JP4166416B2 - Method for forming heat shielding ceramic film and heat-resistant component having the film - Google Patents

Method for forming heat shielding ceramic film and heat-resistant component having the film Download PDF

Info

Publication number
JP4166416B2
JP4166416B2 JP2000156865A JP2000156865A JP4166416B2 JP 4166416 B2 JP4166416 B2 JP 4166416B2 JP 2000156865 A JP2000156865 A JP 2000156865A JP 2000156865 A JP2000156865 A JP 2000156865A JP 4166416 B2 JP4166416 B2 JP 4166416B2
Authority
JP
Japan
Prior art keywords
layer
heat
film
forming
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000156865A
Other languages
Japanese (ja)
Other versions
JP2001335915A (en
Inventor
令也 新宮
満 堂ヶ原
直彦 吉田
茂 吉竹
泰治 鳥越
稔 大原
明 大森
秀則 白沢
展 周
二郎 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2000156865A priority Critical patent/JP4166416B2/en
Publication of JP2001335915A publication Critical patent/JP2001335915A/en
Application granted granted Critical
Publication of JP4166416B2 publication Critical patent/JP4166416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発電用ガスタービン等の高温域で使用される機器の部品に適用される熱遮蔽セラミック皮膜の形成方法と、該皮膜を有する耐熱部品に関する。
【0002】
【従来の技術】
ガスタービンの翼や燃焼筒等の高温域で使用される耐熱部品として、Ni基耐熱合金基材の表面に、MCrAlY(MはCo及び又はNi)等の耐高温酸化性・耐高温腐食性に優れる下地合金層を介して、熱遮蔽セラミック皮膜を形成したものが汎用されている。一般的に、このセラミック皮膜は、ZrO2 にMgO、CaO、Y2 3 等を加えて安定化させたものであり、プラズマ溶射によって数百μm程度の厚みに形成されるのが普通である。
【0003】
しかるに、上記のような熱遮蔽セラミック皮膜を設けた耐熱部品においても、熱衝撃(加熱−冷却の熱サイクル)の反復により、該セラミック皮膜が剥離し易く、苛酷な使用条件では充分な高温耐久性が得られないという問題があった。特にガスタービンの場合、発電効率の向上のために稼働温度をより高くする傾向にあり、これに伴って各部品の高温耐久性を改善して長寿命化を図ることが強く要望されている。なお、基材への熱影響を緩和するためにセラミック皮膜の膜厚を増加させた場合は、熱衝撃による内部応力が増大するため、上記の剥離はより発生し易くなる。
【0004】
そこで、上記要望に対処する手段として、近年、熱遮蔽セラミック皮膜に厚み方向の割れ(縦割れ)による柱状組織を形成することが提案されている。これは、前記の界面剥離を生じる主因がセラミック皮膜と下地合金層及び耐熱合金基材との線膨張率の違い(線膨張率:安定化ZrO2 溶射皮膜…10〜11×10-6/K、Ni基耐熱合金及びMCrAlY合金…16×10-6/K)にあることから、予めセラミック皮膜側に割れを形成しておき、この割れによって熱サイクルに伴う膨張・収縮の差を吸収させるというものである。
【0005】
しかして、従来の提案に係る熱遮蔽セラミック皮膜の前記柱状組織の形成方法としては、電子ビームによる蒸着と酸素イオン照射によって安定化ZrO2 層を成膜する方法(特開平9−67632号公報)、プラズマ溶射にて成膜した安定化ZrO2 層の表面に後処理としてパルスレーザを照射する方法(特開平9−327779号公報)、プラズマ溶射にて安定化ZrO2 層を形成する際の溶射条件の制御によって溶射単層(1パス)毎に割れを生じさせてゆく方法(特許第2710075号公報)等がある。
【0006】
【発明が解決しようとする課題】
しかしながら、前記の電子ビームによる蒸着と酸素イオン照射にて成膜する方法は、高コストになると共に、成膜速度が遅いために非能率である上、処理雰囲気の調整等で膜厚を300μm以上にすることが困難であるという難点があった。また前記の成膜後にパルスレーザ照射を行う方法では、後処理としての別工程を必要として作業効率が悪い上、皮膜表面へのパルスレーザ照射では割れが皮膜深部まで進行しにくく、熱衝撃による界面剥離に対する充分な防止効果を得るためにレーザのパワー密度を高めると、穴開き等で皮膜表面が著しく荒れて耐エロージョン性などが大幅に劣化されるという問題があった。更にプラズマ溶射時の条件を制御する方法では、一回の溶射毎に温度を変える等で煩雑な制御操作が必要となり、しかも割れが安定化ZrO2 層の厚み全体に及ぶため、この割れを通して下地合金層まで直接に腐食性高温雰囲気の影響を受けることになり、安定化ZrO2 層本来の熱遮蔽機能が充分に発揮されず、基材の熱劣化を生じ易くなるという欠点があった。
【0007】
本発明は、上述の事情に鑑みて、苛酷な条件下で使用される耐熱部品の表面に、厚み方向の割れによる柱状組織を有する熱遮蔽セラミック皮膜を低コストで能率よく確実に形成し、熱衝撃による界面剥離に対する充分な防止効果を発揮させることを可能にすると共に、前記割れを通した下地への腐食性高温雰囲気の直接的影響を回避し得る手段を提供し、もって高温耐久性に優れて長寿命な耐熱部品を実現することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明に係る熱遮蔽セラミック皮膜の形成方法は、被加工物表面に2層又は3層構造のセラミック皮膜を形成する方法において、その2層構造の上層ならびに3層構造の中間層の形成に際し、溶射域の被加工物表面にレーザ照射しつつ該表面にセラミック材料をプラズマ溶射することにより、前記2層構造の上層ならびに3層構造の中間層に厚み方向の割れによる柱状組織を形成することを特徴としている。すなわち、この方法によれば、プラズマ溶射されたセラミック材料が同時に溶射面に照射されているレーザ光によって高温に加熱され、溶射粒子間の結合力が増して組織は緻密化すると共に、溶射面の移動によってレーザ照射域から外れて急速に冷却固化する際の収縮に伴って皮膜厚み方向の割れが網目状に生じ、この割れを生じた単層の積み重なりによって柱状組織が形成される。そして、この場合、2層構造の上層ならびに3層構造の中間層をレーザ照射下でのプラズマ溶射にて形成するから、熱遮蔽セラミック皮膜の柱状組織を構成する割れが下地面まで達していない状態になり、割れを通して腐食性高温雰囲気の影響が下地が直接に及ぶことはない。また、この柱状組織の形成においては、通常のプラズマ溶射による成膜工程で溶射面にレーザ照射を行うのであるから、別途に工程を追加する必要はなく、またレーザ照射を停止すれば、そのまま割れのない溶射皮膜が形成されることになるから、割れの深さや形成位置を任意に設定できることになる。
【0010】
請求項の発明では、上記請求項1の熱遮蔽セラミック皮膜の形成方法において、ZrO2 を主成分とするセラミック材料を用いるものとしているから、形成される皮膜が優れた熱遮蔽機能を発揮するものとなる。
【0011】
請求項の発明では、上記請求項1又は2の熱遮蔽セラミック皮膜の形成方法において、プラズマ溶射を照射面でのレーザパワー密度が100〜350W/mm2 となるレーザ照射下で行うものとしている。この場合、レーザパワー密度が適度であるため、溶射皮膜に下地との界面剥離の防止に適した良好な状態の柱状組織を形成できる。
【0012】
請求項の発明では、上記請求項1〜のいずれかの熱遮蔽セラミック皮膜の形成方法において、プラズマ溶射をYAGレーザの連続発振によるレーザ照射下で行うものとしており、そのレーザービームの特性から、溶射皮膜に良好な柱状組織を形成し易い。
【0013】
請求項の発明に係る耐熱部品は、部品表面にプラズマ溶射層からなる2層又は3層構造の熱遮蔽セラミック皮膜を備え、該セラミック皮膜の2層構造の上層もしくは3層構造の中間層が請求項1〜のいずれかに記載のレーザ照射下でのプラズマ溶射にて形成された皮膜厚み方向の割れによる柱状組織を有すると共に、前記2層構造の下層もしくは3層構造の上下層がプラズマ溶射のみで形成された連続組織を有してなるものとしている。この耐熱部品では、セラミック皮膜の柱状組織によって当該皮膜と下地との熱衝撃による界面剥離が防止されると共に、該柱状組織を構成する割れが下地面まで達しておらず、割れを通して腐食性高温雰囲気の影響が下地が直接に及ばないから、部品全体として高温耐久性に優れて長寿命となる。
【0014】
請求項の発明は、上記請求項の耐熱部品において、Ni基耐熱合金基材の表面に、MCrAlY(MはCo及び又はNi)合金層を介してZrO2 を主体とする前記熱遮蔽セラミック皮膜が形成されてなるものとしている。この耐熱部品では、基材、下地合金層、セラミック層の各材質より、耐高温腐食性、耐高温酸化性、高温耐久性等の熱的性質が特に優れたものとなる。
【0015】
【発明の実施の形態】
以下、本発明に係る熱遮蔽セラミック皮膜の形成方法について、図面を参照して具体的に説明する。図1において、1は被加工物である耐熱合金よりなる基材、2は基材1上にプラズマ溶射にて形成された耐高温腐食性・耐高温酸化性の下地合金層、3は下地合金層2上に成膜中の熱遮蔽セラミック皮膜である。
【0016】
図1に示すように、熱遮蔽セラミック皮膜3の成膜は、基材1を矢印aの如く所定速度で進行させつつ、定位置にプラズマ溶射機(図示省略)からのプラズマスプレーPを溶射して行うが、この溶射域Zに同時にレーザ照射装置(図示省略)から出射されるレーザービームLのスポットを重畳させる。これにより、溶射ノズルから溶着面に辿り着く飛行過程で温度低下した溶射粒子が溶射域Zで再加熱されて溶融し、溶融粒子間の結合力が増して組織は緻密化すると共に、溶射域Zの移動によってレーザービームLのスポットから外れて急速に冷却固化するが、この固化収縮に伴って皮膜厚み方向の割れ4…が図2に示すように皮膜表面から見て網目状に生じる。
【0017】
しかして、溶射条件によって異なるが、溶射粒子の径は50μm前後であり、一回の溶射(1パス)で成膜される単層の厚みは20μm内外であるため、セラミック皮膜3が所要の厚さになるまで溶射を重ねることになるが、レーザ照射下でのプラズマ溶射を続けてゆくと、後から形成される単層の固化収縮に伴う割れ4…はその下の単層に生じている割れ4…のパターンに追従して発生し易いため、割れ4…の殆どが皮膜の厚み方向に延びてゆくことになる。
【0018】
一方、このような皮膜形成機構においてレーザ照射のみを停止すれば、通常のプラズマ溶射となって割れ4…のない皮膜が形成される。そこで、下地合金層2上への成膜開始から溶射層の厚みがある程度になるまではレーザ照射を停止しておき、以降はレーザ照射を行いつつプラズマ溶射すれば、図3(A)に示すように、割れ4…による柱状組織の上層31aと連続組織の下層32aとの二層構造をなす熱遮蔽セラミック皮膜3Aが形成される。また、この二層構造上に更にレーザ照射を停止してプラズマ溶射すれば、図3(B)に示すように、連続組織の上下層32a,32bの間に柱状組織の中間層31bを挟んだ三層構造をなす熱遮蔽セラミック皮膜3Bが形成される。
【0019】
しかして、これら二層及び三層構造の熱遮蔽セラミック皮膜3A,3Bを設けた耐熱部品では、前者の下層32a並びに後者の中間層31bが柱状組織を有するため、発電用ガスタービン等の部品として使用中に熱衝撃を受けた際、これら皮膜3A,3Bと下地合金層2及び基材1との線膨張率の違いによる伸縮の差があっても、内部応力が該柱状組織を構成する割れ4…によって吸収緩和され、セラミック皮膜3A,3Bと下地合金層2との間の界面剥離が効果的に抑えられる上、割れ4…は下地合金層2に達していないため、この下地合金層2が割れ4…を通して直接に腐食性高温雰囲気の影響を受けることはなく、またプラズマ溶射によってセラミック皮膜3A,3Bを厚く形成して充分な熱遮蔽機能を付与でき、もって苛酷な使用条件でも充分な高温耐久性が得られる。
【0020】
なお、熱遮蔽セラミック皮膜の充分な高温耐久性を確保する上で、レーザ照射下でのプラズマ溶射にて成膜される柱状組織の部分は、皮膜厚さの10%以上となるように設定するのがよい。ただし、割れを通した下地への腐食性高温雰囲気の影響を回避するため、下地面から少なくとも皮膜厚さの7%まではプラズマ溶射のみで成膜される連続組織とすることが好ましい。
【0021】
ここで、熱遮蔽セラミック皮膜3,3A,3Bに用いられるセラミック材料としては、MgO、CaO、Y2 3 等を加えて安定化させたZrO2 が好適に使用される。また基材1の耐熱合金としては、インコネル等のNi基耐熱合金が好適である。下地合金層2としては、耐高温腐食性及び耐高温酸化性に優れるものであればよいが、特にMCrAlY(MはCo及び又はNi)合金が推奨される。
【0022】
レーザ照射は、照射面でのレーザパワー密度が100〜350W/mm2 となる範囲が好適であり、同パワー密度が100W/mm2 未満では割れ4…が形成されにくく、逆に350W/mm2 を越えると皮膜の表面荒れが生じ易くなる。また、使用するレーザの種類は特に制約されないが、小型で取扱い性のよいYAGレーザの連続発振によるレーザビームによれば、その特性から溶射皮膜に良好な柱状組織を形成し易い。しかして、図1で示すようにプラズマスプレーPの溶射域ZにレーザービームLのスポットを重畳させて、且つレーザパワー密度を適度に設定する上で、レーザービームLは焦点から深浅いずれかに外れた位置で照射面に当て、もって照射スポットが溶射域Zに略一致するように設定することが望ましい。
【0023】
【実施例】
以下に、本発明の実施例を参考例と共に具体的に説明する。これら実施例及び参考例では、インコネル合金からなる発電用ガスタービン翼を基材とし、この基材上に減圧プラズマ溶射によって成膜した100μm厚のCoNiCrAlY合金層を下地とし、この上に熱遮蔽セラミック皮膜3を大気中プラズマ溶射もしくはレーザ照射下での大気中プラズマ溶射によって成膜する。そのプラズマ溶射条件とレーザ照射条件を表1及び表2に示す。
【0024】
【表1】

Figure 0004166416
【0025】
【表2】
Figure 0004166416
【0026】
実施例1
前記CoNiCrAlY合金層を形成した基材をロボットに持たせる一方、プラズマ溶射機とレーザ照射装置とを図1の如くプラズマスプレーPの溶射域ZにレーザービームLのスポットが重畳するように固定し、図1の矢印aの如く基材1側を移動させながら、8重量%のY2 3 を添加したZrO2 を溶射材料として、溶射開始からプラズマ溶射のみで15パスの成膜を行い、以降についてはレーザビームLを焦点より15mm下の位置(照射面でのパワー密度=283W/mm2 )で照射しつつ6パスの成膜を行うことにより、300μm厚の熱遮蔽セラミック皮膜を形成した。
【0027】
参考例1
レーザビームLの照射を焦点より25mm下の位置(照射面でのパワー密度=102W/mm2 )で行った以外は、実施例1と同様にして300μm厚の熱遮蔽セラミック皮膜を形成した。
【0028】
実施例2
溶射開始からプラズマ溶射のみで8パスの成膜を行い、次いでレーザビームLを実施例1と同位置で照射しつつ6パスの成膜を行い、更にプラズマ溶射のみで4パスの成膜を行うことにより、300μm厚の熱遮蔽セラミック皮膜を形成した。
【0029】
参考例2
溶射開始から終了までをプラズマ溶射のみで成膜し、300μm厚の熱遮蔽セラミック皮膜を形成した。
【0030】
上記実施例1,2と参考例1で形成した熱遮蔽セラミック皮膜の断面組織の電子顕微鏡写真(×150)を、実施例1は図4、参考例1は図5、実施例2は図6にそれぞれ示す。図4から明らかなように、実施例1にて形成されたセラミック皮膜は、厚み方向に綺麗に揃った割れによる明瞭な柱状組織の上層と、割れのない連続組織の下層との二層構造をなしている。これに対し、参考例1にて形成されたセラミック皮膜は、図5に示すように上部に明瞭な割れが殆ど認められず、柱状組織を形成するためのレーザービームの強度が不足していることが判る。一方、図6より、実施例2にて形成されたセラミック皮膜は、連続組織の上下層の間に柱状組織の中間層を挟んだ三層構造をなすことが判る。
【0031】
〔熱衝撃試験〕
次に、実施例1,2及び参考例1,2で熱遮蔽セラミック皮膜を形成したガスタービン翼について、加熱炉を用い、図7に示すように4.5分で990℃まで加熱後に4.5分で60℃まで冷却する熱サイクルを1回の熱衝撃として、この熱衝撃を繰り返し与え、該セラミック皮膜が剥離するまでの熱衝撃回数を調べた。その結果を次の表3に示す。
【0032】
【表3】
Figure 0004166416
【0033】
表3の結果から、プラズマ溶射のみで形成した参考例2のセラミック皮膜は僅か4回の熱衝撃で剥離したのに対し、参考例1のセラミック皮膜はある程度まで熱衝撃に耐えても不充分であり、実施例1,2のセラミック皮膜では1000回以上の熱衝撃によっても剥離が起こらず、本発明によるセラミック皮膜は極めて高温耐久性に優れていることが判る。
【0034】
【発明の効果】
請求項1の発明によれば、被加工物表面に2層又は3層構造のセラミック皮膜を形成する方法において、その2層構造の上層ならびに3層構造の中間層の形成に際し、溶射域の被加工物表面にレーザ照射しつつ該表面にセラミック材料をプラズマ溶射することから、前記2層構造の上層ならびに3層構造の中間層として、熱衝撃による剥離を生じにくい柱状組織を有する当該皮膜を確実に且つ容易に低コストで形成でき、この皮膜を苛酷な高温域で使用される耐熱部品の表面に設けて高温耐久性を大きく改善することができる。また、この方法では、柱状組織を構成する割れが下地面まで達せず、この割れを通して腐食性高温雰囲気が下地へ直接に及ぶのを防止できるものを形成できる。しかも、前記柱状組織の形成においては、通常のプラズマ溶射による成膜工程で溶射面にレーザ照射を行えばよいから、前記柱状組織の形成のために別途に工程を追加する必要はなく、それだけ加工能率がよい上、レーザの照射と停止を行うだけで皮膜内の任意の部位ならびに任意の面領域に柱状組織を形成して、他をプラズマ溶射のみによる連続組織とすることができる。
【0036】
請求項の発明によれば、上記の熱遮蔽セラミック皮膜として、特に熱遮蔽機能に優れるものを形成できる。
【0037】
請求項の発明によれば、上記の熱遮蔽セラミック皮膜として、下地との界面剥離の防止に適した良好な状態の柱状組織を有するものを形成できる。
【0038】
請求項の発明によれば、上記の熱遮蔽セラミック皮膜の形成方法において、当該皮膜に良好な柱状組織を容易に形成できるという利点がある。
【0039】
請求項の発明によれば、耐熱部品として、その表面に設けた熱遮蔽セラミック皮膜の熱衝撃による界面剥離を生じにくく、且つ腐食性高温雰囲気の影響が下地直接に及ぶことがなく、もって全体として高温耐久性に優れて長寿命なものが提供される。
【0040】
請求項の発明によれば、上記の耐熱部品として、耐高温腐食性、耐高温酸化性、高温耐久性等の熱的性質に特に優れたものが提供される。
【図面の簡単な説明】
【図1】 本発明に係る熱遮蔽セラミック皮膜の形成方法を模式的に示す斜視図である。
【図2】 同形成方法による一回のプラズマ溶射で成膜される熱遮蔽セラミック皮膜の単層の斜視図である。
【図3】 同形成方法による熱遮蔽セラミック皮膜を備えた耐熱部品を示し、(A)は二層構造の該皮膜を有する耐熱部品の断面図、(B)は三層構造の該皮膜を有する耐熱部品の断面図である。
【図4】 実施例1で形成した熱遮蔽セラミック皮膜の断面組織を示す電子顕微鏡写真図である。
【図5】 参考例1で形成した熱遮蔽セラミック皮膜の断面組織を示す電子顕微鏡写真図である。
【図6】 実施例2で形成した熱遮蔽セラミック皮膜の断面組織を示す電子顕微鏡写真図である。
【図7】 熱衝撃試験の熱サイクル図である。
【符号の説明】
1 基材(被加工物)
2 下地合金層
3,3A,3B 熱遮蔽セラミック皮膜
31a 柱状組織の上層
31b 連続組織の下層
32a 連続組織の上層
32b 柱状組織の中間層
32c 連続組織の下層
4 割れ
P プラズマスプレー
L レーザービーム
Z 溶射域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a heat-shielding ceramic coating applied to parts of equipment used in a high temperature region such as a gas turbine for power generation, and a heat-resistant component having the coating.
[0002]
[Prior art]
As heat-resistant parts used in high-temperature areas such as gas turbine blades and combustion cylinders, it has high-temperature oxidation resistance and high-temperature corrosion resistance such as MCrAlY (M is Co and / or Ni) on the surface of Ni-base heat-resistant alloy base materials A material in which a heat-shielding ceramic film is formed through an excellent base alloy layer is widely used. Generally, this ceramic film is stabilized by adding MgO, CaO, Y 2 O 3 or the like to ZrO 2 and is usually formed to a thickness of about several hundred μm by plasma spraying. .
[0003]
However, even in heat-resistant parts provided with a heat-shielding ceramic coating as described above, the ceramic coating is easy to peel off due to repeated thermal shocks (heating-cooling thermal cycle), and sufficient high-temperature durability under severe conditions There was a problem that could not be obtained. In particular, in the case of a gas turbine, there is a tendency to increase the operating temperature in order to improve the power generation efficiency, and accordingly, there is a strong demand for improving the high temperature durability of each component and extending the life. In addition, when the film thickness of the ceramic film is increased in order to mitigate the thermal influence on the base material, the internal stress due to thermal shock increases, so that the above-described peeling is more likely to occur.
[0004]
Therefore, in recent years, it has been proposed to form a columnar structure due to cracks in the thickness direction (longitudinal cracks) in the heat-shielding ceramic film as a means for coping with the above demand. This is due to the difference in linear expansion coefficient between the ceramic film, the base alloy layer and the heat-resistant alloy substrate (linear expansion coefficient: stabilized ZrO 2 sprayed coating ... 10 to 11 × 10 -6 / K). , Ni-base heat-resistant alloy and MCrAlY alloy ... 16 × 10 −6 / K), cracks are formed in advance on the ceramic film side, and this crack absorbs the difference in expansion and contraction associated with the thermal cycle. Is.
[0005]
Therefore, as a method of forming the columnar structure of the heat-shielding ceramic film according to the conventional proposal, a method of forming a stabilized ZrO 2 layer by electron beam deposition and oxygen ion irradiation (Japanese Patent Laid-Open No. 9-67632). , A method of irradiating a surface of a stabilized ZrO 2 layer formed by plasma spraying with a pulsed laser as post-processing (Japanese Patent Laid-Open No. 9-327779), thermal spraying when forming a stabilized ZrO 2 layer by plasma spraying There is a method (Japanese Patent No. 2710075) or the like of generating cracks for each sprayed single layer (one pass) by controlling the conditions.
[0006]
[Problems to be solved by the invention]
However, the method of forming a film by electron beam evaporation and oxygen ion irradiation is expensive and inefficient because the film forming speed is slow, and the film thickness is 300 μm or more by adjusting the processing atmosphere. There was a difficulty that it was difficult to make. In addition, the method of performing pulse laser irradiation after the film formation described above requires a separate process as post-processing, and the work efficiency is poor. Further, the pulse laser irradiation on the film surface is difficult to progress to the deep part of the film, and the interface caused by thermal shock If the power density of the laser is increased in order to obtain a sufficient prevention effect against peeling, there is a problem that the surface of the coating is remarkably rough due to perforations and the erosion resistance and the like are greatly deteriorated. Further, the method for controlling the conditions during plasma spraying requires complicated control operations such as changing the temperature for each spraying, and the crack extends to the entire thickness of the stabilized ZrO 2 layer. The alloy layer is directly affected by the corrosive high temperature atmosphere, so that the heat shielding function inherent to the stabilized ZrO 2 layer is not sufficiently exhibited, and the base material is likely to be thermally deteriorated.
[0007]
In view of the above circumstances, the present invention efficiently and reliably forms a heat-shielding ceramic film having a columnar structure due to cracks in the thickness direction on the surface of a heat-resistant component used under severe conditions, It is possible to exert a sufficient preventive effect against interfacial peeling due to impact, and provides a means that can avoid the direct influence of corrosive high temperature atmosphere to the base through the crack, and has excellent high temperature durability The purpose is to achieve long-life heat-resistant parts.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for forming a heat-shielding ceramic film according to the invention of claim 1 is a method for forming a ceramic film having a two-layer or three-layer structure on the surface of a workpiece. and upon form of an intermediate layer of a three-layer structure, by a ceramic material flop plasma sprayed on the surface while the laser irradiated to the workpiece surface of the spray zone, the intermediate layer of the upper layer and 3-layer structure of the two-layer structure A columnar structure is formed by cracking in the thickness direction . That is, according to this method, the plasma-sprayed ceramic material is heated to a high temperature by the laser beam simultaneously applied to the sprayed surface, the bonding force between the sprayed particles is increased, and the structure is densified. Along with the contraction when rapidly moving out of the laser irradiation area due to the movement, the film thickness direction cracks are formed in a mesh shape, and a columnar structure is formed by the stacking of the single layers in which the cracks are generated. In this case, since the upper layer of the two-layer structure and the intermediate layer of the three-layer structure are formed by plasma spraying under laser irradiation, the cracks constituting the columnar structure of the heat shielding ceramic film do not reach the ground surface. Thus, the base is not directly affected by the corrosive high temperature atmosphere through the cracks. Further, in the formation of this columnar structure , since laser irradiation is performed on the sprayed surface in a film forming process by normal plasma spraying, it is not necessary to add a separate process, and if laser irradiation is stopped, it is cracked as it is. Therefore, the crack depth and formation position can be arbitrarily set.
[0010]
In the invention of claim 2, in the method for forming a heat shielding ceramic film of claim 1, the ceramic material mainly composed of ZrO 2 is used, so that the formed film exhibits an excellent heat shielding function. It will be a thing.
[0011]
According to a third aspect of the present invention, in the method for forming a heat-shielding ceramic film according to the first or second aspect, the plasma spraying is performed under laser irradiation with a laser power density of 100 to 350 W / mm 2 on the irradiated surface. . In this case, since the laser power density is moderate, it is possible to form a columnar structure in a good state suitable for preventing interfacial peeling from the base on the thermal spray coating.
[0012]
According to a fourth aspect of the present invention, in the method for forming a heat-shielding ceramic film according to any one of the first to third aspects, plasma spraying is performed under laser irradiation by continuous oscillation of a YAG laser. It is easy to form a good columnar structure on the sprayed coating.
[0013]
The heat-resistant component according to the invention of claim 5 is provided with a heat-shielding ceramic coating having a two-layer or three-layer structure composed of a plasma sprayed layer on the surface of the component, and an upper layer of the two-layer structure or an intermediate layer of the three-layer structure of the ceramic coating. and it has a columnar structure by coating thickness direction of the crack formed by plasma spraying under laser irradiation of any of claims 1-4, the upper and lower layers of the lower layer or three-layer structure of the two-layer structure is plasma It is assumed to have a continuous structure formed only by thermal spraying. In this heat-resistant component, the columnar structure of the ceramic film prevents interfacial peeling due to thermal shock between the film and the base, and the cracks constituting the columnar structure do not reach the base surface. As a result, the entire substrate is excellent in high temperature durability and has a long life.
[0014]
According to a sixth aspect of the present invention, in the heat resistant component of the fifth aspect , the heat-shielding ceramic mainly comprising ZrO 2 via a MCrAlY (M is Co and / or Ni) alloy layer on the surface of the Ni-base heat-resistant alloy base material. It is assumed that a film is formed. In this heat-resistant component, thermal properties such as high-temperature corrosion resistance, high-temperature oxidation resistance, and high-temperature durability are particularly superior to those of the base material, the base alloy layer, and the ceramic layer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for forming a heat-shielding ceramic film according to the present invention will be specifically described with reference to the drawings. In FIG. 1, 1 is a base material made of a heat-resistant alloy as a workpiece, 2 is a base alloy layer of high temperature corrosion resistance / high temperature oxidation resistance formed by plasma spraying on the base material 1, and 3 is a base alloy It is a heat shielding ceramic film being formed on the layer 2.
[0016]
As shown in FIG. 1, the heat shielding ceramic film 3 is formed by spraying a plasma spray P from a plasma spraying machine (not shown) at a fixed position while the base material 1 is advanced at a predetermined speed as indicated by an arrow a. However, a spot of a laser beam L emitted from a laser irradiation device (not shown) is simultaneously superimposed on the sprayed zone Z. As a result, the spray particles whose temperature has decreased during the flight process from the spray nozzle to the weld surface are reheated and melted in the spray zone Z, the bonding force between the melt particles increases, the structure becomes dense, and the spray zone Z As a result of this movement, the laser beam L is removed from the spot and rapidly cooled and solidified. As this solidification shrinkage occurs, cracks 4 in the film thickness direction are formed in a mesh shape as seen from the film surface as shown in FIG.
[0017]
However, although it depends on the spraying conditions, the diameter of the sprayed particles is around 50 μm, and the thickness of the single layer formed by one spraying (one pass) is 20 μm inside or outside, so that the ceramic coating 3 has the required thickness. However, if plasma spraying is continued under laser irradiation, cracks 4 due to solidification shrinkage of the single layer formed later will occur in the single layer underneath. Since it is easy to follow the pattern of the cracks 4..., Most of the cracks 4 extend in the thickness direction of the film.
[0018]
On the other hand, if only the laser irradiation is stopped in such a film forming mechanism, a film without cracks 4... Is formed by normal plasma spraying. Therefore, if the laser irradiation is stopped from the start of film formation on the base alloy layer 2 until the thickness of the sprayed layer reaches a certain level, and then the plasma spraying is performed while performing laser irradiation, FIG. Thus, the heat shielding ceramic film 3A having a two-layer structure of the upper layer 31a of the columnar structure and the lower layer 32a of the continuous structure is formed by the cracks 4. Further, if laser irradiation is further stopped on this two-layer structure and plasma spraying is performed, an intermediate layer 31b having a columnar structure is sandwiched between upper and lower layers 32a and 32b of the continuous structure as shown in FIG. 3B. A heat shielding ceramic coating 3B having a three-layer structure is formed.
[0019]
Thus, in the heat-resistant parts provided with the heat shielding ceramic coatings 3A and 3B having the two-layer structure and the three-layer structure, the former lower layer 32a and the latter intermediate layer 31b have a columnar structure. When subjected to thermal shock during use, even if there is a difference in expansion and contraction due to the difference in linear expansion coefficient between these coatings 3A and 3B, the base alloy layer 2 and the substrate 1, internal stress constitutes a crack that forms the columnar structure. 4 is absorbed and relaxed, and the interfacial delamination between the ceramic films 3A and 3B and the base alloy layer 2 is effectively suppressed, and the cracks 4 ... do not reach the base alloy layer 2, so that the base alloy layer 2 Is not directly affected by the corrosive high temperature atmosphere through the cracks 4 ..., and the ceramic coatings 3A and 3B can be formed thickly by plasma spraying to provide a sufficient heat shielding function. But sufficient high-temperature durability can be obtained.
[0020]
In order to ensure sufficient high-temperature durability of the heat-shielding ceramic film, the portion of the columnar structure formed by plasma spraying under laser irradiation is set to be 10% or more of the film thickness. It is good. However, in order to avoid the influence of the corrosive high temperature atmosphere on the base through the crack, it is preferable to form a continuous structure formed only by plasma spraying up to at least 7% of the film thickness from the base surface.
[0021]
Here, ZrO 2 stabilized by adding MgO, CaO, Y 2 O 3 or the like is preferably used as the ceramic material used for the heat shielding ceramic films 3, 3A, 3B. Further, as the heat-resistant alloy of the substrate 1, a Ni-based heat-resistant alloy such as Inconel is suitable. The base alloy layer 2 may be any material that is excellent in high-temperature corrosion resistance and high-temperature oxidation resistance, but an MCrAlY (M is Co and / or Ni) alloy is particularly recommended.
[0022]
Laser irradiation is suitably range laser power density on the irradiated surface is 100~350W / mm 2, difficult to break 4 ... are formed at the same power density is less than 100W / mm 2, 350W / mm 2 in the opposite If it exceeds, surface roughness of the film tends to occur. Further, the type of laser to be used is not particularly limited, but according to the laser beam by continuous oscillation of a YAG laser that is small and easy to handle, it is easy to form a good columnar structure on the sprayed coating due to its characteristics. Therefore, as shown in FIG. 1, when the laser beam L is overlapped on the sprayed area Z of the plasma spray P and the laser power density is set appropriately, the laser beam L deviates from the focal point to either deep or shallow. It is desirable to set the irradiation spot so that the irradiation spot substantially coincides with the sprayed area Z by being applied to the irradiation surface at a certain position.
[0023]
【Example】
Examples of the present invention will be specifically described below with reference examples. In these examples and reference examples, a gas turbine blade for power generation made of an Inconel alloy is used as a base material, and a CoNiCrAlY alloy layer having a thickness of 100 μm formed on the base material by low-pressure plasma spraying is used as a base, and a heat shielding ceramic is provided thereon. The coating 3 is formed by atmospheric plasma spraying or atmospheric plasma spraying under laser irradiation. Tables 1 and 2 show the plasma spraying conditions and laser irradiation conditions.
[0024]
[Table 1]
Figure 0004166416
[0025]
[Table 2]
Figure 0004166416
[0026]
Example 1
While holding the substrate having the CoNiCrAlY alloy layer formed on the robot, the plasma spraying machine and the laser irradiation device are fixed so that the spot of the laser beam L is superimposed on the spraying zone Z of the plasma spray P as shown in FIG. As the arrow a in FIG. 1 moves, the substrate 1 side is moved, and ZrO 2 added with 8% by weight of Y 2 O 3 is used as a thermal spraying material, and 15-pass film formation is performed only by plasma spraying from the start of thermal spraying. With respect to, a 300 μm thick heat-shielding ceramic film was formed by performing 6-pass film formation while irradiating the laser beam L at a position 15 mm below the focal point (power density on the irradiated surface = 283 W / mm 2 ).
[0027]
Reference example 1
A 300 μm thick heat-shielding ceramic film was formed in the same manner as in Example 1 except that the laser beam L was irradiated at a position 25 mm below the focal point (power density on the irradiated surface = 102 W / mm 2 ).
[0028]
Example 2
From the start of thermal spraying, film formation of 8 passes is performed only by plasma spraying, then film formation of 6 passes is performed while irradiating the laser beam L at the same position as in Example 1, and film formation of 4 passes is performed only by plasma spraying. As a result, a 300 μm thick heat shielding ceramic film was formed.
[0029]
Reference example 2
From the start to the end of thermal spraying, the film was formed only by plasma spraying to form a 300 μm thick heat shielding ceramic film.
[0030]
Electron micrographs (× 150) of the cross-sectional structures of the heat-shielding ceramic coatings formed in Examples 1 and 2 and Reference Example 1, Example 1 is FIG. 4, Reference Example 1 is FIG. 5, and Example 2 is FIG. Respectively. As is clear from FIG. 4, the ceramic film formed in Example 1 has a two-layer structure of a clear columnar structure upper layer by cracks that are neatly aligned in the thickness direction and a lower layer of a continuous structure without cracks. There is no. On the other hand, the ceramic film formed in Reference Example 1 has almost no clear cracks at the top as shown in FIG. 5, and the intensity of the laser beam for forming the columnar structure is insufficient. I understand. On the other hand, FIG. 6 shows that the ceramic film formed in Example 2 has a three-layer structure in which an intermediate layer of a columnar structure is sandwiched between upper and lower layers of a continuous structure.
[0031]
[Thermal shock test]
Next, the gas turbine blades on which the heat shielding ceramic coating was formed in Examples 1 and 2 and Reference Examples 1 and 2 were heated to 990 ° C. in 4.5 minutes as shown in FIG. A thermal cycle of cooling to 60 ° C. in 5 minutes was regarded as one thermal shock, and this thermal shock was repeatedly applied, and the number of thermal shocks until the ceramic film was peeled was examined. The results are shown in Table 3 below.
[0032]
[Table 3]
Figure 0004166416
[0033]
From the results in Table 3, the ceramic film of Reference Example 2 formed only by plasma spraying peeled off with only four thermal shocks, whereas the ceramic film of Reference Example 1 was insufficient to withstand thermal shock to some extent. In addition, it can be seen that the ceramic coatings of Examples 1 and 2 do not peel even by thermal shock of 1000 times or more, and the ceramic coating according to the present invention is extremely excellent in high temperature durability.
[0034]
【The invention's effect】
According to inventions of claims 1, a method of forming a ceramic coating having a two-layer or three-layer structure in the surface of the workpiece, upon formation of the intermediate layer of the upper layer and 3-layer structure of the two-layer structure, the spraying zone Since the ceramic material is plasma sprayed on the surface of the workpiece while irradiating the surface of the workpiece, the coating having a columnar structure that is unlikely to be peeled off by thermal shock is used as the upper layer of the two-layer structure and the intermediate layer of the three-layer structure. It can be reliably and easily formed at a low cost, and this coating can be provided on the surface of a heat-resistant component used in severe high temperature range to greatly improve high temperature durability. Further, in this method, it is possible to form a structure in which the cracks constituting the columnar structure do not reach the base surface and the corrosive high temperature atmosphere is prevented from reaching the base directly through the crack. Moreover, in the formation of the columnar structure, it is only necessary to irradiate the sprayed surface with a laser in a film forming process by normal plasma spraying, so there is no need to add a separate process for the formation of the columnar structure. In addition to high efficiency, it is possible to form a columnar structure at an arbitrary site and an arbitrary surface area in the film only by irradiating and stopping the laser, and to make the other a continuous structure only by plasma spraying.
[0036]
According to the invention of claim 2 , as the above-mentioned heat shielding ceramic film, one having particularly excellent heat shielding function can be formed.
[0037]
According to invention of Claim 3 , what has a columnar structure | tissue of the favorable state suitable for prevention of interface peeling with a foundation | substrate can be formed as said heat shielding ceramic membrane | film | coat.
[0038]
According to invention of Claim 4 , in the formation method of said heat shielding ceramic membrane | film | coat, there exists an advantage that a favorable columnar structure | tissue can be easily formed in the said membrane | film | coat.
[0039]
According to the invention of claim 5, as a heat-resistant parts, hardly occurs interfacial peeling due to thermal shock of the heat shield ceramic coating provided on the surface thereof, and the influence of the corrosive high temperature atmosphere without reaching directly to the substrate, it has been As a whole, a product having excellent durability at high temperature and long life is provided.
[0040]
According to the sixth aspect of the present invention, the heat-resistant component is particularly excellent in thermal properties such as high-temperature corrosion resistance, high-temperature oxidation resistance, and high-temperature durability.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a method for forming a heat shielding ceramic film according to the present invention.
FIG. 2 is a perspective view of a single layer of a heat shielding ceramic film formed by a single plasma spraying process according to the same forming method.
FIGS. 3A and 3B show a heat-resistant component provided with a heat-shielding ceramic film formed by the same forming method, wherein FIG. 3A is a cross-sectional view of the heat-resistant component having the two-layer structure and FIG. 3B has the three-layer structure. It is sectional drawing of a heat-resistant component.
4 is an electron micrograph showing the cross-sectional structure of the heat-shielding ceramic film formed in Example 1. FIG.
5 is an electron micrograph showing the cross-sectional structure of the heat-shielding ceramic film formed in Reference Example 1. FIG.
6 is an electron micrograph showing the cross-sectional structure of the heat-shielding ceramic film formed in Example 2. FIG.
FIG. 7 is a thermal cycle diagram of a thermal shock test.
[Explanation of symbols]
1 Base material (workpiece)
2 Underlying alloy layers 3, 3A, 3B Heat shielding ceramic coating 31a Columnar structure upper layer 31b Continuous structure lower layer 32a Continuous structure upper layer 32b Columnar structure intermediate layer 32c Continuous structure lower layer 4 Crack P Plasma spray L Laser beam Z Thermal spray region

Claims (6)

被加工物表面に2層又は3層構造のセラミック皮膜を形成する方法において、その2層構造の上層ならびに3層構造の中間層の形成に際し、溶射域の被加工物表面にレーザ照射しつつ該表面にセラミック材料をプラズマ溶射することにより、前記2層構造の上層ならびに3層構造の中間層に厚み方向の割れによる柱状組織を形成することを特徴とする熱遮蔽セラミック皮膜の形成方法。In the method of forming a ceramic film having a two-layer or three-layer structure on the surface of the workpiece, when forming the upper layer of the two-layer structure and the intermediate layer of the three-layer structure, the surface of the workpiece in the thermal spray region is irradiated with laser. by flop plasma spraying a ceramic material onto the surface, a method of forming the heat shield ceramic coating and forming a columnar structure by cracks in a thickness direction in the intermediate layer of the upper layer and 3-layer structure of the two-layer structure. ZrO2 を主成分とするセラミック材料を用いる請求項1に記載の熱遮蔽セラミック皮膜の形成方法。The method for forming a heat-shielding ceramic film according to claim 1, wherein a ceramic material mainly composed of ZrO 2 is used. プラズマ溶射を照射面でのレーザパワー密度が100〜350W/mm2 となるレーザ照射下で行う請求項1又は2に記載の熱遮蔽セラミック皮膜の形成方法。Method of forming a heat shield ceramic coating according to claim 1 or 2 plasma spraying laser power density on the irradiated surface is performed by the laser irradiation under which the 100~350W / mm 2. プラズマ溶射をYAGレーザの連続発振によるレーザ照射下で行う請求項1〜のいずれかに記載の熱遮蔽セラミック皮膜の形成方法。The method for forming a heat shielding ceramic film according to any one of claims 1 to 3 , wherein the plasma spraying is performed under laser irradiation by continuous oscillation of a YAG laser. 部品表面にプラズマ溶射層からなる2層又は3層構造の熱遮蔽セラミック皮膜を備え、該セラミック皮膜の2層構造の上層もしくは3層構造の中間層が請求項1〜のいずれかに記載のレーザ照射下でのプラズマ溶射にて形成された皮膜厚み方向の割れによる柱状組織を有すると共に、前記2層構造の下層もしくは3層構造の上下層がプラズマ溶射のみで形成された連続組織を有してなる耐熱部品。The heat shielding ceramic coating of 2 layer or 3 layer structure which consists of a plasma sprayed layer is provided on the component surface, The upper layer of the 2 layer structure of this ceramic coating, or the intermediate | middle layer of 3 layer structure is any one of Claims 1-4 It has a columnar structure caused by cracks in the thickness direction of the film formed by plasma spraying under laser irradiation, and has a continuous structure in which the lower layer of the two-layer structure or the upper and lower layers of the three-layer structure is formed only by plasma spraying. Heat resistant parts. Ni基耐熱合金基材の表面に、MCrAlY(MはCo及び又はNi)合金層を介してZrO2 を主体とする前記熱遮蔽セラミック皮膜が形成されてなる請求項記載の耐熱部品。 6. The heat-resistant component according to claim 5, wherein the heat-shielding ceramic film mainly composed of ZrO 2 is formed on the surface of a Ni-based heat-resistant alloy base material through an MCrAlY (M is Co and / or Ni) alloy layer.
JP2000156865A 2000-05-26 2000-05-26 Method for forming heat shielding ceramic film and heat-resistant component having the film Expired - Lifetime JP4166416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156865A JP4166416B2 (en) 2000-05-26 2000-05-26 Method for forming heat shielding ceramic film and heat-resistant component having the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156865A JP4166416B2 (en) 2000-05-26 2000-05-26 Method for forming heat shielding ceramic film and heat-resistant component having the film

Publications (2)

Publication Number Publication Date
JP2001335915A JP2001335915A (en) 2001-12-07
JP4166416B2 true JP4166416B2 (en) 2008-10-15

Family

ID=18661583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156865A Expired - Lifetime JP4166416B2 (en) 2000-05-26 2000-05-26 Method for forming heat shielding ceramic film and heat-resistant component having the film

Country Status (1)

Country Link
JP (1) JP4166416B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4434667B2 (en) * 2002-09-06 2010-03-17 関西電力株式会社 Manufacturing method of heat shielding ceramic coating parts
JP4645030B2 (en) * 2003-12-18 2011-03-09 株式会社日立製作所 Heat resistant member with thermal barrier coating
US20080166489A1 (en) 2005-08-04 2008-07-10 United Technologies Corporation Method for microstructure control of ceramic thermal spray coating
JP4555865B2 (en) 2005-08-22 2010-10-06 トーカロ株式会社 Thermal spray coating coated member excellent in damage resistance, etc. and method for producing the same
JP4571561B2 (en) 2005-09-08 2010-10-27 トーカロ株式会社 Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
JP6182708B2 (en) * 2013-02-19 2017-08-23 学校法人上智学院 Deposition equipment
FR3013360B1 (en) 2013-11-19 2015-12-04 Snecma INTEGRATED SINTERING PROCESS FOR MICROFILERATION AND EROSION PROTECTION OF THERMAL BARRIERS
JP5886386B2 (en) * 2014-08-04 2016-03-16 三菱日立パワーシステムズ株式会社 Thermal barrier coating method
KR102013651B1 (en) * 2017-11-28 2019-08-23 한국세라믹기술원 Method for manufacturing ceramic thermal barrier coatings having excellent adhesion and thermal durability
JP7068921B2 (en) * 2018-05-15 2022-05-17 東京エレクトロン株式会社 Parts forming method and plasma processing equipment

Also Published As

Publication number Publication date
JP2001335915A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP4166416B2 (en) Method for forming heat shielding ceramic film and heat-resistant component having the film
JP4658273B2 (en) Strain-tolerant ceramic coating
US7449251B2 (en) Heat resistant article having thermal barrier coating
US20170283930A1 (en) Laser assisted oxide removal
JP2006036632A (en) 7FA+e STAGE 1 ABRADABLE COATING AND METHOD FOR MAKING THE SAME
JP4434667B2 (en) Manufacturing method of heat shielding ceramic coating parts
JP2013095974A (en) Method of forming densified layer in thermal spray coating, and thermal spray coating covering member
JP2010043351A (en) Thermal barrier coating and method for production thereof
JP5943649B2 (en) Manufacturing method of thermal barrier coating material
JP2000144365A (en) Thermal barrier coating member, production of thermal barrier coating member and high temperature gas turbine using thermal barrier coating member
CN111334744A (en) Processing method for regulating and controlling micro texture on surface of thermal barrier coating bonding layer by utilizing laser impact
US9808885B2 (en) Method for forming three-dimensional anchoring structures on a surface
JP6394927B2 (en) Thermal barrier coating and turbine component
JPH0570708B2 (en)
WO2015151573A1 (en) Ceramic thermal sprayed-film coated member, and member for semiconductor manufacturing device
JP6722585B2 (en) Integrated sintering method for microcracking and erosion resistance of heat shields
JPH1161438A (en) Heat shielding coating member and its production
JP4027153B2 (en) Coating method for continuous casting mold
US11525179B2 (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
JP7474182B2 (en) Method for repairing gas turbine components
JP3876176B2 (en) Ceramic composition for heat shielding coating film
JP3917568B2 (en) Heat- and oxidation-resistant thermal spray coating member and method for producing the same
CN111099893B (en) Method for improving melting resistance CMAS corrosion of thermal barrier coating by laser surface treatment
KR101967422B1 (en) Metal Thermal Sprayed Aluminum Products And Metal Thermal Spraying Method Thereon
JP3917564B2 (en) Heat- and oxidation-resistant thermal spray coating member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Ref document number: 4166416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term