JPS62274062A - Production of ceramic coated member - Google Patents

Production of ceramic coated member

Info

Publication number
JPS62274062A
JPS62274062A JP61118599A JP11859986A JPS62274062A JP S62274062 A JPS62274062 A JP S62274062A JP 61118599 A JP61118599 A JP 61118599A JP 11859986 A JP11859986 A JP 11859986A JP S62274062 A JPS62274062 A JP S62274062A
Authority
JP
Japan
Prior art keywords
layer
ceramic
sprayed layer
ceramic sprayed
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61118599A
Other languages
Japanese (ja)
Other versions
JPH0570708B2 (en
Inventor
Noritaka Miyamoto
典孝 宮本
Takashi Tomota
隆司 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61118599A priority Critical patent/JPS62274062A/en
Publication of JPS62274062A publication Critical patent/JPS62274062A/en
Publication of JPH0570708B2 publication Critical patent/JPH0570708B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To extend the service life of a thermally ceramic sprayed layer to the exfoliation thereof by melting and resolidifying the surface of the ceramic sprayed layer formed on a base material by using high-density energy and growing the generated fine cracks by a cold-heat cycle. CONSTITUTION:The thermally ceramic sprayed layer 3 is formed via a bond layer 2 on the surface of the base metallic material 1. The high-density energy 5 such as laser or plasma is irradiated to the surface of such sprayed layer 3. The irradiation position is moved to quickly melt the extreme surface layer 3A and thereafter, said layer is quickly solidified to form a resolidified layer 3B and to generate the many fine cracks 6. The pores 4 of the surface layer 3A are mostly annihilated in this stage. The entire part of the sprayed layer 3 is then subjected repeatedly to the cycle of heating and cooling to propagate and grow the cracks 6 to the layer 3C which is not subjected to the resolidification treatment. The fine cracks 6 having directivity function effectively to relieve the thermal stress during use. The service life of the ceramic coated member is thus extended.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 この発明は、ガスタービン部品あるいは自動車エンジン
部品の如く、高温にざらされる雰囲気で使用される部材
に適したセラミック被覆部材の製造方法に関し、待に溶
射によって断熱、遮熱等のために比較的厚いセラミック
層を形成するにあたって、部材使用時の熱応力を緩和し
得るようにしたセラミック被覆部材の製造方法に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a ceramic coated member suitable for members used in an atmosphere exposed to high temperatures, such as gas turbine parts or automobile engine parts. The present invention relates to a method of manufacturing a ceramic coated member that can alleviate thermal stress during use of the member when a relatively thick ceramic layer is formed by thermal spraying for heat insulation, heat shielding, etc. .

従来の技術 ガスタービン部品や自動車部品等においては、耐熱性、
耐食性向上や断熱、遮熱等の目的から金R製母材の表面
にセラミック層を形成する方法が知られており、その場
合特に厚いセラミック層を得るためのセラミック被覆方
法としては溶射によってセラミック層を形成する方法が
広く実用化されている。
Conventional technologyIn gas turbine parts and automobile parts, heat resistance,
A method of forming a ceramic layer on the surface of a gold R base material for the purpose of improving corrosion resistance, heat insulation, and heat shielding is known. Methods for forming .

ところでガスタービン部品や自動車エンジン部品は、機
関作動時には高温にざらされるが非作動時には至温付近
まで冷却され、したがって大きな熱サイクルを受けるの
が通常である。一方セラミックは一般に母材として用い
られている金属と比較して熱膨張係数が著しく小ざい。
By the way, gas turbine parts and automobile engine parts are exposed to high temperatures when the engine is in operation, but are cooled to near freezing temperatures when the engine is not in operation, and therefore are usually subjected to large thermal cycles. On the other hand, ceramics have a significantly smaller coefficient of thermal expansion than metals that are generally used as base materials.

そのため金屈母材にセラミック溶射層を形成したガスタ
ービン部品や自動車エンジン部品においては、前述の熱
サイクルによってセラミック溶射層に大きな熱応力が生
じ、その結果熱サイクルを繰返し受けるうちにセラミッ
ク溶射層に亀裂が発生し、遂にはセラミック溶射層の剥
離に至ることが多く、そのため耐久性に未だ問題があっ
たのが実情である。
Therefore, in gas turbine parts and automobile engine parts in which a ceramic sprayed layer is formed on the base metal, large thermal stress is generated in the ceramic sprayed layer due to the above-mentioned thermal cycle, and as a result, as the ceramic sprayed layer is repeatedly subjected to the thermal cycle, the ceramic sprayed layer is The reality is that cracks often occur and eventually lead to peeling of the ceramic sprayed layer, and as a result, there are still problems with durability.

従来、セラミック溶射層の剥離を防止するべく、金属母
材とセラミック溶射層との間の熱膨張差による熱応力を
緩和する方法としては、予め金属母材表面に熱膨張率が
母材金属とセラミックとの中間でしかもセラミックとの
密着性が良好な金属、例えばN 1−Cr−/1合金、
N i −Cr−Affi−Y合金、N i −Co−
Or−Ai’−Y合金などを薄く溶射してボンド層ある
いはアンダーコート層と称される中間層を形成しておき
、そのボンド層の上に目的とするセラミックを溶射する
方法(例えば「溶接学会誌」第54巻(1985)第3
号、p164〜168.“′プラズマ技術の応用″参照
)が知られている。あるいはまた、セラミックを溶射し
て未だその溶射層が高温のうちに冷却用の不活性ガスを
溶射層に吹付けて急冷させ、これによりセラミック溶射
層に微細な割れを発生させ、その微細な割れにより使用
時の熱応力を緩和する方法(例えば特開昭58−872
73号公報参照)も知られている。
Conventionally, in order to prevent the ceramic sprayed layer from peeling off, the method of alleviating thermal stress due to the difference in thermal expansion between the metal base material and the ceramic sprayed layer was to prepare the surface of the metal base material in advance so that the coefficient of thermal expansion differs from that of the base metal. Metals that are intermediate to ceramics and have good adhesion to ceramics, such as N1-Cr-/1 alloys,
Ni-Cr-Affi-Y alloy, Ni-Co-
A method of thermally spraying a thin layer of Or-Ai'-Y alloy, etc. to form an intermediate layer called a bond layer or undercoat layer, and then thermally spraying the desired ceramic on top of the bond layer (for example, Magazine” Volume 54 (1985) No. 3
No., p164-168. (See “Applications of Plasma Technology”) is known. Alternatively, when ceramic is thermally sprayed and the thermally sprayed layer is still at a high temperature, an inert cooling gas is sprayed onto the thermally sprayed layer to rapidly cool it down, thereby causing minute cracks in the ceramic thermally sprayed layer. A method of alleviating thermal stress during use by
73) is also known.

発明が解決すべき問題点 セラミック溶射層の剥離を防止するべく熱応力を緩和す
るための前述の方法のうち、前者のボンド層(中間層)
を形成する方法は、ある程度は有効ではあるものの、そ
の方法を単独で実施しただけでは未だ充分に剥離を防止
することはできず、したがってより一層の寿命延長を図
り得る方法の開発が望まれている。また後者の方法もあ
る程度は熱応力の緩和に有効ではあるが、セラミック層
の厚みが1〜350JJmと薄い溶射膜の場合に限られ
る問題がある。すなわち断熱、遮熱を目的とする場合は
セラミック溶射層を1m程度まで厚くすることが望まし
いが、このような厚いセラミック層の場合には単に溶射
後に不活性ガスを吹付けただけではセラミック層内部ま
で充分に急冷されず、そのため生じる割れは粗大となり
、熱応力の緩和に役立つような微細な割れを生成できず
、したがってこのように比較的厚いセラミック溶射層で
は寿命延長も充分に図り得なかったのである。
Problems to be Solved by the Invention Among the above-mentioned methods for alleviating thermal stress to prevent peeling of the ceramic sprayed layer, the former bond layer (intermediate layer)
Although the method of forming a bond is effective to some extent, it is still not possible to sufficiently prevent peeling by implementing this method alone, so there is a desire to develop a method that can further extend the life of the product. There is. Although the latter method is effective to some extent in alleviating thermal stress, there is a problem in that it is limited to the case where the ceramic layer is a thin thermal sprayed film with a thickness of 1 to 350 JJm. In other words, if the purpose is heat insulation or heat shielding, it is desirable to make the ceramic sprayed layer as thick as about 1 meter, but in the case of such a thick ceramic layer, simply spraying inert gas after spraying will damage the inside of the ceramic layer. The resulting cracks were coarse and coarse, and the relatively thick ceramic sprayed layer was not able to sufficiently extend the life of the ceramic layer. It is.

この発明は以上の事情を背景としてなされたもので、セ
ラミック溶射層の厚みが0.3〜1rra程度と厚い場
合でも、セラミック溶射層の熱応力を充分かつ確実に緩
和して、セラミック溶射層の剥離が可及的に生じないよ
うにし、これによって従来よりも格段に耐久性を高めた
セラミック溶射層を有するセラミック被覆部材を製造す
る方法を提供することを目的とするものである。
This invention was made against the background of the above circumstances, and even when the thickness of the ceramic sprayed layer is as thick as about 0.3 to 1 rra, the thermal stress of the ceramic sprayed layer can be sufficiently and reliably alleviated. It is an object of the present invention to provide a method for manufacturing a ceramic coated member having a ceramic sprayed layer that prevents peeling as much as possible, thereby making the durability significantly higher than in the past.

問題点を解決するための手段 この発明は、母材を金属とし、かつ表面に溶射によるセ
ラミック層が形成されているセラミック被覆部材の製造
方法において、溶射によって所定厚みのセラミック層を
形成した後、そのセラミック溶射層の表面に高密度エネ
ルギを照射してセラミック溶射層の最表面層のみを急速
溶融・急速再厨固させることにより、その最表面層に微
細なクラックを発生させ、しかる後セラミック溶射層に
冷熱サイクルを与えて前記クラックをセラミック溶射層
の実質的に全厚みにわたって成長させることを特徴とす
るものである。
Means for Solving the Problems This invention provides a method for manufacturing a ceramic coated member in which the base material is metal and a ceramic layer is formed on the surface by thermal spraying.After forming a ceramic layer of a predetermined thickness by thermal spraying, By irradiating the surface of the ceramic sprayed layer with high-density energy to rapidly melt and rapidly re-solidify only the outermost layer of the ceramic sprayed layer, fine cracks are generated in the outermost layer, and then the ceramic sprayed layer is heated. The layer is subjected to a thermal cycle to cause the cracks to grow through substantially the entire thickness of the ceramic sprayed layer.

作  用 この発明の方法においては、先ず第1図に示すように、
金属からなる母材1上に必要に応じてボンド層2を形成
した後、常法にしたがってプラズマ溶射法などによりセ
ラミック溶射層3を形成しておく。
Function: In the method of this invention, first, as shown in FIG.
After forming a bond layer 2 as necessary on a base material 1 made of metal, a ceramic sprayed layer 3 is formed by a plasma spraying method or the like according to a conventional method.

母材1の金属は部材の用途に応じて定めれば良く、例え
ばガスタービン部品の場合には主として耐熱性の観点か
ら耐熱合金鋼等の鉄系材料を、また自動車エンジン用部
品の場合は主として軽量性等の観点から1−3i合金等
のアルミニウム系材料などを選択すれば良い。前記ボン
ド層2は必ずしも形成しなくても良いが、これを形成し
ておけば熱応力をより一層緩和することができる。この
ボンド層は、セラミックと母材金属との中間の熱膨張係
数を有しかつセラミックとの密着性が優れた金属を溶射
して形成すれば良い。ボンド層の金属としてはNi!合
金、例えばN1−Qr−^Q合金、N 1−Or−Al
−Y合金、N+−GO−Or−Aj2−Y合金等が最適
であるが、これらに限らないことは勿論である。またセ
ラミック溶射層3を構成するセラミックは、用途や耐熱
温度等に応じて、酸化物系セラミック例えばZr02(
Y203 、cao、MCJOなどにより安定化したも
のを含む)、Al2O3、MgO1あるいはS i3N
4 、BN、AfN等の窒化物系セラミック、SiC等
の炭化物系セラミックT i 82、Cr82などのホ
ウ化物系セラミック、さらにはそれらの混合物等を用い
ることができる。なおボンド層の厚みは特に限定しない
が、通常は3(lJffl〜200JJm程度とすれば
良い。またセラミック溶射層の厚みも特に限定しないが
、この発明の方法は特に断熱や遮熱等を目的として比較
的厚いセラミック溶射層を形成する場合に有効であり、
その観点から通常は0.3m〜1.0履程度とすること
が望ましい。なおまた、母材1の表面は予めショツトブ
ラスト等によって粗面としておき、ボンド層の結合強度
を高めることが望ましい。
The metal of the base material 1 may be determined depending on the use of the member. For example, in the case of gas turbine parts, iron-based materials such as heat-resistant alloy steel are mainly used from the viewpoint of heat resistance, and in the case of automobile engine parts, iron-based materials are mainly used. An aluminum material such as a 1-3i alloy may be selected from the viewpoint of light weight. The bond layer 2 does not necessarily need to be formed, but if it is formed, thermal stress can be further alleviated. This bond layer may be formed by thermal spraying a metal that has a thermal expansion coefficient intermediate between that of the ceramic and the base metal and has excellent adhesion to the ceramic. Ni is the metal for the bond layer! alloys, such as N1-Qr-^Q alloys, N1-Or-Al
-Y alloy, N+-GO-Or-Aj2-Y alloy, etc. are optimal, but it is needless to say that they are not limited to these. Further, the ceramic constituting the ceramic sprayed layer 3 may be an oxide ceramic such as Zr02 (
(including those stabilized by Y203, cao, MCJO, etc.), Al2O3, MgO1 or Si3N
4, nitride ceramics such as BN and AfN, carbide ceramics such as SiC, boride ceramics such as T i 82 and Cr82, and mixtures thereof. Note that the thickness of the bond layer is not particularly limited, but it is usually about 3 (lJffl to 200 JJm).Also, the thickness of the ceramic sprayed layer is not particularly limited, but the method of this invention is particularly suitable for the purpose of heat insulation, heat shielding, etc. Effective when forming a relatively thick ceramic sprayed layer,
From this point of view, it is usually desirable to set the length to about 0.3 m to 1.0 m. Furthermore, it is desirable to roughen the surface of the base material 1 by shot blasting or the like in advance to increase the bonding strength of the bond layer.

なおセラミック溶射層3の内部には、溶射法の特性上、
第1図に示すように多数の気孔4が分散しており、この
気孔4は後に説明する微細なクラックとともに熱応力緩
和の役割を担う。
Note that due to the characteristics of the thermal spraying method, inside the ceramic sprayed layer 3,
As shown in FIG. 1, a large number of pores 4 are dispersed, and these pores 4, together with fine cracks to be described later, play a role in alleviating thermal stress.

上述のようにしてセラミック溶射層3を形成した後、こ
の発明の方法では第2図に示すようにセラミック溶射層
3の表面にレーザ、プラズマあるいはTIGアーク等の
高密度エネルギ5を照射する。高密度エネルギ5の照射
は、そのエネルギビームと対象物(セラミック溶射層)
を相対的に移動させつつ行えば良い。このようなレーザ
等の高匣度エネルギは、そのエネルギ密度が高いために
、照射されたセラミック溶射層の最表面層3Aが急速に
溶融されるが、その照射位置を移動させることによりそ
の溶融した部分は母材側への熱移動により急速に凝固さ
れ、再凝固層3Bとなる。このようにセラミック溶射層
3の最表面の再凝固層3Bはその冷却・凝固速度が高い
ため、微細なクラック6が多数発生する。なおこの再凝
固層3Bにおいては、高密度エネルギによる再溶融・再
凝固処理前に内部に存在していた気孔4はその殆んどが
消滅する。
After forming the ceramic sprayed layer 3 as described above, in the method of the present invention, the surface of the ceramic sprayed layer 3 is irradiated with high-density energy 5 such as laser, plasma, or TIG arc, as shown in FIG. Irradiation of high-density energy 5 is performed using the energy beam and the target (ceramic sprayed layer).
This can be done while moving relatively. Due to the high energy density of such high intensity energy such as a laser, the outermost surface layer 3A of the irradiated ceramic sprayed layer is rapidly melted, but by moving the irradiation position, the melted The portion is rapidly solidified by heat transfer to the base material side, and becomes a resolidified layer 3B. As described above, since the resolidified layer 3B on the outermost surface of the ceramic sprayed layer 3 has a high cooling and solidifying rate, many fine cracks 6 occur. In addition, in this resolidified layer 3B, most of the pores 4 that existed inside before the remelting/resolidifying treatment using high-density energy disappear.

次いでセラミック溶射層3の全体に適切な加熱#冷却の
冷熱サイクルを繰返し加える。このように冷熱サイクル
を加えることによってセラミック溶射層内部に熱応力が
生じ、前述のような最表面層のクラック6がセラミック
溶射層3内の再溶融・再凝固処理を施していない層3C
に伝播し、その層内でもクラックがざらに伝播し、遂に
はボンド層2にまで至る。すなわち第3図に示すように
微細なクラック6がセラミック溶射層3の全厚みにわた
って成長することになる。
Then, appropriate heating/cooling cycles are repeatedly applied to the entire ceramic sprayed layer 3. By applying the cooling/heating cycle in this way, thermal stress is generated inside the ceramic sprayed layer, and the cracks 6 in the outermost layer as described above occur in the layer 3C in the ceramic sprayed layer 3 that has not been remelted or resolidified.
The crack propagates evenly within that layer, and finally reaches the bond layer 2. That is, as shown in FIG. 3, fine cracks 6 grow throughout the entire thickness of the ceramic sprayed layer 3.

このようにしてセラミック溶射層3の全厚みにわたって
成長した微細なクラック6は、はぼセラミック溶射層3
の厚み方向に沿っている。一方ガスタービン部品や自動
車エンジン部品としての使用時における熱応力は、セラ
ミック溶射層3の厚み方向に対し直角な方向に作用する
から、前述のような方向性を有する微細なクラックは、
使用時の熱応力を緩和するに有効に機能する。またセラ
ミック溶射層3の全厚みのうち、再溶融・再凝固処理が
施されていない下側の層3Cにおいては、溶射時に導入
された多数の気孔4がそのまま残っており、この気孔4
も熱応力を緩和する作用をもたらす。
The fine cracks 6 that have grown over the entire thickness of the ceramic sprayed layer 3 in this way are
along the thickness direction. On the other hand, thermal stress during use as gas turbine parts or automobile engine parts acts in a direction perpendicular to the thickness direction of the ceramic sprayed layer 3, so the above-mentioned directional fine cracks are caused by
Effectively functions to relieve thermal stress during use. Furthermore, in the lower layer 3C, which has not been subjected to remelting and resolidification treatment, among the entire thickness of the ceramic sprayed layer 3, many pores 4 introduced during thermal spraying remain as they are.
It also has the effect of relieving thermal stress.

上述のように、レーザ等の高密度エネルギの照射による
再溶融・再凝固処理によってセラミック溶射層の最表面
層に形成された微細なクラックは、セラミック溶射層の
厚みが大きい場合でもその後の冷熱サイクルによってセ
ラミック溶射層の全厚みにわたって厚み方向に成長され
、しかも最表面層以外の部分には溶射時に形成された気
孔も残っているから、セラミック溶射層が厚い場合でも
有効に熱応力を緩和することが可能となるのである。
As mentioned above, fine cracks formed on the outermost surface layer of the ceramic sprayed layer due to remelting and resolidification treatment by irradiation with high-density energy such as laser can be caused by subsequent cooling and heating cycles, even if the ceramic sprayed layer is thick. The coating is grown in the thickness direction over the entire thickness of the ceramic sprayed layer, and the pores formed during spraying remain in areas other than the outermost layer, so even if the ceramic sprayed layer is thick, thermal stress can be effectively alleviated. becomes possible.

ここで、レーザ等の高密度エネルギによって溶融・再凝
固させる厚みが厚過ぎれば、溶射時に導入された気孔が
残っている層が少なくなり、そのため熱応力緩和効果が
少なくなる。そこで高密度エネルギにより再溶融・再凝
固させる層3Bの厚みはセラミック溶剤層3の全厚みの
172以下、より望ましくは173以下とすることが好
ましい。このように再凝固113Bの厚みを調整するた
めには、例えばレーザを用いる場合、レーザ出力および
ab値を制御すれば良い。ここで、ab値とは、レーザ
装置のレンズの焦点距離を20、レンズから対象物まで
の距離を!とすれば、ab値=l/1oで表わされる値
である。なお再凝固層3Bの厚みがセラミック溶射層3
の全厚みの1710未満となるような条件では、安定し
て微細なクラックを導入することができないから、再凝
固層3Bの厚みはセラミック溶射層3の全厚みの171
0以上とすることが好ましい。
Here, if the thickness that is melted and resolidified by high-density energy such as a laser is too thick, there will be fewer layers in which pores introduced during thermal spraying remain, and therefore the thermal stress relaxation effect will be reduced. Therefore, the thickness of the layer 3B to be remelted and resolidified by high-density energy is preferably 172 or less, more preferably 173 or less of the total thickness of the ceramic solvent layer 3. In order to adjust the thickness of the resolidified material 113B in this manner, for example, when using a laser, the laser output and the ab value may be controlled. Here, the ab value is the focal length of the lens of the laser device, which is 20, and the distance from the lens to the object! Then, the value is expressed by ab value=l/1o. Note that the thickness of the resolidified layer 3B is the same as that of the ceramic sprayed layer 3.
Since fine cracks cannot be stably introduced under conditions where the total thickness is less than 1710, the thickness of the resolidified layer 3B is less than 1710, which is the total thickness of the ceramic sprayed layer 3.
It is preferable to set it to 0 or more.

また高密度エネルギ照射により微細クラックを発生させ
た後にその微細なクラックを成長させるための冷熱サイ
クルの望ましい条件は、母材の材質によって異なるが、
要は100℃以下程度の低温域と母材金属に悪影響を与
えない程度の高温域との間で適切な加熱速度、冷却速度
で加熱−冷却を繰返せば良い。加熱速度、冷却速度は、
大き過ぎれば急激に大きな割れがセラミック層に発生し
てしまい、逆に小さ過ぎればクラックの成長が困難とな
るから、これらの条件を考慮して定める必要がある。例
えば母材が耐熱鋼等のFe系材料の場合には、50〜i
oo℃の低温域と700〜900’Cの高温域との間で
加熱速度5〜15℃/ 5eC1冷却速冷却−20℃/
Seeで加熱−冷却を繰返せば良い。また母材がAg−
5r合金などのへ!系材料の場合には、50〜100℃
の低温域と350〜400℃の高温域との間で加熱速度
5〜15℃/ See 、冷却速度5〜b武で加熱冷却
を繰返せば良い。また冷熱サイクルの繰返し回数は、要
はクラック6がセラミック溶射層3の全厚みにわたって
確実に成長するまでとすれば良く、特に限定はしないが
、通常は100回〜1000回程度とすれば良い。
In addition, the desirable conditions for the cooling and heating cycle to grow fine cracks after they are generated by high-density energy irradiation vary depending on the material of the base material.
In short, heating and cooling may be repeated at appropriate heating and cooling rates between a low temperature range of about 100° C. or lower and a high temperature range that does not adversely affect the base metal. The heating rate and cooling rate are
If it is too large, large cracks will suddenly occur in the ceramic layer, while if it is too small, it will be difficult for cracks to grow, so these conditions need to be taken into account when determining the size. For example, if the base material is Fe-based material such as heat-resistant steel, 50 to i
Between the low temperature range of oo °C and the high temperature range of 700 to 900'C, heating rate 5 to 15 °C/5eC1 cooling rate cooling -20 °C/
All you have to do is repeat heating and cooling with See. Also, the base material is Ag-
To 5r alloy etc! In the case of type materials, 50 to 100℃
Heating and cooling may be repeated between a low temperature range of 350 to 400°C and a high temperature range of 350 to 400°C at a heating rate of 5 to 15°C/See and a cooling rate of 5 to 50°C. In addition, the number of repetitions of the cooling/heating cycle may be set until the cracks 6 are reliably grown over the entire thickness of the ceramic sprayed layer 3, and is usually about 100 to 1000 times, although it is not particularly limited.

実施例 ガスタービン部品、自動車エンジン部品への適用を想定
して、母材としてNi基耐熱合金11i11およびA1
−3 i  (JIS AC8A)合金をそれぞれ母材
として用意した。
Example Assuming application to gas turbine parts and automobile engine parts, Ni-based heat-resistant alloys 11i11 and A1 were used as base materials.
-3i (JIS AC8A) alloy was prepared as a base material.

各母材の表面にショットプラス処理を施した後、ボンド
層としてN 1−Or−A1合金を厚ざ1003、+m
に溶射し、続いてそのボンド層の上に、セラミック層と
してZrO2・8Y203を1.Oan厚でプラズマ溶
射した。
After applying shot plus treatment to the surface of each base material, N1-Or-A1 alloy was applied as a bond layer to a thickness of 1003, + m.
ZrO2.8Y203 is then thermally sprayed on top of the bond layer as a ceramic layer. Plasma spraying was performed to a thickness of Oan.

次いで母材側を移動させながらセラミック溶射層の表面
にレーザを照射した。ここでレーザ出力は2KW/CI
/l、ab値は0.96、母材側移動速度は3 m /
 minとし、セラミック層の最表面から0.3m深さ
までの領域を急速再溶融、急速再凝固させた。
Next, the surface of the ceramic sprayed layer was irradiated with a laser while moving the base metal side. Here the laser output is 2KW/CI
/l, ab value is 0.96, base material side moving speed is 3 m/
min, and the region from the outermost surface of the ceramic layer to a depth of 0.3 m was rapidly remelted and rapidly resolidified.

この状態では再凝固層に微細なクラックが多数発生して
いることが確認された。
In this state, it was confirmed that many fine cracks had occurred in the resolidified layer.

その後、Ni基耐熱合金鋼を母材とするものについては
、100℃と900℃との間において加熱速度8°C/
 sec、冷却速度10℃/ Secで加熱−冷却サイ
クルを繰返し与え、またAf−3i合金を母材とするも
のについては50℃と400℃との間において加熱速度
8℃/ sec、冷却速度10℃/ Secで加熱−冷
却サイクルを繰返し与えた。その結果第3図に示すよう
に微細なクラックがボンド層まで遅していることが確認
された。
After that, for those whose base material is Ni-based heat-resistant alloy steel, the heating rate is 8°C/8°C between 100°C and 900°C.
sec, cooling rate 10℃/sec, heating-cooling cycle is repeated, and for those whose base material is Af-3i alloy, heating rate 8℃/sec, cooling rate 10℃ between 50℃ and 400℃. Repeated heating-cooling cycles were applied at /Sec. As a result, as shown in FIG. 3, it was confirmed that fine cracks were delayed to the bond layer.

以上のようにして得られたセラミック被覆部材について
、熱サイクル試験を行なってセラミック溶射層の剥離状
態を調べた。但し熱サイクル条件は、Nil耐熱鋼を母
材とするものでは50℃と1100℃との間において、
またAi’−3i合金を母材とするものについては20
℃と450℃との間において、ともに加熱速度10℃/
 5aC1冷却遼度15℃/SeCにて加熱−冷却を繰
返した。この熱サイクル試験の結果、第4図に示すよう
に、この発明の実施例により得られたセラミック被覆部
材では10.000回の熱サイクルでもセラミック溶剤
層の剥離が生じないことが判明した。比較のため、セラ
ミック溶射を施しただけの従来のセラミック被覆部材、
すなわち微細なクラックを発生させなかったものについ
て同じ熱サイクル試験を実施したところ、第5図中に従
来法として示したように熱サイクル2.500回以下で
セラミック層の剥離が生じた。なおこれらの従来法は、
いずれも各層の材質、厚みは実施例と同じである。この
ような試験結果から、この発明の方法により得られたセ
ラミック被覆部材は、従来よりも格段にその耐用寿命を
延長し得ることが明らかである。
The ceramic coated member obtained as described above was subjected to a thermal cycle test to examine the peeling state of the ceramic sprayed layer. However, the thermal cycle conditions are between 50℃ and 1100℃ for those whose base material is Nil heat-resistant steel.
In addition, for those whose base material is Ai'-3i alloy, 20
℃ and 450℃, both at a heating rate of 10℃/
5aC1 Heating and cooling were repeated at a cooling degree of 15° C./SeC. As a result of this thermal cycle test, as shown in FIG. 4, it was found that in the ceramic coated member obtained according to the example of the present invention, the ceramic solvent layer did not peel off even after 10,000 thermal cycles. For comparison, a conventional ceramic-coated member that was just subjected to ceramic spraying,
That is, when the same thermal cycle test was conducted on a sample that did not generate minute cracks, the ceramic layer peeled off after 2.500 thermal cycles or less, as shown in FIG. 5 for the conventional method. Note that these conventional methods are
In both cases, the material and thickness of each layer are the same as in the example. From these test results, it is clear that the ceramic coated member obtained by the method of the present invention can have a significantly longer service life than before.

発明の効果 この発明の方法によれば、セラミック溶射層が0.3〜
1.0#1111と比較的厚い場合においても、使用時
のセラミック溶射層の熱応力を充分に緩和して、セラミ
ック溶射層の剥離に至るまでの耐用寿命を従来よりも格
段に延長することができる顕著な効果が得られる。特に
この発明の方法は上述のように比較的厚いセラミック溶
射層で有効であることから、断熱や遮熱を目的としてセ
ラミック被覆を施す場合に有利である。
Effects of the Invention According to the method of this invention, the ceramic sprayed layer has a thickness of 0.3 to
Even if it is relatively thick like 1.0#1111, it can sufficiently relieve the thermal stress of the ceramic sprayed layer during use and significantly extend the service life until the ceramic sprayed layer peels off. A noticeable effect can be obtained. In particular, since the method of the present invention is effective with a relatively thick ceramic sprayed layer as described above, it is advantageous when applying a ceramic coating for the purpose of heat insulation or heat shielding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図まではこの発明の方法を実施する状態
を段階的に示す模式的な断面図、第4図はこの発明によ
る実施例および従来法によるセラミック被覆部材の熱サ
イクル試験結果を示すグラフである。 1・・・母材、 2・・・ボンド層、 3・・・セラミ
ック溶射層、 4・・・気孔、 5・・・高密度エネル
ギ、 6・・・クラック。
Figures 1 to 3 are schematic cross-sectional views showing step-by-step the state in which the method of the present invention is carried out, and Figure 4 shows the results of thermal cycle tests of ceramic coated members according to the embodiment of the present invention and the conventional method. This is a graph showing. DESCRIPTION OF SYMBOLS 1... Base material, 2... Bond layer, 3... Ceramic sprayed layer, 4... Pore, 5... High density energy, 6... Crack.

Claims (1)

【特許請求の範囲】 母材を金属とし、かつ表面に溶射によるセラミック層が
形成されているセラミック被覆部材の製造方法において
、 溶射によって所定厚みのセラミック層を形成した後、そ
のセラミック溶射層の表面に高密度エネルギを照射して
セラミック溶射層の最表面層のみを急速溶融・急速再凝
固させることにより、その最表面層に微細なクラックを
発生させ、しかる後セラミック溶射層に冷熱サイクルを
与えて前記クラックをセラミック溶射層の実質的に全厚
みにわたつて成長させることを特徴とするセラミック被
覆部材の製造方法。
[Claims] In a method for manufacturing a ceramic coated member in which the base material is metal and a ceramic layer is formed on the surface by thermal spraying, after forming a ceramic layer of a predetermined thickness by thermal spraying, the surface of the ceramic sprayed layer is By irradiating high-density energy to rapidly melt and rapidly re-solidify only the outermost layer of the ceramic sprayed layer, fine cracks are generated in the outermost layer, and then the ceramic sprayed layer is subjected to a cooling cycle. A method of manufacturing a ceramic coated member, characterized in that the cracks are grown over substantially the entire thickness of the ceramic sprayed layer.
JP61118599A 1986-05-23 1986-05-23 Production of ceramic coated member Granted JPS62274062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61118599A JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118599A JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Publications (2)

Publication Number Publication Date
JPS62274062A true JPS62274062A (en) 1987-11-28
JPH0570708B2 JPH0570708B2 (en) 1993-10-05

Family

ID=14740558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118599A Granted JPS62274062A (en) 1986-05-23 1986-05-23 Production of ceramic coated member

Country Status (1)

Country Link
JP (1) JPS62274062A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906964A2 (en) * 1997-10-02 1999-04-07 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Thermal barrier coating and process for its manufacture
JPH11229109A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Heat resistant top coat and coating system
JP2004149915A (en) * 2002-09-06 2004-05-27 Kansai Electric Power Co Inc:The Heat-shielding ceramic coating parts and manufacturing method thereof
JP2006097042A (en) * 2004-09-28 2006-04-13 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
JP2009299192A (en) * 2009-09-24 2009-12-24 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
JP2010043351A (en) * 2008-07-29 2010-02-25 General Electric Co <Ge> Thermal barrier coating and method for production thereof
EP1985723A3 (en) * 2007-04-25 2011-04-27 United Technologies Corporation Method for improved ceramic coating
WO2013065338A1 (en) * 2011-11-02 2013-05-10 トーカロ株式会社 Member for semiconductor manufacturing device
EP3071722B1 (en) 2013-11-19 2018-08-29 Safran Aircraft Engines Integrated sintering process for microcracking and erosion resistance of thermal barriers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158599A (en) * 1997-10-02 1999-06-15 Mtu Motoren & Turbinen Union Muenchen Gmbh Heat insulating layer and its production
EP0906964A3 (en) * 1997-10-02 2002-09-18 MTU Aero Engines GmbH Thermal barrier coating and process for its manufacture
EP0906964A2 (en) * 1997-10-02 1999-04-07 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Thermal barrier coating and process for its manufacture
JPH11229109A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Heat resistant top coat and coating system
JP2004149915A (en) * 2002-09-06 2004-05-27 Kansai Electric Power Co Inc:The Heat-shielding ceramic coating parts and manufacturing method thereof
JP4607530B2 (en) * 2004-09-28 2011-01-05 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine
JP2006097042A (en) * 2004-09-28 2006-04-13 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
US7901790B2 (en) 2004-09-28 2011-03-08 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
EP1985723A3 (en) * 2007-04-25 2011-04-27 United Technologies Corporation Method for improved ceramic coating
EP2149623A3 (en) * 2008-07-29 2010-12-15 General Electric Company Thermal barrier coatings and methods of producing same
JP2010043351A (en) * 2008-07-29 2010-02-25 General Electric Co <Ge> Thermal barrier coating and method for production thereof
JP2009299192A (en) * 2009-09-24 2009-12-24 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
WO2013065338A1 (en) * 2011-11-02 2013-05-10 トーカロ株式会社 Member for semiconductor manufacturing device
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
EP3071722B1 (en) 2013-11-19 2018-08-29 Safran Aircraft Engines Integrated sintering process for microcracking and erosion resistance of thermal barriers

Also Published As

Publication number Publication date
JPH0570708B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US5391404A (en) Plasma sprayed mullite coatings on silicon-base ceramics
US4532191A (en) MCrAlY cladding layers and method for making same
JP2001164901A (en) Turbine engine part improved in heat transfer and method of manufacturing turbine part
JPS5887273A (en) Parts having ceramic coated layer and their production
JPS62274062A (en) Production of ceramic coated member
JP3530768B2 (en) Forming method of heat shielding film
Hamatani et al. Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide
JPS641551B2 (en)
JPS63118058A (en) Member thermally sprayed with ceramic and its production
US4562090A (en) Method for improving the density, strength and bonding of coatings
JP3320739B2 (en) Protective layer for turbine blade
US20150315090A1 (en) Laser glazing using hollow objects for shrinkage compliance
JPH09327779A (en) Method for forming crack in ceramic film, and ceramic film parts formed by the method
RU2078148C1 (en) Method of applying coating onto turbine blade
JP2563947B2 (en) Coating method
US5540792A (en) Components based on intermetallic phases of the system titanium-aluminum and process for producing such components
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
EP0670190A1 (en) Foundry mould and process for making it
RU2191218C2 (en) Method of obtaining protective coating on product manufactured from heat- resistant refractory alloy
JPH05106016A (en) Ceramic coat powder and method for coating base material by using this ceramic coat powder
JPH05295408A (en) Production of rapidly cooled and solidified powder using inclined function material
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
JP3170678B2 (en) Nb alloy heat-resistant member and method for manufacturing the member
JPS62103357A (en) Surface treatment of thermally sprayed film
JPS61170577A (en) Formation of alloyed layer on al alloy casting surface