloys invention of Motomeko 3, the thickness of the 10~5000μm configuration of the heat shield ceramic sprayed coating, the heat shield ceramic sprayed coating in the invention of claim 4 It adopts structure that the average surface roughness Ra less 7.5 [mu] m, respectively.

更に、請求項5の発明では、前記請求項1〜3のいずれかの熱遮蔽セラミックコーティング部品の製造方法において、前記レーザビームを、パワー密度40〜200W/mm2 、エネルギー密度2〜5J/mm2 の範囲で、且つパワー密度とエネルギー密度の積が180W/mm2 ・J/mm2 以上となる条件で照射する構成としている。また、請求項の発明は、前記請求項の遮蔽セラミックコーティング部品の製造方法において、前記レーザビームをトップフラット型で照射する構成としている。 Further, according to a fifth aspect of the present invention, in the method for manufacturing a heat-shielding ceramic coating component according to any one of the first to third aspects, the laser beam is supplied with a power density of 40 to 200 W / mm 2 and an energy density of 2 to 5 J / mm. 2 range, and the product of the power density and energy density are configured to irradiation under the condition that the 180W / mm 2 · J / mm 2 or more. According to a sixth aspect of the present invention, in the method for manufacturing a shielding ceramic coating component of the fifth aspect , the laser beam is irradiated in a top flat type.

請求項1の発明に係る製造方法によれば、発電用ガスタービン等の高温域で使用される機器に用いる熱遮蔽セラミックコーティング部品として、表面にMCrAlY(MはCo又はNi)合金からなる下地溶射皮膜を介してZrO2 を主体とする熱遮蔽セラミック溶射皮膜が形成され、この熱遮蔽セラミック溶射皮膜に、表面から厚み方向へ特定深さに達する多数の縦割れを有することから、使用中の熱衝撃による熱遮蔽セラミック溶射皮膜の界面剥離を生じにくいものを低コストで容易に製造できる。また、このコーティング部品は、表層部が緻密化することにより、腐食性高温雰囲気の影響が下地に及びにくくなり、高温耐久性、耐高温腐食性、耐高温酸化性等の熱的性能、耐エロージョン特性等に優れて長寿命である。 According to the manufacturing method of the first aspect of the present invention , as a heat-shielding ceramic coating component used in a device used in a high temperature region such as a gas turbine for power generation, an undercoat sprayed on the surface made of an MCrAlY (M is Co or Ni) alloy. A heat-shielding ceramic sprayed coating mainly composed of ZrO 2 is formed through the coating, and the heat-shielding ceramic sprayed coating has a number of vertical cracks reaching a specific depth from the surface in the thickness direction. It is possible to easily manufacture a thermal barrier ceramic sprayed coating that is unlikely to cause interface peeling due to impact at low cost . In addition, due to the densification of the surface layer part of this coating component, the influence of corrosive high temperature atmosphere is less likely to reach the base, thermal performance such as high temperature durability, high temperature corrosion resistance, high temperature oxidation resistance, and erosion resistance excellent characteristics Ru long life der.

請求項2の発明に係る製造方法によれば、上記の熱遮蔽セラミックコーティング部品として、熱遮蔽セラミック溶射皮膜の縦割れが特定密度で存在することから、耐熱衝撃性がより向上したものが得られるAccording to the manufacturing method of the second aspect of the present invention , since the longitudinal cracks of the thermal shielding ceramic sprayed coating are present at a specific density as the above-described thermal shielding ceramic coating component, one having improved thermal shock resistance can be obtained. .

請求項の発明に係る製造方法によれば、上記の熱遮蔽セラミックコーティング部品として、下地溶射皮膜及び熱遮蔽セラミック溶射皮膜が特定の厚み範囲にあることから、少ない材料コストで充分な耐熱衝撃性を備えるものが得られるAccording to the manufacturing method of the third aspect of the present invention , since the base sprayed coating and the heat shielded ceramic sprayed coating are in a specific thickness range as the heat shielding ceramic coating component, sufficient thermal shock resistance can be achieved with a small material cost. which comprises a can be obtained.

請求項4の発明に係る製造方法によれば、上記の熱遮蔽セラミックコーティング部品として、熱遮蔽セラミック溶射皮膜の表面粗さが特定値以下であることから、発電用ガスタービンにおけるガス接触部位のように、その表面に高速で飛翔する固形粒子が衝突する使用条件下での被膜表面の耐摩耗性に優れており、このような使用条件で用いる部品としての耐久性がより向上するものが得られるAccording to the manufacturing method of the fourth aspect of the present invention , since the surface roughness of the thermal shielding ceramic sprayed coating is not more than a specific value as the above-described thermal shielding ceramic coating component, In addition, the coating surface is excellent in wear resistance under use conditions in which solid particles flying at high speed collide with the surface, and a component having improved durability as a component used under such use conditions can be obtained. .

請求項の発明に係る製造方法によれば、前記レーザビームを特定のパワー密度及びエネルギー密度で照射することから、前記の熱的性能に優れて長寿命な熱遮蔽セラミックコーティング部品を容易に且つ確実に製造できる。 According to the manufacturing method according to the invention of claim 5, and a benzalkonium it is irradiated with the laser beam at a specific power density and energy density, facilitating a long-life heat shielding ceramic coating component excellent in the thermal performance of And can be manufactured reliably.

請求項の発明に係る製造方法によれば、前記レーザビームをトップフラット型で照射することから、皮膜性状を均質化できると共に処理能率が向上することに加え、被処理表面が曲面状であって安定した処理条件を確保できるという利点がある。 According to the manufacturing method of the invention of claim 6 , since the laser beam is irradiated in a top flat type, the film properties can be homogenized and the processing efficiency is improved, and the surface to be processed is curved. And stable processing conditions can be ensured.

図1は本発明の製造方法によって得られる熱遮蔽セラミックコーティング部品の表層部の断面組織を模式的に示しており、(A)は後述する熱衝撃試験での被膜面積50%剥離までのサイクル数9の評価が得られた断面組織、(B)は同サイクル数18の評価が得られた断面組織である。 FIG. 1 schematically shows a cross-sectional structure of a surface layer portion of a heat-shielding ceramic coating part obtained by the production method of the present invention, and (A) shows the number of cycles until a film area is peeled 50% in a thermal shock test described later. 9 is a cross-sectional structure in which an evaluation of 9 was obtained, and (B) is a cross-sectional structure in which an evaluation of 18 cycles was obtained.

図1(A)(B)において、1は金属基材、2は該金属基材1上に設けられたMCrAlY(MはCo又はNi)合金からなる下地溶射皮膜、3は該下地溶射皮膜2上に設けられたZrO2 を主体とする熱遮蔽セラミック溶射皮膜であり、この熱遮蔽セラミック溶射皮膜3の表層部には溶融で緻密化したガラス層4を有すると共に、該セラミック溶射皮膜3の表面から厚み方向へ向かう多数の縦割れ5…が形成されている。しかして、これら縦割れ5…は、下地溶射皮膜2との界面まで達しない深さになっている。 1 (A) and 1 (B), 1 is a metal substrate, 2 is a base sprayed coating made of an MCrAlY (M is Co or Ni) alloy provided on the metal substrate 1, and 3 is the base sprayed coating 2 A heat-shielding ceramic sprayed coating mainly composed of ZrO 2 provided on the surface, and a surface layer portion of the heat-shielding ceramic sprayed coating 3 has a glass layer 4 which is melted and densified, and the surface of the ceramic sprayed coating 3 A large number of vertical cracks 5 extending in the thickness direction are formed. Thus, these vertical cracks 5 have a depth that does not reach the interface with the base sprayed coating 2.

このような熱遮蔽セラミックコーティング部品では、熱遮蔽セラミック溶射皮膜3が縦割れ5…による柱状組織を有するため、発電用ガスタービン等の部品として使用中に熱衝撃を受けた際、該セラミック溶射皮膜3と下地溶射皮膜2及び金属基材1との線膨張率の違いによる伸縮の差があっても、内部応力が該柱状組織を構成する縦割れ5…の部分で吸収緩和されることに加え、縦割れ5…は下地溶射皮膜2に達していないために、下地溶射皮膜2とセラミック溶射皮膜3との密着性がよいから、両溶射皮膜2,3間の界面剥離が効果的に抑えられる上、セラミック溶射皮膜3の表面側からの縦割れ5…は深さ方向へは拡大しににく、該セラミック溶射皮膜3全体を貫通する割れに発展しないため、下地溶射皮膜2が縦割れ5…を通して直接に腐食性高温雰囲気の影響を受けることはなく、もって苛酷な使用条件でも極めて優れた高温耐久性が得られる。   In such a heat-shielding ceramic coating component, since the heat-shielding ceramic sprayed coating 3 has a columnar structure due to vertical cracks 5..., The ceramic sprayed coating when subjected to a thermal shock during use as a component such as a gas turbine for power generation. Even if there is a difference in expansion / contraction due to the difference in linear expansion coefficient between the thermal spray coating 3 and the base sprayed coating 2 and the metal substrate 1, the internal stress is absorbed and relaxed at the longitudinal cracks 5 ... constituting the columnar structure. Since the vertical cracks 5 ... do not reach the base sprayed coating 2, the adhesion between the base sprayed coating 2 and the ceramic sprayed coating 3 is good, so that the interfacial delamination between the two sprayed coatings 2 and 3 can be effectively suppressed. In addition, since the vertical crack 5 from the surface side of the ceramic sprayed coating 3 is difficult to expand in the depth direction and does not develop into a crack penetrating the entire ceramic sprayed coating 3, the base sprayed coating 2 has a vertical crack 5. Directly through Not be affected by the corrosive high temperature atmosphere, excellent high-temperature durability can be obtained even under severe use conditions have.

しかして、本発明の熱遮蔽セラミックコーティング部品の製造方法では、熱遮蔽セラミック溶射皮膜3に形成する縦割れ5…の全てを一定の深さに揃えることは技術的に困難であることから、これら縦割れ5…の平均深さ当該溶射皮膜厚の30〜80%の深さ範囲とし、且つ縦割れ5…の密度を1〜5本/mmとする。すなわち、前記縦割れ5…の平均深さが該溶射皮膜厚の30%を下回る場合は、これら縦割れ5…による内部応力の吸収緩和が不充分になり、逆に該平均深さが該溶射皮膜厚の80%を上回る場合は、下地溶射皮膜2が縦割れ5…を通して直接に腐食性高温雰囲気の影響を受け易くなり、共に高温耐久性が悪化することになる。一方、縦割れ5…の密度については、1本/mm未満では内部応力の吸収緩和が不充分になり、また5本/mmを越えるものは、内部応力の緩和効果はあるが、実使用環境での熱衝撃に伴う皮膜表面の部分剥離が生じ易くなる。 Therefore, in the manufacturing method of the heat shielding ceramic coating component of the present invention, it is technically difficult to arrange all the vertical cracks 5 ... formed in the heat shielding ceramic sprayed coating 3 at a constant depth. vertical cracks 5 ... average depth and 30 to 80% of the depth range of the sprayed coating thickness, and vertical cracks 5 ... a density of 1 to 5 present / mm. That is, when the average depth of the vertical cracks 5 is less than 30% of the thickness of the thermal spray coating, absorption relaxation of internal stress due to the vertical cracks 5 is insufficient, and conversely, the average depth is the thermal spray. When it exceeds 80% of the coating thickness, the base sprayed coating 2 is likely to be directly affected by the corrosive high temperature atmosphere through the vertical cracks 5 ..., and both the high temperature durability deteriorates. On the other hand, if the density of longitudinal cracks 5 is less than 1 / mm, the absorption relaxation of internal stress is insufficient, and if it exceeds 5 / mm, there is an effect of relaxing internal stress, but the actual use environment Peeling of the coating surface due to thermal shock is likely to occur.

本発明によって製造する熱遮蔽セラミックコーティング部品におけるMCrAlY合金からなる下地溶射皮膜2の厚みは、該部品の種類によって最適値が異なるが、一般的には10〜500μmの範囲が好ましく、薄過ぎては耐高温酸化性及び耐高温腐食性が不充分となり、厚過ぎてもより以上の効果は望めず不経済である。また、熱遮蔽セラミック溶射皮膜3の厚みは、やはり該部品の種類によって最適値が異なるが、一般的には10〜5000μmの範囲が好適であり、薄過ぎては耐熱衝撃性が不充分となり、厚過ぎても熱衝撃による内部応力の増大によって耐熱衝撃性が却って悪化することになる。なお、溶射条件によって異なるが、溶射粒子の径は概して50μm前後であり、一回の溶射(1パス)で成膜される単層の厚みは30μm内外であるため、それ以上の厚みの下地溶射皮膜2及び熱遮蔽セラミック溶射皮膜3は所要の厚さになるまで溶射を重ねることになる。 The optimum value of the thickness of the base sprayed coating 2 made of MCrAlY alloy in the heat-shielding ceramic coating part manufactured according to the present invention varies depending on the type of the part, but generally it is preferably in the range of 10 to 500 μm, and too thin. High temperature oxidation resistance and high temperature corrosion resistance become insufficient, and if it is too thick, no further effect can be expected, which is uneconomical. Further, the optimum value of the thickness of the heat-shielding ceramic sprayed coating 3 also varies depending on the type of the part, but generally the range of 10 to 5000 μm is preferable, and if it is too thin, the thermal shock resistance is insufficient. Even if it is too thick, the thermal shock resistance deteriorates due to an increase in internal stress due to thermal shock. Although depending on the spraying conditions, the diameter of the sprayed particles is generally around 50 μm, and the thickness of the single layer formed by one spraying (one pass) is 30 μm inside or outside, so that the base spraying with a thickness larger than that is performed. The coating 2 and the heat-shielding ceramic spray coating 3 are repeatedly sprayed until the required thickness is reached.

ここで、熱遮蔽セラミック溶射皮膜3のセラミック材料としては、MgO、CaO、Y23 等を加えて安定化させたZrO2 が好適に使用される。また金属基材1としては、インコネル等のNi基耐熱合金が好適である。 Here, as the ceramic material of the thermal shielding ceramic sprayed coating 3, ZrO 2 stabilized by adding MgO, CaO, Y 2 O 3 or the like is preferably used. Moreover, as the metal substrate 1, a Ni-based heat-resistant alloy such as Inconel is suitable.

該セラミック溶射皮膜3の表層部のガラス層4に関しては、後述する縦割れ5…を形成するためのレーザ後処理において、ガラス層4の形成が縦割れ5…の生成及び皮膜の表面性状に大きく関与することが判明している。このようなガラス層4は、レーザ後処理におけるパワー密度及びエネルギー密度の増加に伴って厚みを増す一般的傾向が認められるが、その平均厚さが熱遮蔽セラミック溶射皮膜3の厚みの2〜30%の範囲とするのがよい。すなわち、このガラス層4が薄過ぎては、縦割れ5…が生成しにくくなる。また逆にガラス層4が厚過ぎては、レーザ後処理において溶射皮膜3の剥離を生じ易くなると共に、皮膜表面が波状を呈することに起因して耐摩耗性を劣化させることになる。   With respect to the glass layer 4 in the surface layer portion of the ceramic sprayed coating 3, the formation of the glass layer 4 greatly increases the generation of the vertical cracks 5 and the surface properties of the coating in the laser post-processing for forming the vertical cracks 5 to be described later. Has been found to be involved. Such a glass layer 4 has a general tendency to increase in thickness with an increase in power density and energy density in laser post-treatment, but the average thickness is 2-30 of the thickness of the thermal shielding ceramic sprayed coating 3. % Should be in the range. That is, if the glass layer 4 is too thin, the vertical cracks 5. On the other hand, if the glass layer 4 is too thick, the thermal spray coating 3 is liable to be peeled off in the laser post-treatment, and the wear resistance is deteriorated due to the surface of the coating being wavy.

上記の耐摩耗性は、発電用ガスタービンにおけるガス接触部位のように、その表面に高速で飛翔する固形粒子が衝突する使用条件下での皮膜強度を意味する。すなわち、発電用ガスタービンにおけるタービンの動翼や静翼、ケーシングの内周部等のガス接触部では、狭い流通間隙を高温高圧のガスが高速で通過するため、ガス中に付随している煤や塵埃等の多量の固形微粒子が接触部表面に継続的に衝突・擦過することになり、これによって接触部表面が削り取られて摩耗し易い。従って、このようなガス接触部に用いる部品として優れた耐久性を確保するには、熱遮蔽セラミックコーティングによって耐熱衝撃性を高めることに加え、、該コーティング層の耐摩耗性を向上させることが極めて重要となる。   The above-mentioned wear resistance means the film strength under use conditions in which solid particles flying at high speed collide with the surface, such as a gas contact portion in a power generation gas turbine. That is, in a gas contact portion such as a moving blade or stationary blade of a turbine in a power generation gas turbine, or an inner peripheral portion of a casing, high-temperature and high-pressure gas passes through a narrow flow gap at high speed. A large amount of solid fine particles such as dust and dust continuously collide and rub against the surface of the contact portion, and the surface of the contact portion is scraped off and easily worn. Therefore, in order to ensure excellent durability as a component used in such a gas contact portion, in addition to enhancing the thermal shock resistance by the heat shielding ceramic coating, it is extremely important to improve the wear resistance of the coating layer. It becomes important.

しかして、良好な耐摩耗性を得る上で、熱遮蔽セラミック溶射皮膜3の平均表面粗さ(Ra)を7.5μm以下に設定することが好ましい。すなわち、この平均表面粗さ(Ra)が7.5μmを越えると、高速で飛翔する固形粒子が衝当する使用条件下では被膜の摩耗が著しくなり、このような条件下で使用する熱遮蔽セラミックコーティング部品としての耐久性が不充分となる。皮膜の表面性状は溶射粉末の種類、粒度、供給量、溶射時の電流、電圧、ガスの種類、流量、溶射ガンの移動速度の他、レーザ後処理時のレーザ出力、処理速度等によって変化するので、皮膜の製造に当たっては前述の耐熱衝撃性と共に表面粗さを適正に保つように全体のプロセス条件を制御する必要がある。なお、この平均表面粗さ(Ra)は触針式表面粗度計によって計測される値である。   Therefore, in order to obtain good wear resistance, it is preferable to set the average surface roughness (Ra) of the heat shielding ceramic sprayed coating 3 to 7.5 μm or less. That is, when the average surface roughness (Ra) exceeds 7.5 μm, the coating wears remarkably under use conditions in which solid particles flying at high speed strike, and the heat shielding ceramic used under such conditions Durability as a coating part becomes insufficient. The surface properties of the coating vary depending on the type of sprayed powder, particle size, supply rate, current during spraying, voltage, gas type, flow rate, spray gun moving speed, laser output during laser post-processing, processing speed, etc. Therefore, in manufacturing the coating, it is necessary to control the overall process conditions so as to keep the surface roughness properly together with the above-described thermal shock resistance. This average surface roughness (Ra) is a value measured by a stylus type surface roughness meter.

本発明の熱遮蔽セラミックコーティング部品の製造方法では、金属基材1の表面に、MCrAlY(MはCo又はNi)合金からなる下地溶射皮膜2と、ZrO2 を主体とする熱遮蔽セラミック溶射皮膜3とを、順次プラズマ溶射によって形成したのち、後処理として該熱遮蔽セラミック溶射皮膜3の表面にレーザビームを適度なパワー密度及びエネルギー密度で照射する。すなわち、このレーザビームの照射により、該熱遮蔽セラミック溶射皮膜3の表層部が加熱されて溶融し、溶融粒子間の結合力によって組織が緻密化するが、レーザビームの照射スポットから外れて急速に冷却固化するの固化収縮に伴い、該セラミック溶射皮膜3に表面から厚み方向へ向かう多数の縦割れ5…が表面から見て網目状に形成されることになる。 In the method for producing a heat-shielding ceramic coating component of the present invention, a base sprayed coating 2 made of MCrAlY (M is Co or Ni) alloy and a heat-shielding ceramic sprayed coating 3 mainly composed of ZrO 2 are formed on the surface of the metal substrate 1. Are sequentially formed by plasma spraying, and then the surface of the heat shielding ceramic sprayed coating 3 is irradiated with a laser beam at an appropriate power density and energy density as a post-treatment. That is, by this laser beam irradiation, the surface layer portion of the thermal shielding ceramic sprayed coating 3 is heated and melted, and the structure becomes dense due to the bonding force between the molten particles. Along with the solidification shrinkage due to cooling and solidification, a number of vertical cracks 5... In the thickness direction from the surface to the ceramic sprayed coating 3 are formed in a mesh shape when viewed from the surface.

しかして、照射するレーザビームは、既述のように縦割れ5…の平均深さを当該層厚の30〜80%の深さ範囲に設定する上で、高パワー密度で且つ低エネルギー密度とするのがよいが、該レーザ後処理に伴う溶射皮膜の剥離や表面性の悪化を防止する必要から、パワー密度40〜200W/mm2 、エネルギー密度2〜5J/mm2 の範囲で、且つ両密度の積を180W/mm2 ・J/mm2 以上となる照射条件が好適である。すなわち、パワー密度が40W/mm2 未満、ならびにエネルギー密度が2J/mm2 未満では縦割れ5…の生成が不充分となり、またパワー密度が200W/mm2 を越える場合はレーザ入熱が過多になって健全な皮膜の形成が困難となり、エネルギー密度が5J/mm2 を越える場合は溶射皮膜の剥離や表面性の悪化を招くことになる。また、皮膜に所定の縦割れを発生させるためには、ある程度以上のレーザ入熱が必要であるため、パワー密度とエネルギー密度の積を180W/mm2 ・J/mm2 以上とすることが望ましい。なお、特に高度な耐熱衝撃性及び優れた耐摩耗性を得るには、上記のパワー密度を120〜200W/mm2 、エネルギー密度を3〜5J/mm2 の範囲に設定することが推奨される。 As described above, the laser beam to be irradiated has a high power density and a low energy density in setting the average depth of the vertical cracks 5 to 30 to 80% of the layer thickness. However, since it is necessary to prevent the thermal spray coating from being peeled off and the surface property from being deteriorated due to the laser post-treatment, the power density ranges from 40 to 200 W / mm 2 and the energy density ranges from 2 to 5 J / mm 2. Irradiation conditions in which the product of density is 180 W / mm 2 · J / mm 2 or more are suitable. That is, if the power density is less than 40 W / mm 2 and the energy density is less than 2 J / mm 2 , the generation of vertical cracks 5 is insufficient, and if the power density exceeds 200 W / mm 2 , the laser heat input is excessive. Therefore, it is difficult to form a sound coating, and when the energy density exceeds 5 J / mm 2 , the thermal spray coating is peeled off or the surface property is deteriorated. In addition, in order to generate a predetermined vertical crack in the film, laser heat input of a certain level or more is required, so the product of the power density and the energy density is preferably 180 W / mm 2 · J / mm 2 or more. . In order to obtain particularly high thermal shock resistance and excellent wear resistance, it is recommended to set the power density in the range of 120 to 200 W / mm 2 and the energy density in the range of 3 to 5 J / mm 2. .

レーザ後処理は、図2で示すように、金属基材1上にMCrAlY合金の下地溶射皮膜2を介して設けられた熱遮蔽セラミック溶射皮膜3の表面に、レーザビーム6を相対移動させつつ照射すればよい。しかして、このレーザビーム6は、カライドスコープ等で変換したトップフラット型として照射することが望ましい。これは、トップハット型のレーザビーム6によれば、一回の走査で広い領域に均等に照射できるため、皮膜性状を均質化できると共に処理能率が向上することに加え、例えばタービン翼のように被処理表面が曲面状であって直線的な相対移動ではレーザビーム6の出射位置からの距離が変化する場合でも、照射面でのパワー密度は殆ど変わらなくなり、もって安定した処理条件を確保できることによる。使用するレーザの種類は特に制約されないが、取扱い性や制御の容易さから連続発振のYAGレーザが好適である。   As shown in FIG. 2, the laser post-treatment is performed by irradiating the surface of the heat shielding ceramic sprayed coating 3 provided on the metal substrate 1 via the MCrAlY alloy base sprayed coating 2 while relatively moving the laser beam 6. do it. Therefore, it is desirable to irradiate the laser beam 6 as a top flat type converted by a kaleidoscope or the like. This is because the top hat type laser beam 6 can irradiate a wide area evenly in one scan, so that the film properties can be homogenized and the processing efficiency can be improved. Even if the surface to be processed is curved and the distance from the emission position of the laser beam 6 is changed by linear relative movement, the power density on the irradiated surface hardly changes, and stable processing conditions can be secured. . The type of laser to be used is not particularly limited, but a continuous wave YAG laser is suitable from the viewpoint of easy handling and control.

なお、溶射形成後の熱遮蔽セラミック溶射皮膜3にはそのまま上記のレーザ後処理を施せるが、溶射皮膜2,3と基材1との密着性を向上させる目的で必要とあらば、該セラミック溶射皮膜3に真空拡散熱処理を行った上でレーザ後処理を施してもよい。ただし、この真空拡散熱処理を経た場合は皮膜表面が黒色化し、次のレーザ後処理における熱吸収が大きくなることから、該レーザ後処理での皮膜剥離を防止するためにレーザビーム6のエネルギー密度を比較的に小さく設定するのがよく、好適には3J/mm2 以下とすることが推奨される。 In addition, although the above-mentioned laser post-treatment can be performed as it is on the heat-shielding ceramic sprayed coating 3 after the thermal spray formation, if necessary for the purpose of improving the adhesion between the thermal sprayed coatings 2 and 3 and the substrate 1, the ceramic sprayed coating is applied. The film 3 may be subjected to laser post-treatment after being subjected to vacuum diffusion heat treatment. However, when this vacuum diffusion heat treatment is performed, the film surface becomes black and heat absorption in the next laser post-treatment increases, so that the energy density of the laser beam 6 is set to prevent film peeling in the laser post-treatment. It is preferable to set it relatively small, and it is recommended that it is preferably 3 J / mm 2 or less.

本発明によって得られる熱遮蔽セラミックコーティング部品は、高温域で使用される機器の大きな熱衝撃が加わる部位に用いられるものであり、その用途及び部品種には特に制約はないが,とりわけ発電用ガスタービンにおけるガス接触部位、例えばタービンの動翼や静翼、ケーシング内周部等に用いる部品として好適である。 The heat-shielding ceramic-coated part obtained by the present invention is used in a part where a large thermal shock is applied to equipment used in a high temperature range, and there are no particular restrictions on its use and part type, but in particular a gas for power generation. It is suitable as a part used in a gas contact portion in a turbine, for example, a moving blade or stationary blade of a turbine, an inner peripheral portion of a casing, or the like.

〔下地溶射皮膜及び熱遮蔽セラミック溶射皮膜の形成〕
縦横25mm,厚さ5mmのインコネル合金板の複数枚を金属基材として用い、これらのブラスト処理(#24番アルミナ粉)した表面にそれぞれ、減圧プラズマ溶射によってCoNiCrAlY合金からなる下地溶射皮膜を形成し、この下地溶射皮膜上に大気中プラズマ溶射によってZrO2 −Y23 からなる熱遮蔽セラミック溶射皮膜3を形成し、試験片を作製した。使用した溶射粉末とプラズマ溶射条件を次の表1〜表3に示す。
[Formation of base sprayed coating and heat shielding ceramic sprayed coating]
Using a plurality of Inconel alloy plates of 25 mm in length and width and 5 mm in thickness as metal substrates, a base sprayed coating made of a CoNiCrAlY alloy is formed on each of these blasted surfaces (# 24 alumina powder) by low pressure plasma spraying. this by atmospheric plasma spraying over the base thermal spray coating to form a heat shielding ceramic sprayed coating 3 made of ZrO 2 -Y 2 O 3, to prepare a test piece. The following spraying powder and plasma spraying conditions are shown in the following Tables 1 to 3.

Figure 0004434667
Figure 0004434667

Figure 0004434667
Figure 0004434667









Figure 0004434667
Figure 0004434667

〔レーザ後加工〕
前記の下地溶射皮膜及び熱遮蔽セラミック溶射皮膜を形成した各試験片について、そのセラミック溶射皮膜の表面にYAGレーザ照射装置によって種々の条件でレーザ後処理を施した。そして、処理後の各金属基材における溶射皮膜部の断面組織を顕微鏡観察し、縦割れの密度及び深さ、該セラミック溶射皮膜における表層部のガラス層の膜厚比を調べると共に、表面状態を評価した。また、これらと同一条件でレーザ後処理を終えた各試験片について、耐熱衝撃性及び耐摩耗性の試験を行った。これらの結果をレーザ後処理条件と共に後記表4に示す。ただし、試験片No.12,13、16,17については、レーザ後処理によって顕著な表面凹凸及び剥離を生じたことから、縦割れの密度及び深さとガラス層の膜厚比は測定不能であり、この段階で不良と判断して耐熱衝撃性及び耐摩耗性の試験も省略した。表4中、P密度はパワー密度、E密度はエネルギー密度、P密度とE密度の積の単位はW/mm2 ・J/mm2 、縦割れの密度及び深さとガラス層の膜厚比はいずれも平均値であり、参考例はレーザ後処理を施していない試験片を意味する。
[Laser post-processing]
About each test piece which formed the said foundation | substrate sprayed coating and the heat-shielding ceramic sprayed coating, the laser post-process was performed on the surface of the ceramic sprayed coating by various conditions with the YAG laser irradiation apparatus. And after observing the cross-sectional structure of the sprayed coating part in each metal substrate after treatment with a microscope, the density and depth of longitudinal cracks, the film thickness ratio of the glass layer of the surface layer part in the ceramic sprayed coating, and the surface state evaluated. Further, thermal shock resistance and wear resistance tests were performed on each test piece after laser post-treatment under the same conditions as these. These results are shown in Table 4 below together with laser post-treatment conditions. However, test piece No. Regarding 12, 13, 16, and 17, remarkable surface irregularities and peeling were caused by laser post-processing, and therefore the density and depth of vertical cracks and the film thickness ratio of the glass layer were not measurable. Judgment was also omitted for the thermal shock resistance and wear resistance tests. In Table 4, the P density is the power density, the E density is the energy density, the unit of the product of the P density and the E density is W / mm 2 · J / mm 2 , the density and depth of the vertical crack and the film thickness ratio of the glass layer are All are average values, and the reference example means a test piece not subjected to laser post-treatment.

なお、レーザビームは照射面でのビームスポットが5mm□のトップハット型で照射ピッチ(レーザ走査ラインの間隔)4mmとし、エネルギー密度は3段階のレーザ出力(3.5KW、2.0KW、1.0KW)と照射速度(10〜700mm/sec)とから設定した。また、耐熱衝撃性は、試験片を電気炉内に装填し、炉温度が1303°Kに到達後2分間保持して取り出し、直ちに氷水中に浸漬するのを1サイクルとし、皮膜面積の50%が剥離するまでのサイクル数を調べた。   The laser beam is a top hat type with a beam spot on the irradiation surface of 5 mm □ and an irradiation pitch (interval of laser scanning lines) of 4 mm, and the energy density is three stages of laser output (3.5 KW, 2.0 KW, 1. 0 KW) and the irradiation speed (10 to 700 mm / sec). The thermal shock resistance is 50% of the coating area by loading a test piece in an electric furnace, holding it for 2 minutes after the furnace temperature reaches 1303 ° K, and taking it out immediately in ice water for one cycle. The number of cycles until the peeling occurred was examined.

耐摩耗性については、縦50mm,横60mm,厚さ5mmのインコネル合金板を基材として、前述と同様の方法によってブラスト処理、下地溶射、熱遮蔽セラミック溶射を施して作製した試験片に、#24アルミナ粉を噴射速度114m/秒で30g吹き付け、これによる試験片の重量減少を調べた。









For abrasion resistance, a test piece prepared by subjecting an inconel alloy plate of 50 mm in length, 60 mm in width, and 5 mm in thickness to blasting, base spraying, and thermal shielding ceramic spraying in the same manner as described above, 30 g of 24 alumina powder was sprayed at an injection speed of 114 m / sec, and the weight loss of the test piece was investigated.









Figure 0004434667
Figure 0004434667

表4より、熱遮蔽セラミック溶射皮膜に設けた縦割れの密度(平均)が1〜5本/mmで、且つ縦割れの深さ(平均)が該セラミック溶射皮膜の30〜80%の範囲内である試験片(No.2〜5,9〜11,15)では7サイクル以上の高い耐熱衝撃性を示し、特にレーザ後処理におけるパワー密度を140W/mm2 、エネルギー密度を3〜5J/mm2 とした試験片(No.3〜5)では17サイクル以上という極めて優れた耐熱衝撃性が得られている。しかし、皮膜の表面粗さ(Ra)が7.5μmより大きい試験片No.11では、参考例のレーザ後処理を施していない試験片に比べて耐摩耗性が劣っている。これは、皮膜の表面状態に関係しており、皮膜表面が波状に凹凸化して粗くなると、その凸部に摩耗粉の衝突が集中して局所的な皮膜の損傷を生じると共に、この損傷部分から連鎖的に摩耗が拡大するものと考えられる。 From Table 4, the density (average) of vertical cracks provided in the heat-shielding ceramic sprayed coating is 1 to 5 / mm, and the depth (average) of vertical cracks is within the range of 30 to 80% of the ceramic sprayed coating. The test pieces (Nos. 2 to 5, 9 to 11, 15) exhibit high thermal shock resistance of 7 cycles or more, and in particular, the power density in laser post-processing is 140 W / mm 2 and the energy density is 3 to 5 J / mm. In the test piece (Nos. 3 to 5) designated as 2 , extremely excellent thermal shock resistance of 17 cycles or more was obtained. However, the test piece No. whose surface roughness (Ra) of the coating is greater than 7.5 μm. In No. 11, the abrasion resistance is inferior to the test piece of the reference example that has not been subjected to the laser post-treatment. This is related to the surface condition of the film. When the surface of the film becomes rough and rough, the collision of wear powder concentrates on the convex part, causing local film damage. It is thought that wear increases in a chain.

一方、縦割れの密度が1本/mm未満であったり、同深さがセラミック溶射皮膜の30%未満である試験片(No.1,14)では、充分な耐熱衝撃性が得られていない。また、レーザ後処理で5J/mm2 を越えるエネルギー密度に設定した試験片(No.6,11〜13,16,17)では、レーザ後処理による溶射皮膜の表面荒れや剥離を生じている。更に、パワー密度とエネルギー密度との積を180W/mm2 ・W/mm2 以上に設定すれば、縦割れの密度を1本/mm以上、同深さをセラミック溶射皮膜の30%以上になし得ることが判る。 On the other hand, in the test piece (No. 1, 14) in which the density of longitudinal cracks is less than 1 / mm or the depth is less than 30% of the ceramic sprayed coating, sufficient thermal shock resistance is not obtained. . Moreover, in the test piece (No. 6, 11-13, 16, 17) set to the energy density exceeding 5 J / mm 2 by the laser post-treatment, the surface roughness or peeling of the sprayed coating is caused by the laser post-treatment. Furthermore, if the product of power density and energy density is set to 180 W / mm 2 · W / mm 2 or more, the density of vertical cracks will be 1 / mm or more and the depth will be 30% or more of the ceramic spray coating. I know you get.

図3は、上記実施例でレーザ後処理を施した試験片における耐熱衝撃性試験の測定値と、そのレーザ後処理のパワー密度及びエネルギー密度とから導かれる耐熱衝撃性相関特性図を示す。この図より、パワー密度が一定である場合、概してエネルギー密度が大きいほど耐熱衝撃性は向上するが、パワー密度の大きい領域ではエネルギー密度が小さくとも高い耐熱衝撃性を付与できることが示唆される。しかして、セラミック溶射皮膜の健全性を確保する上でエネルギー密度を比較的小さくする必要があることを踏まえれば、レーザ後処理ではレーザビームのパワー密度が40W/mm2 以上、エネルギー密度が2〜5J/mm2 で、且つパワー密度とエネルギー密度との積が180W/mm2 ・W/mm2 以上になるように設定するのがよく、特に高度な耐熱衝撃性を付与するにはパワー密度を120W/mm2 以上、エネルギー密度を3〜5J/mm2 に設定することが望ましいと言える。 FIG. 3 shows a thermal shock resistance correlation characteristic diagram derived from the measured value of the thermal shock resistance test on the test piece subjected to the laser post-treatment in the above example, and the power density and energy density of the laser post-treatment. From this figure, it is suggested that when the power density is constant, the thermal shock resistance improves as the energy density increases, but it is possible to provide high thermal shock resistance in a region where the power density is large even if the energy density is small. In view of the fact that the energy density needs to be relatively small in order to ensure the soundness of the ceramic sprayed coating, the laser beam power density is 40 W / mm 2 or more in the laser post-treatment, and the energy density is 2 to 2. 5J / mm 2 and the product of the power density and the energy density should be set to be 180 W / mm 2 · W / mm 2 or more. It can be said that it is desirable to set 120 W / mm 2 or more and the energy density to 3 to 5 J / mm 2 .

図4は上記実施例でレーザ後処理を施した試験片について、レーザ後処理のパワー密度及びエネルギー密度と熱遮蔽セラミック溶射皮膜の縦割れ密度との関係を示しており、図4中に付記した破線は前記耐熱衝撃性の9サイクル線(図3参照)である。この図より、セラミック溶射皮膜に形成される縦割れはパワー密度が大きいほど増えるが、パワー密度の大きい領域ではエネルギー密度が比較的に低い範囲に縦割れ密度のピークがあり、図4中の耐熱衝撃性9サイクル線と縦割れ密度2.2mm-1線あるいは2.6mm-1線との近似から示唆されるように、エネルギー密度2〜5J/mm2 の範囲では縦割れ密度が大きいほど耐熱衝撃性は向上する傾向を示している。 FIG. 4 shows the relationship between the power density and energy density of the laser post-treatment and the vertical crack density of the thermal-shielding ceramic sprayed coating for the test piece subjected to the laser post-treatment in the above-mentioned embodiment, and is added in FIG. The broken line is the thermal shock resistant 9 cycle line (see FIG. 3). From this figure, the vertical cracks formed in the ceramic spray coating increase as the power density increases, but in the region where the power density is high, there is a peak of the vertical crack density in the range where the energy density is relatively low, and the heat resistance in FIG. As suggested by the approximation of impact 9 cycle line and vertical crack density 2.2mm -1 line or 2.6mm -1 line, the higher the vertical crack density, the higher the heat resistance in the energy density range 2-5 J / mm 2. The impact property shows a tendency to improve.

図5は上記実施例でレーザ後処理を施した試験片について、レーザ後処理のパワー密度及びエネルギー密度と熱遮蔽セラミック溶射皮膜の縦割れ深さとの関係を示しており、図中には前記同様に耐熱衝撃性9サイクル線を破線で付記している。この図より、セラミック溶射皮膜に形成される縦割れの深さは、パワー密度よりもエネルギー密度に大きく影響され、エネルギー密度の増大に伴って顕著に増加するが、耐熱衝撃性9サイクル線との対比で示唆されるように耐熱衝撃性とある程度の相関があり、エネルギー密度2〜5J/mm2 の範囲では深くなるほど耐熱衝撃性は向上する傾向を示している。 FIG. 5 shows the relationship between the power density and energy density of the laser post-treatment and the vertical crack depth of the thermal-shielding ceramic sprayed coating for the test piece subjected to the laser post-treatment in the above embodiment. The thermal shock resistance 9 cycle line is appended with a broken line. From this figure, the depth of the vertical crack formed in the ceramic sprayed coating is greatly influenced by the energy density rather than the power density, and increases remarkably as the energy density increases. As suggested by the comparison, there is a certain degree of correlation with the thermal shock resistance, and the thermal shock resistance tends to be improved as the energy density becomes deeper in the range of 2 to 5 J / mm 2 .

図6は上記実施例でレーザ後処理を施した試験片について、熱遮蔽セラミック溶射皮膜におけるガラス層の厚さと縦割れの深さとの関係を示したものである。この図から明らかなように、ガラス層の厚さは形成される縦割れの深さにある程度対応しており、ガラス層の厚さが増すと縦割れの深さも大きくなる傾向を示している。   FIG. 6 shows the relationship between the thickness of the glass layer and the depth of vertical cracks in the heat-shielding ceramic sprayed coating for the test piece subjected to laser post-treatment in the above-mentioned embodiment. As is clear from this figure, the thickness of the glass layer corresponds to the depth of the vertical crack formed to some extent, and the depth of the vertical crack tends to increase as the thickness of the glass layer increases.

図7は、表4に示す各試験片(No.1〜17及び参考例)の皮膜の表面粗さ(Ra)と耐摩耗性との関係を表している。この図から明らかなように、表面粗さ(Ra)7.5μmを境として、それより表面状態が粗くなるにしたがって摩耗量は激増している。これは、レーザ後処理による皮膜表面のガラス化が進み過ぎると、皮膜表面が凹凸状になって荒れ、摩耗粉の衝突による皮膜の脱落を生じ易くなることを示唆している。これに対し、表面粗さ(Ra)が7.5μm以下の皮膜は、表面粗さと耐摩耗性との相関は顕著ではないが、総じてレーザ後処理を施していない参考例の皮膜よりも摩耗量が少なくなっている。これは、皮膜表面が適度にガラス化されると、表面が滑らかになって摩耗粉の衝撃を受けにくくなることに加え、ガラス層が皮膜表面の固定化に寄与し、摩耗粉の衝突による皮膜分離が生じにくくなるものと考えられる。   FIG. 7 shows the relationship between the surface roughness (Ra) of the coating of each test piece (Nos. 1 to 17 and Reference Example) shown in Table 4 and the wear resistance. As is apparent from this figure, the amount of wear increases sharply with the surface roughness (Ra) of 7.5 μm as the boundary and the surface state becomes rougher than that. This suggests that if the surface of the film is excessively vitrified by laser post-treatment, the surface of the film becomes rough and rough, and the film tends to drop off due to collision of wear powder. On the other hand, the film having a surface roughness (Ra) of 7.5 μm or less does not show a significant correlation between the surface roughness and the wear resistance, but the amount of wear is generally higher than the film of the reference example that has not been subjected to laser post-treatment. Is decreasing. This is because when the surface of the coating is moderately vitrified, the surface becomes smooth and less susceptible to the impact of abrasion powder. In addition, the glass layer contributes to fixing the surface of the coating, and the coating due to the collision of abrasion powder. It is considered that separation is less likely to occur.

図8は、上記実施例でレーザ後処理を施した試験片No.3の溶射皮膜部の断面組織を示す電子顕微鏡写真である。この電子顕微鏡写真において、最下部のやや色の薄い部分が基材、その上の色が濃い部分がCoNiCrAlY合金の下地溶射皮膜、更にその上の大部分を占めているのがZrO2 −Y23 の熱遮蔽セラミック溶射皮膜である。しかして、該セラミック溶射皮膜の表面から厚さ方向に縦割れが形成されているが、この縦割れは下地溶射皮膜との界面までは達しておらず、また該セラミック溶射皮膜の表層部が緻密化したガラス層をなしていることが判る。 FIG. 8 shows a test piece No. 1 subjected to laser post-treatment in the above example. 3 is an electron micrograph showing a cross-sectional structure of a sprayed coating portion 3. In this electron micrograph, the slightly lighter color portion at the bottom is the base material, the darker color portion above is the base sprayed coating of CoNiCrAlY alloy, and the uppermost portion is ZrO 2 —Y 2. This is an O 3 heat-shielding ceramic sprayed coating. Thus, although vertical cracks are formed in the thickness direction from the surface of the ceramic sprayed coating, the vertical cracks do not reach the interface with the base sprayed coating, and the surface layer portion of the ceramic sprayed coating is dense. It can be seen that a glass layer is formed.

本発明の製造方法によって得られる熱遮蔽セラミックコーティング部品の表層部の断面組織を示し、(A)は熱衝撃性9サイクルの評価が得られた同部品の模式断面図、(B)は同18サイクルの評価が得られた同部品の模式断面図である。The cross-sectional structure | tissue of the surface layer part of the heat-shielding ceramic coating component obtained by the manufacturing method of this invention is shown, (A) is a schematic cross section of the component by which evaluation of thermal shock property 9 cycles was obtained, (B) is the same 18th. It is a schematic cross section of the same part for which the evaluation of the cycle was obtained. 同熱遮蔽セラミックコーティング部品の製造におけるレーザ後処理を示す要部の模式断面図である。It is a schematic cross section of the principal part which shows the laser post-process in manufacture of the same heat shielding ceramic coating component. 本発明の実施例でレーザ後処理を施した試験片における耐熱衝撃性とレーザ後処理のパワー密度及びエネルギー密度との関係を示す相関特性図である。It is a correlation characteristic figure which shows the relationship between the thermal shock resistance in the test piece which performed the laser post-processing in the Example of this invention, and the power density and energy density of laser post-processing. 同実施例でレーザ後処理を施した試験片におけるレーザ後処理のパワー密度及びエネルギー密度と熱遮蔽セラミック溶射皮膜の縦割れ密度との関係を示す相関特性図である。It is a correlation characteristic figure which shows the relationship between the power density and energy density of laser post-processing in the test piece which performed the laser post-processing in the Example, and the vertical crack density of a thermal-shielding ceramic sprayed coating. 同試験片におけるレーザ後処理のパワー密度及びエネルギー密度と熱遮蔽セラミック溶射皮膜の縦割れ深さとの関係を示す相関特性図である。It is a correlation characteristic figure which shows the relationship between the power density and energy density of the laser post-processing in the test piece, and the vertical crack depth of a heat shielding ceramic sprayed coating. 同実施例でレーザ後処理を施した試験片における熱遮蔽セラミック溶射皮膜のガラス層の厚さと縦割れ深さとの関係を示す相関特性図である。It is a correlation characteristic figure which shows the relationship between the thickness of the glass layer of the thermal-shielding ceramic sprayed coating in the test piece which performed the laser post-process in the Example, and the depth of a vertical crack. 同試験片とレーザ後処理を施さなかった参考例の試験片の耐摩耗性試験による表面粗さと摩耗量との関係を示す相関特性図である。It is a correlation characteristic figure which shows the relationship between the surface roughness by the abrasion-resistance test of the test piece of the reference example which did not perform the laser post-process, and the amount of wear. 同実施例でレーザ後処理を施した小サイズの一試験片の溶射皮膜部の断面組織を示す電子顕微鏡写真図である。It is an electron micrograph figure which shows the cross-sectional structure | tissue of the sprayed coating part of the small test piece which gave the laser post-process in the Example.

1 金属基材
2 下地溶射皮膜
3 熱遮蔽セラミック溶射皮膜
4 ガラス層
5 縦割れ
6 レーザビーム
DESCRIPTION OF SYMBOLS 1 Metal base material 2 Ground spray coating 3 Thermal shielding ceramic spray coating 4 Glass layer 5 Longitudinal crack 6 Laser beam

Claims (6)

金属基材の表面にMCrAlY(MはCo又はNi)合金からなる下地溶射皮膜と、ZrO2 を主体とする熱遮蔽セラミック溶射皮膜とを、順次プラズマ溶射によって形成したのち、該熱遮蔽セラミック溶射皮膜の表面にレーザビームを照射することにより、該熱遮蔽セラミック溶射皮膜の表層部に該溶射皮膜厚の2〜30%の範囲にあるガラス層を形成すると共に、該溶射皮膜に表面から当該溶射皮膜厚の30〜80%の範囲の平均深さで厚み方向へ向かう多数の縦割れを形成することを特徴とする熱遮蔽セラミックコーティング部品の製造方法The surface of the metal substrate, after MCrAlY (M is the Co, or Ni) and the base thermal spray coating made of an alloy, and a heat shielding ceramic sprayed coating mainly composed of ZrO 2, was formed by sequential plasma spraying, heat shielding ceramic spray By irradiating the surface of the coating with a laser beam, a glass layer in the range of 2 to 30% of the thickness of the thermal spray coating is formed on the surface layer portion of the thermal shielding ceramic thermal spray coating, and the thermal spray is applied to the thermal spray coating from the surface. method for producing a large number of vertical cracks to form a heat shield ceramic coating components, characterized in Rukoto toward the thickness direction at an average depth of 30% to 80% range of the film thickness. 前記熱遮蔽セラミック溶射皮膜の縦割れ1〜5本/mmの密度で形成する請求項1記載の熱遮蔽セラミックコーティング部品の製造方法 The manufacturing method of the heat shielding ceramic coating component of Claim 1 which forms the vertical crack of the said heat shielding ceramic sprayed coating by the density of 1-5 pieces / mm. MCrAlY合金からなる下地溶射皮膜の厚み10〜500μm、熱遮蔽セラミック溶射皮膜の厚み10〜5000μmとする請求項1又は2に記載の熱遮蔽セラミックコーティング部品の製造方法10~500μm the thickness of the undercoat sprayed coating made of MCrAlY alloy, a manufacturing method of the heat shield ceramic coating component according to the thickness of the heat shield ceramic sprayed coating in claim 1 or 2 shall be the 10~5000Myuemu. 前記熱遮蔽セラミック溶射皮膜の平均表面粗さRa7.5μm以下とする請求項1〜のいずれかに記載の熱遮蔽セラミックコーティング部品の製造方法 Manufacturing method of the heat shield ceramic coating component according to any one of claims 1 to 3 mean surface roughness Ra of the heat shield ceramic sprayed coating shall be the following 7.5 [mu] m. 前記レーザビームを、パワー密度40〜200W/mm2 、エネルギー密度2〜5J/mm2 の範囲で、且つパワー密度とエネルギー密度の積が180W/mm2 ・J/mm2 以上となる条件で照射する請求項1〜4のいずれかに記載の熱遮蔽セラミックコーティング部品の製造方法。 The laser beam, the power density 40~200W / mm 2, the range of the energy density 2~5J / mm 2, and irradiated under the condition that the product of the power density and energy density is 180W / mm 2 · J / mm 2 or more The manufacturing method of the heat-shielding ceramic coating component in any one of Claims 1-4 . 前記レーザビームをトップフラット型で照射するようにしてなる請求項記載の熱遮蔽セラミックコーティング部品の製造方法。 6. The method of manufacturing a heat-shielding ceramic coating component according to claim 5, wherein the laser beam is irradiated in a top flat type.
JP2003315995A 2002-09-06 2003-09-08 Manufacturing method of heat shielding ceramic coating parts Expired - Fee Related JP4434667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315995A JP4434667B2 (en) 2002-09-06 2003-09-08 Manufacturing method of heat shielding ceramic coating parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002261678 2002-09-06
JP2003315995A JP4434667B2 (en) 2002-09-06 2003-09-08 Manufacturing method of heat shielding ceramic coating parts

Publications (2)

Publication Number Publication Date
JP2004149915A JP2004149915A (en) 2004-05-27
JP4434667B2 true JP4434667B2 (en) 2010-03-17

Family

ID=32473006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315995A Expired - Fee Related JP4434667B2 (en) 2002-09-06 2003-09-08 Manufacturing method of heat shielding ceramic coating parts

Country Status (1)

Country Link
JP (1) JP4434667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043351A (en) * 2008-07-29 2010-02-25 General Electric Co <Ge> Thermal barrier coating and method for production thereof
JP2013181192A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Method for producing thermal barrier coating material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104577A (en) * 2004-10-04 2006-04-20 United Technol Corp <Utc> Segmented gadolinia zirconia coating film, method for forming the same, segmented ceramic coating system and coated film component
JP4568094B2 (en) * 2004-11-18 2010-10-27 株式会社東芝 Thermal barrier coating member and method for forming the same
EP1780298A4 (en) * 2005-07-29 2009-01-07 Tocalo Co Ltd Y2o3 thermal sprayed film coated member and process for producing the same
US8231986B2 (en) 2005-08-22 2012-07-31 Tocalo Co., Ltd. Spray coating member having excellent injury resistance and so on and method for producing the same
JP4571561B2 (en) 2005-09-08 2010-10-27 トーカロ株式会社 Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
KR100801910B1 (en) * 2006-01-19 2008-02-12 도카로 가부시키가이샤 Y2o3 spray-coated member and production method thereof
US20070207328A1 (en) * 2006-03-01 2007-09-06 United Technologies Corporation High density thermal barrier coating
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
JP4959213B2 (en) 2006-03-31 2012-06-20 三菱重工業株式会社 Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
KR101451909B1 (en) * 2011-10-21 2014-10-23 창원대학교 산학협력단 A thick thermal barrier coating layer having interfacial stability and method for manufacturing the same
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
EP2623730A1 (en) 2012-02-02 2013-08-07 Siemens Aktiengesellschaft Flow engine component with joint and steam turbine with the flow engine component
JP5886386B2 (en) * 2014-08-04 2016-03-16 三菱日立パワーシステムズ株式会社 Thermal barrier coating method
JP5932072B1 (en) * 2015-02-12 2016-06-08 三菱日立パワーシステムズ株式会社 Method for producing thermal spray particles and method for using thermal spray particles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274062A (en) * 1986-05-23 1987-11-28 Toyota Motor Corp Production of ceramic coated member
JPH02282460A (en) * 1989-04-21 1990-11-20 Nkk Corp Metallic material surface-treated with ceramics
US5073433B1 (en) * 1989-10-20 1995-10-31 Praxair Technology Inc Thermal barrier coating for substrates and process for producing it
JP3088652B2 (en) * 1996-02-14 2000-09-18 トーカロ株式会社 Vitreous sprayed material coated member having self-repairing action and method of manufacturing the same
JPH09327779A (en) * 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd Method for forming crack in ceramic film, and ceramic film parts formed by the method
JP3204307B2 (en) * 1998-03-20 2001-09-04 日本電気株式会社 Laser irradiation method and laser irradiation device
JP2000144365A (en) * 1998-11-05 2000-05-26 Toshiba Corp Thermal barrier coating member, production of thermal barrier coating member and high temperature gas turbine using thermal barrier coating member
JP3530768B2 (en) * 1999-04-22 2004-05-24 トーカロ株式会社 Forming method of heat shielding film
JP2001226783A (en) * 2000-02-10 2001-08-21 Mitsubishi Heavy Ind Ltd Smooth composite material, gas turbine blade and steam turbine blade
JP4166416B2 (en) * 2000-05-26 2008-10-15 関西電力株式会社 Method for forming heat shielding ceramic film and heat-resistant component having the film
JP3631982B2 (en) * 2000-06-16 2005-03-23 三菱重工業株式会社 Manufacturing method of thermal barrier coating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043351A (en) * 2008-07-29 2010-02-25 General Electric Co <Ge> Thermal barrier coating and method for production thereof
JP2013181192A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Method for producing thermal barrier coating material

Also Published As

Publication number Publication date
JP2004149915A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4434667B2 (en) Manufacturing method of heat shielding ceramic coating parts
US7494723B2 (en) Y2O3 spray-coated member and production method thereof
EP2434102B1 (en) Gas turbine shroud with ceramic abradable layer
JP4555864B2 (en) Thermal spray coating coated member having excellent heat radiation characteristics and method for producing the same
US20100028711A1 (en) Thermal barrier coatings and methods of producing same
WO2007023976A1 (en) Structural member coated with spray coating film excellent in damage resistance and the like, and method for production thereof
US6471881B1 (en) Thermal barrier coating having improved durability and method of providing the coating
JP2007203289A (en) Method for forming protective coating film of improved interlayer adhesion
JP5943649B2 (en) Manufacturing method of thermal barrier coating material
CN113151772A (en) Novel high-temperature corrosion-resistant thermal barrier coating with double ceramic layer structure and preparation method thereof
JP5705627B2 (en) Heat-resistant member repair method, repair heat-resistant member
Talib et al. Thermal spray coating technology: A review
Kumar et al. Evolution and adoption of microwave claddings in modern engineering applications
CN101294284A (en) Ablation-resistant fatigue-resistant plasma surface recombination reinforcing method
JP4166416B2 (en) Method for forming heat shielding ceramic film and heat-resistant component having the film
CN110616395B (en) High-temperature micro-motion resistant coating for micro-texturing of sawtooth crown surface of gas turbine blade and preparation method thereof
Higuera Hidalgo et al. Characterisation of NiCr flame and plasma sprayed coatings for use in high temperature regions of boilers
CN114540738A (en) Preparation method of ultrahigh-temperature anti-scouring thermal barrier coating
Pavan et al. Review of ceramic coating on mild steel methods, applications and opportunities
US20100326971A1 (en) Thermal barrier coating removal via shockwave stresses
RU2674784C1 (en) Integrated sintering process for microcracking and erosion resistance of thermal barriers
Kiełczawa et al. Isothermal Oxidation Behavior of MCrAlY Bond Coats after Laser Microtexturing
RU2415199C1 (en) Procedure for application of coating
Prakash et al. Laser Microtexturing of NiCrAlY Coated Nickel-based Superalloy for Improved Adhesion Bond Strength.
RU2813538C1 (en) Method of applying wear-resistant coating to parts of gas turbine unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4434667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees