JPH0570550B2 - - Google Patents

Info

Publication number
JPH0570550B2
JPH0570550B2 JP59001128A JP112884A JPH0570550B2 JP H0570550 B2 JPH0570550 B2 JP H0570550B2 JP 59001128 A JP59001128 A JP 59001128A JP 112884 A JP112884 A JP 112884A JP H0570550 B2 JPH0570550 B2 JP H0570550B2
Authority
JP
Japan
Prior art keywords
circuit
welding
arc
short
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001128A
Other languages
Japanese (ja)
Other versions
JPS60145277A (en
Inventor
Takaaki Ogasawara
Tokuji Maruyama
Masaharu Sato
Yukio Toida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP112884A priority Critical patent/JPS60145277A/en
Priority to US06/596,686 priority patent/US4546234A/en
Priority to DE8484104601T priority patent/DE3479303D1/en
Priority to EP84104601A priority patent/EP0133448B1/en
Publication of JPS60145277A publication Critical patent/JPS60145277A/en
Priority to US06/896,104 priority patent/USRE33330E/en
Publication of JPH0570550B2 publication Critical patent/JPH0570550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は消耗電極と母材との間で短絡とアーク
発生とを繰り返す消耗電極式短絡移行アーク溶接
方法における溶接電源の出力制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for controlling the output of a welding power source in a consumable electrode type short-circuit transfer arc welding method in which short circuits and arc generation are repeated between a consumable electrode and a base material.

従来技術 第1図は短絡とアーク発生とを交互に繰り返す
消耗電極式短絡移行アーク溶接法の溶滴の形成と
移行の過程を示しており、1は消耗電極(以下、
溶接ワイヤという)、2は溶接ワイヤ1の先端に
形成された溶滴、3はアーク、4は溶融池すなわ
ち母材である。(a)は溶滴2が溶融池4と接触した
短絡初期状態、bは溶滴2と溶融池4との接触が
確実となつて溶滴2が溶融池4へ移行している短
絡中期状態、(c)は溶滴2が溶融池4側へ移行して
溶接ワイヤ1と溶融池4との間の溶滴2にくびれ
が生じた短絡後期状態、(d)は短絡が破れて溶接ア
ーク3が発生した瞬間、(e)は溶接ワイヤ1の先端
が溶融して溶滴2が成長するアーク発生状態、(f)
は溶滴2が溶融池4と短絡する直前のアーク発生
状態を夫々示し、(a)〜(f)の過程が繰り返される。
Prior Art Figure 1 shows the process of droplet formation and transfer in the consumable electrode type short-circuit transitional arc welding method, in which short-circuiting and arc generation are repeated alternately.
2 is a droplet formed at the tip of the welding wire 1, 3 is an arc, and 4 is a molten pool, that is, a base material. (a) is the initial short-circuit state where the droplet 2 is in contact with the molten pool 4, and b is the intermediate short-circuit state where the contact between the droplet 2 and the molten pool 4 has become reliable and the droplet 2 has moved to the molten pool 4. , (c) shows the late short circuit state where the droplet 2 moves to the molten pool 4 side and a constriction occurs in the droplet 2 between the welding wire 1 and the molten pool 4, and (d) shows the short circuit broken and a welding arc. 3 occurs, (e) is an arc generation state where the tip of welding wire 1 melts and a droplet 2 grows, (f)
1 and 2 respectively show the arc generation state immediately before the droplet 2 short-circuits with the molten pool 4, and the processes of (a) to (f) are repeated.

上述の短絡とアーク発生とを繰り返す消耗電極
式短絡移行アーク溶接方法に用いる従来の溶接電
源では、略定電圧特性の電源と電流の立上りを制
限するリアクトルとを組み合せて出力制御を行な
つていた。この場合の溶接電流と溶接電圧の波形
を第2図に示す。すなわち、溶接ワイヤ1先端の
溶滴2と溶融池4との短絡により、溶接電圧は急
激に低下し、溶接電流はリアクトルと外部抵抗等
により定まる時定数で上昇していく。そして、溶
接ワイヤ1先端の溶滴2の溶滴池4への移行が終
了してアーク3が再発生すると、溶接電圧は急上
昇し、溶接電流はリアクトルとアーク3を含む外
部抵抗等により定まる時定数で低下する。
In conventional welding power sources used in the above-mentioned consumable electrode type short-circuit transitional arc welding method, which repeats short circuits and arc generation, output control is performed by combining a power source with approximately constant voltage characteristics and a reactor that limits the rise of current. . The waveforms of the welding current and welding voltage in this case are shown in FIG. That is, due to the short circuit between the droplet 2 at the tip of the welding wire 1 and the molten pool 4, the welding voltage rapidly decreases, and the welding current increases with a time constant determined by the reactor, external resistance, etc. Then, when the transition of the droplet 2 at the tip of the welding wire 1 to the droplet pool 4 is completed and the arc 3 is generated again, the welding voltage increases rapidly, and the welding current is determined by the external resistance including the reactor and the arc 3. decreases by a constant.

しかるに、上述の従来の溶接電源を用いた場
合、短絡の直後の瞬間とアーク3が発生する瞬間
にスパツタの発生することが知られている。
However, when the above-mentioned conventional welding power source is used, it is known that spatter occurs immediately after a short circuit and at the moment when arc 3 is generated.

これは、第1図aに示すように、短絡の直後の溶
滴2と溶融池4との接触部Aの断面積が小さいと
き、すなわち、溶滴2の溶融池4への移行が進ま
ないうちに溶接電流が大きくなると、短絡が破れ
てアーク3が発生し、この時にスパツタを発生さ
せる。また、第2図に示すように、アーク3の発
生時には、溶接電流は最も大きい値となり、アー
ク3の反撥エネルギーによりスパツタを発生させ
る。
This occurs when the cross-sectional area of the contact area A between the droplet 2 and the molten pool 4 immediately after the short circuit is small, as shown in Figure 1a, that is, the transfer of the droplet 2 to the molten pool 4 does not proceed. When the welding current becomes too large, the short circuit is broken and an arc 3 is generated, causing spatter. Further, as shown in FIG. 2, when the arc 3 is generated, the welding current reaches its maximum value, and the repulsive energy of the arc 3 generates spatter.

本発明者等は、上述のスパツタの発生原因に鑑
みて、スパツタ発生量を減少させるようにした溶
接電源の出力制御方法を特願昭58−217288号にて
提案した。これは、溶接電流を第3図に示すよう
に制御する。すなわち、溶接ワイヤ1先端の溶滴
2が溶融池4と短絡すると、溶接電流を低電流ID
に下げることにより、短絡直後のスパツタの発生
を防止する。さらに、この低電流IDを溶滴2と溶
融池4との接融を確実にするために期間TDのあ
いだ保持する。期間TDが経過すると、溶接電流
を高レベルである電流ISPに上昇させて、溶滴2
の溶融池4への移行を促進させる。溶滴2の溶融
池4への移行が進み、溶滴2にくびれが生じてア
ーク3の再発生の前兆が検知されると、溶接電流
を低レベルである電流IRAに下げることにより、
アーク発生時のエネルギーを低下させ、スパツタ
の発生量を減少させる。アーク3が再発生する
と、溶接電流を高レベルである電流IAPに上昇さ
せ、溶接ワイヤ1先端に溶滴2を形成させる。そ
して、所定期間TAPが経過すると、溶接電流を低
レベルである電流IABに低下させ、溶滴2が滴溶
融池4と短絡するまでこの電流IABを保持する。
第3図に示す溶接電流の変化の状態a,b,…,
fは、上述の第1図のa,b、…,fで示す溶滴
2の形成と移行の過程の夫々に対応している。
In view of the above-mentioned causes of spatter, the present inventors proposed in Japanese Patent Application No. 58-217288 a method for controlling the output of a welding power source to reduce the amount of spatter generated. This controls the welding current as shown in FIG. In other words, when the droplet 2 at the tip of the welding wire 1 short-circuits with the molten pool 4, the welding current is reduced to a low current I D
This prevents spatter from occurring immediately after a short circuit. Furthermore, this low current I D is maintained for a period T D to ensure welding of the droplet 2 and the molten pool 4. After the period T D has elapsed, the welding current is increased to a high level, the current I SP , and the droplet 2
The transition of the liquid to the molten pool 4 is promoted. When the transition of the droplet 2 to the molten pool 4 progresses, and when a constriction occurs in the droplet 2 and a sign of the re-occurrence of the arc 3 is detected, the welding current is lowered to a low level, the current IRA .
Reduces the energy when arcing occurs and reduces the amount of spatter. When the arc 3 is generated again, the welding current is increased to a high level current I AP to form a droplet 2 at the tip of the welding wire 1 . Then, after the predetermined period T AP has elapsed, the welding current is reduced to a low level current I AB , and this current I AB is maintained until the droplet 2 short-circuits with the droplet molten pool 4.
Conditions a, b, ... of changes in welding current shown in Fig. 3
f corresponds to the formation and transfer processes of the droplet 2 shown by a, b, . . . , f in FIG. 1 described above.

しかるに、上述の溶接電源の出力制御方法にお
いては、溶接を開始する際には、溶接ワイヤ1先
端に溶滴2が形成されていないので、溶接ワイヤ
1と母材4とを短絡させたときに、溶滴2と溶融
池4との接触を確実にするための期間TDは無意
味となる。一般に、このむだ時間は1〜3msecで
あり、少なくともこの時間はアークスタートが遅
れることになる。実際には、この期間に未溶融の
溶接ワイヤ1が送給されるので、溶接ワイヤ1先
端が溶融してアーク発生に至るまでの短絡時間が
長くなる。
However, in the output control method of the welding power source described above, when welding is started, the droplet 2 is not formed at the tip of the welding wire 1, so when the welding wire 1 and the base metal 4 are short-circuited, , the period T D to ensure contact between the droplet 2 and the molten pool 4 becomes meaningless. Generally, this dead time is 1 to 3 msec, and the arc start will be delayed by at least this time. Actually, since the unmelted welding wire 1 is fed during this period, the short circuit time until the tip of the welding wire 1 melts and arc occurs becomes longer.

また、第2図に示す溶接電流と溶接電圧を出力
する従来の溶接電源では、溶接を開始する際に、
未溶融の溶接ワイヤ1と母材4とが短絡した時か
ら溶接電流は立上るものの、リアクトルで制御さ
れて溶接電流の増加の割合が小さく、このため、
アークスタートに時間を要していた。
In addition, with the conventional welding power source that outputs the welding current and welding voltage shown in Fig. 2, when starting welding,
Although the welding current rises when the unmelted welding wire 1 and the base metal 4 are short-circuited, the rate of increase in the welding current is small because it is controlled by the reactor, and therefore,
It took a long time to start the arc.

このアークスタートの遅れは、自動溶接におい
てとくに悪い影響を与えるものであつた。
This delay in arc start had a particularly negative effect on automatic welding.

発明の目的 本発明は上記事情に鑑みてなされたものであ
り、その目的は、溶接を開始する際のアークスタ
ートの遅延を防止した溶接電源の出力制御方法を
提供することである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to provide a method for controlling the output of a welding power source that prevents a delay in arc start when starting welding.

発明の概要 母材と送給される消耗電極との間で短絡とアー
ク発生とを繰り返す消耗電極式短絡移行アーク溶
接法において、母材と消耗電極との間で短絡が生
じる直前にアークが発生しているか否かを、母材
と消耗電極間に印加される電圧の大小、あるいは
溶接電流の大小から判断し、アーク発生の有無に
応じて、母材と消耗電極が短絡してから所定レベ
ルの溶接電流を供給する時点を変更する。
Summary of the Invention In the consumable electrode type short-circuit transitional arc welding method in which short circuit and arc generation are repeated between the base metal and the consumable electrode being fed, an arc occurs immediately before the short circuit occurs between the base metal and the consumable electrode. Judging from the magnitude of the voltage applied between the base metal and the consumable electrode or the magnitude of the welding current, it is determined whether the base metal and the consumable electrode are short-circuited and then the welding current reaches a predetermined level. change the point at which the welding current is supplied.

発明の実施例 以下、本発明の一実施例を説明する。Examples of the invention An embodiment of the present invention will be described below.

溶接ワイヤ1と母材4との間で短絡とアーク発
生とを交互に繰り返すアーク溶接方法において、
短絡の前に溶接ワイヤ1先端に高温の溶滴2が形
成されているということは、アーク3が発生して
いることになる。また、短絡の前に溶滴2の温度
が低く溶滴2が半溶融の状態にある場合は、アー
ク切れが生じて加熱が停止されていることにな
る。さらに、溶接ワイヤ1の先端に溶滴2が無い
かまたは溶滴2が冷えて完全に固まつている場合
には、短絡の前に長時間に亘つてアーク3が発生
していないことになる。そこで、本発明において
は、この短絡の直前にアーク3が発生しているか
否かに応じて、短絡を生じると所定レベルの短絡
電流を供給する時点を変更する。例えば、溶接を
開始する場合には、それまでの長時間アークが発
生していないので、短絡すると直ちに高レベルで
ある短絡電流を供給して、アークスタートの遅れ
を無くするように、溶接電源を制御する。
In an arc welding method in which short circuit and arc generation are alternately repeated between welding wire 1 and base metal 4,
The fact that a hot droplet 2 is formed at the tip of the welding wire 1 before a short circuit occurs means that an arc 3 is generated. Furthermore, if the temperature of the droplet 2 is low and the droplet 2 is in a semi-molten state before the short circuit occurs, arc breakage occurs and heating is stopped. Furthermore, if there is no droplet 2 at the tip of the welding wire 1 or if the droplet 2 has cooled down and solidified completely, it means that the arc 3 has not been generated for a long time before the short circuit occurs. . Therefore, in the present invention, when a short circuit occurs, the time point at which a predetermined level of short circuit current is supplied is changed depending on whether or not the arc 3 has occurred immediately before the short circuit. For example, when starting welding, since no arc has been generated for a long time, the welding power source should be turned on to immediately supply a high-level short-circuit current to eliminate the delay in arc start. Control.

第4図は本発明の溶接電源の出力制御方法を行
なう制御装置の構成を示しており、溶接電圧を検
出する溶接電圧検出回路5が短絡検知回路6とア
ーク切れ検知回路7の夫々の入力端子に接続され
る。短絡検知回路6は、溶接電圧検出回路5から
供給される電圧値が実質的に0になつたことで短
絡を検知する回路であり、短絡検知回路6の出力
端子はオア回路8の第1の入力端子、アンド回路
9の第1の反転入力端子及びアンド回路10の第
1の入力端子に夫々接続される。アーク切れ検知
回路7は、溶接電圧検出回路5から供給される電
圧値が所定値以上になつたことでアークの発生を
検知する回路であり、アーク切れ検知回路7の出
力端子はオア回路8の第2の入力端子とアンド回
路9の第2の反転入力端子に夫々接続される。オ
ア回路8の出力端子はスイツチ11の開閉を行な
うスイツチ駆動回路12の入力端子に接続され、
アンド回路9の出力端子はスイツチ13の開閉を
行なうスイツチ駆動回路14の入力端子に接続さ
れる。正電圧+Vを出力する電源と負電圧−Vを
出力する電源との間に、スイツチ11とスイツチ
13とが直列に接続される。スイツチ11とスイ
ツチ13との接続点P1が抵抗15を介して演算
増幅器16の第1の入力端子に接続され、この演
算増幅器16の第1の入力端子と出力端子との間
にコンデンサ17が接続される。演算増幅器16
の第2の入力端子は接地される。さらに、演算増
幅器16の出力端子P2は比較器18の第1の入
力端子に接続される。この比較器18の第2の入
力端子は接地され、比較器18と出力端子P3
アンド回路10の第2の入力端子に接続される。
アンド回路10の出力端子は短絡電流設定回路1
9の入力端子に接続され、短絡電流設定回路19
の出力端子が溶接電源20の入力端子に接続され
る。上述のスイツチ11,13、抵抗15、コン
デンサ17、演算増幅器16並びに比較器18を
含む一点鎖線で囲まれた回路は21は、タイマを
構成する。
FIG. 4 shows the configuration of a control device for carrying out the output control method of a welding power source according to the present invention, in which a welding voltage detection circuit 5 for detecting welding voltage is connected to each input terminal of a short circuit detection circuit 6 and an arc breakage detection circuit 7. connected to. The short circuit detection circuit 6 is a circuit that detects a short circuit when the voltage value supplied from the welding voltage detection circuit 5 becomes substantially 0, and the output terminal of the short circuit detection circuit 6 is connected to the first terminal of the OR circuit 8. The input terminal is connected to a first inverting input terminal of AND circuit 9 and a first input terminal of AND circuit 10, respectively. The arc breakage detection circuit 7 is a circuit that detects the occurrence of an arc when the voltage value supplied from the welding voltage detection circuit 5 exceeds a predetermined value.The output terminal of the arc breakage detection circuit 7 is connected to the OR circuit 8. The second input terminal and the second inverting input terminal of the AND circuit 9 are respectively connected. The output terminal of the OR circuit 8 is connected to the input terminal of a switch drive circuit 12 that opens and closes the switch 11.
The output terminal of the AND circuit 9 is connected to the input terminal of a switch drive circuit 14 that opens and closes the switch 13. A switch 11 and a switch 13 are connected in series between a power source that outputs a positive voltage +V and a power source that outputs a negative voltage -V. A connection point P1 between the switch 11 and the switch 13 is connected to the first input terminal of an operational amplifier 16 via a resistor 15, and a capacitor 17 is connected between the first input terminal and the output terminal of the operational amplifier 16. Connected. Operational amplifier 16
The second input terminal of is grounded. Furthermore, the output terminal P 2 of the operational amplifier 16 is connected to a first input terminal of the comparator 18 . The second input terminal of this comparator 18 is grounded, and the comparator 18 and the output terminal P 3 are connected to the second input terminal of the AND circuit 10 .
The output terminal of the AND circuit 10 is the short circuit current setting circuit 1
9, the short circuit current setting circuit 19
An output terminal of the welding power source 20 is connected to an input terminal of the welding power source 20. A circuit 21 surrounded by a dashed line including the above-mentioned switches 11, 13, resistor 15, capacitor 17, operational amplifier 16 and comparator 18 constitutes a timer.

短絡とアーク発生とを交互に繰り返して溶接が
進行するときには、溶接電圧検出回路5からの溶
接電圧を示す信号により短絡検知回路6で短絡を
検知すると、この短絡検知回路6の出力が
“High”レベルになりオア回路8の出力が
“High”レベルになるとともに、アンド回路9の
出力が“Low”レベルになる。そして、スイツ
チ駆動回路12が動作してスイツチ11が閉じ、
スイツチ駆動回路14が動作してスイツチ13が
開く。ここで、演算増幅器16の出力端子P2
電圧は抵抗15とコンデンサ17で定まる時定数
で低下していく。端子P2の電圧が0V以下になる
と、比較器18の出力端子P3は“High”レベル
になる。この端子P3の信号はアンド回路10を
介して短絡電流設定回路19に入力され、短絡電
流設定回路19から溶接電源20に対して短絡時
の高レベルである短絡電流を出力させるための信
号が入力される。そして、溶接ワイヤ1には短絡
電流が供給される。
When welding progresses by alternately repeating short circuits and arc generation, when a short circuit is detected by the short circuit detection circuit 6 based on a signal indicating the welding voltage from the welding voltage detection circuit 5, the output of the short circuit detection circuit 6 becomes "High". level, the output of the OR circuit 8 becomes a "High" level, and the output of the AND circuit 9 becomes a "Low" level. Then, the switch drive circuit 12 operates and the switch 11 closes.
The switch drive circuit 14 operates and the switch 13 opens. Here, the voltage at the output terminal P 2 of the operational amplifier 16 decreases with a time constant determined by the resistor 15 and capacitor 17. When the voltage at the terminal P2 becomes 0V or less, the output terminal P3 of the comparator 18 becomes "High" level. The signal at terminal P3 is input to the short-circuit current setting circuit 19 via the AND circuit 10, and the short-circuit current setting circuit 19 outputs a signal to the welding power source 20 to output a short-circuit current that is at a high level at the time of a short circuit. is input. A short circuit current is then supplied to the welding wire 1.

短絡とアーク切れが生じていないとき、すなわ
ち、アークが発生しているときは、短絡検知回路
6とアーク切れ検知回路7の出力はもとに
“Low”レベルであり、オア回路8の出力が
“Low”レベルになり、アンド回路9の出力が
“High”レベルになる。そして、スイツチ駆動回
路12が動作してスイツチ11が開き、スイツチ
駆動回路14が動作してスイツチ13が閉じる。
したがつて、演算増幅器16の出力端子P2は正
電圧を保持し、比較器18の出力端子P3
“Low”レベルになり、アンド回路10の出力が
“Low”レベルで短絡電流設定回路19から溶接
電源20に対して短絡電流を出力させるための信
号は入力されない。
When a short circuit and arc breakage do not occur, that is, when an arc occurs, the outputs of the short circuit detection circuit 6 and the arc breakage detection circuit 7 are originally at "Low" level, and the output of the OR circuit 8 is The level becomes "Low", and the output of the AND circuit 9 becomes "High" level. Then, the switch drive circuit 12 operates to open the switch 11, and the switch drive circuit 14 operates to close the switch 13.
Therefore, the output terminal P 2 of the operational amplifier 16 maintains a positive voltage, the output terminal P 3 of the comparator 18 becomes a “Low” level, and the output of the AND circuit 10 is at a “Low” level and the short circuit current setting circuit No signal is input from 19 to the welding power source 20 for outputting a short circuit current.

アーク発生中にアーク切れが生じると、アーク
切れ検知回路7がアーク切れを検知し、このアー
ク切れ検知回路7の出力が“High”レベルにな
り、オア回路8の出力が“High”レベルになる
とともに、アンド回路9の出力が“Low”レベ
ルになる。そして、スイツチ駆動回路12が動作
してスイツチ11が閉じ、スイツチ駆動回路14
が作動してスイツチ13が開き、演算増幅器16
の出力端子P2の電圧が抵抗15とコンデンサ1
7で定まる時定数で低下する。端子P2の電圧が
0V以下になると、比較器18の出力端子P3
“High”レベルになる、その後、溶接ワイヤ1先
端の溶滴2が溶融池4と短絡すると、短絡検知回
路6の出力端子が“High”レベルになり、オア
回路8の出力の“High”レベルを続け、アンド
回路10の出力を“High”レベルにして、短絡
電流設定回路19を動作させて、溶接電源20に
対して短絡電流を出力させるための信号を入力す
る。ここで、溶接電源20は短絡電流を溶接ワイ
ヤ1に供給する。
When arc breakage occurs during arc generation, the arc breakage detection circuit 7 detects the arc breakage, the output of the arc breakage detection circuit 7 becomes "High" level, and the output of the OR circuit 8 becomes "High" level. At the same time, the output of the AND circuit 9 becomes "Low" level. Then, the switch drive circuit 12 operates, the switch 11 closes, and the switch drive circuit 14 closes.
operates, the switch 13 opens, and the operational amplifier 16
The voltage at output terminal P 2 of resistor 15 and capacitor 1
It decreases with a time constant determined by 7. If the voltage at terminal P 2 is
When the voltage falls below 0V, the output terminal P3 of the comparator 18 becomes "High" level.After that, when the droplet 2 at the tip of the welding wire 1 short-circuits with the molten pool 4, the output terminal of the short circuit detection circuit 6 becomes "High" level. level, the output of the OR circuit 8 continues to be at the “High” level, the output of the AND circuit 10 is set to the “High” level, the short circuit current setting circuit 19 is operated, and a short circuit current is output to the welding power source 20. Input the signal to Here, the welding power source 20 supplies a short circuit current to the welding wire 1.

溶接を開始する以前には、アーク3が発生して
いないので、アーク切れ検知回路7が動作し、オ
ア回路8の出力が“High”レベルであり、アン
ド回路9の出力が“Low”レベルである。そし
て、スイツチ駆動回路12によりスイツチ11が
閉状態にされ、スイツチ駆動回路14によりスイ
ツチ13が開状態にされている。したがつて、演
算増幅器16の出力端子P2は負電圧であり、比
較器18の出力端子P3は“High”レベルである。
この状態で、アークスタートのために溶接ワイヤ
1と母材4とを短絡させると、短絡検知回路6が
動作して、この短絡検知回路6の出力端子が
“High”レベルになる。そして、アンド回路10
の出力が“High”レベルになり、短絡電流設定
回路19が動作して、溶接電源20に対して短絡
電流を出力させるための信号が入力され、溶接電
源20は高レベルである短絡電流を出力する。す
なわち、アークスタートのときは、溶接ワイヤ1
を母材4に短絡させると直ちに高レベルである短
絡電流を供給する。そして、短時間で溶接ワイヤ
1の先端に溶滴2を形成し、溶滴2の破断により
アーク3を発生させる。
Before welding starts, since the arc 3 is not generated, the arc breakage detection circuit 7 is activated, the output of the OR circuit 8 is "High" level, and the output of the AND circuit 9 is "Low" level. be. The switch 11 is closed by the switch drive circuit 12, and the switch 13 is opened by the switch drive circuit 14. Therefore, the output terminal P 2 of the operational amplifier 16 is at a negative voltage, and the output terminal P 3 of the comparator 18 is at the "High" level.
In this state, when welding wire 1 and base metal 4 are short-circuited to start an arc, short-circuit detection circuit 6 is activated, and the output terminal of short-circuit detection circuit 6 becomes "High" level. And circuit 10
The output becomes "High" level, the short-circuit current setting circuit 19 operates, and a signal for outputting a short-circuit current to the welding power source 20 is input, and the welding power source 20 outputs a high-level short-circuit current. do. That is, at the time of arc start, welding wire 1
When short-circuited to the base material 4, a high-level short-circuit current is immediately supplied. Then, a droplet 2 is formed at the tip of the welding wire 1 in a short time, and an arc 3 is generated by the breakage of the droplet 2.

第5図は短絡時における短絡電流の立ち上りの
状況を示しており、アークスタート時には短絡が
生じると直ちに短絡電流が立ち上り、溶接が行な
われる定常時には短絡が生じてから一定時間後に
短絡電流が立ち上る。また、従来の溶接電源を用
いた場合には、短絡電流の上昇率は低い。
Figure 5 shows how the short circuit current rises during a short circuit; at arc start, the short circuit current rises immediately when a short circuit occurs, and during steady welding, the short circuit current rises after a certain period of time after the short circuit occurs. Furthermore, when a conventional welding power source is used, the rate of increase in short circuit current is low.

なお、上述の実施例では、短絡とアーク切れの
検知を溶接電圧の変化を検知して行なうが、この
短絡とアーク切れの検知は、溶接電流を検出し、
その検出値を電圧として、出力する溶接電流検出
器を用いることにより、上述実施例第4図の回路
にて実施できる。
In the above embodiment, short circuits and arc breaks are detected by detecting changes in welding voltage, but short circuits and arc breaks are detected by detecting welding current,
By using a welding current detector that outputs the detected value as a voltage, it can be implemented with the circuit shown in FIG. 4 of the above embodiment.

また、本発明を実施する溶接方法として、溶接
中に溶滴が短絡移行する、例えばCO2、MIGシー
ルドガスを用いたものや、シールドガスを用いな
いノンガスアース溶接がある。
Furthermore, welding methods for carrying out the present invention include methods in which droplets are short-circuited during welding, such as those using CO 2 or MIG shielding gas, and non-gas earth welding that does not use shielding gas.

発明の効果 以上説明したように、本発明においては、母材
と消耗電極との間で短絡が生じる直前にアークが
発生しているか否かに応じて、母材と消費電極が
短絡してから所定レベルの溶接電流を供給する時
点を変更し、短絡が生じる直前にアークが発生し
ていないと、短絡が生じると直ちに高レベルな溶
接電流を供給するようにしたから、アークスター
トの遅れを無くすることができる。
Effects of the Invention As explained above, in the present invention, depending on whether or not an arc occurs immediately before a short circuit occurs between the base material and the consumable electrode, By changing the point at which a predetermined level of welding current is supplied, if an arc has not occurred immediately before a short circuit occurs, a high level of welding current is supplied immediately after a short circuit occurs, eliminating the delay in arc start. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶滴の形成と移行の過程を示す図、第
2図は従来の溶接電源を用いた場合の溶接電流と
溶接電圧の波形を示す図、第3図はスパツタ発生
量を減少させるようにした溶接電源の出力制御方
法における溶接電流の波形を示す図、第4図は本
発明の溶接電源の出力制御方法を行なう制御装置
の構成を示すブロツク図、第5図は本発明の方法
における短絡電流の立ち上りの状態を示す図であ
る。 1……溶接ワイヤ、3……アーク、4……母材
(溶融池)、5……溶接電圧検出回路、6……短絡
検知回路、7……アーク切れ検知回路、19……
短絡電流設定回路、20……溶接電源、21……
タイマ。
Figure 1 shows the process of droplet formation and migration, Figure 2 shows the waveforms of welding current and welding voltage when using a conventional welding power source, and Figure 3 shows how to reduce the amount of spatter. FIG. 4 is a block diagram showing the configuration of a control device for carrying out the method for controlling the output of a welding power source according to the present invention, and FIG. It is a figure which shows the state of the rise of the short circuit current in FIG. DESCRIPTION OF SYMBOLS 1... Welding wire, 3... Arc, 4... Base metal (molten pool), 5... Welding voltage detection circuit, 6... Short circuit detection circuit, 7... Arc break detection circuit, 19...
Short-circuit current setting circuit, 20... Welding power source, 21...
timer.

Claims (1)

【特許請求の範囲】 1 送給される消耗電極と母材との間で短絡とア
ーク発生とを繰り返す消耗電極式短絡移行アーク
溶接法の溶接電源出力制御方法において、上記消
耗電極と上記母材間に印加される電圧を検知して
その大小から上記短絡の発生の有無及び上記アー
クの発生の有無を検知するようにし、上記短絡の
発生が検知されたとき、上記短絡発生前において
アークの発生が無い場合には短絡発生前にアーク
の発生が有る場合に比べて上記消耗電極への所定
レベルの溶接電流の供給を早くすることを特徴と
する溶接電源の出力制御方法。 2 上記短絡発生前における上記アークの発生の
有無を溶接電流の大小により判断する、特許請求
の範囲第1項記載の溶接電源の出力制御方法。
[Scope of Claims] 1. A welding power source output control method for a consumable electrode type short-circuit transitional arc welding method in which short circuits and arc generation are repeated between the consumable electrode and the base material that are fed, wherein the consumable electrode and the base metal The voltage applied between them is detected and the presence or absence of the occurrence of the short circuit and the occurrence of the arc are detected from the magnitude of the voltage, and when the occurrence of the short circuit is detected, the occurrence of the arc before the occurrence of the short circuit is detected. A method for controlling the output of a welding power source, characterized in that when there is no short circuit, a predetermined level of welding current is supplied to the consumable electrode more quickly than when an arc occurs before a short circuit occurs. 2. The output control method for a welding power source according to claim 1, wherein the presence or absence of the occurrence of the arc before the occurrence of the short circuit is determined based on the magnitude of the welding current.
JP112884A 1983-08-11 1984-01-06 Method for controlling output of welding power source Granted JPS60145277A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP112884A JPS60145277A (en) 1984-01-06 1984-01-06 Method for controlling output of welding power source
US06/596,686 US4546234A (en) 1983-08-11 1984-04-04 Output control of short circuit welding power source
DE8484104601T DE3479303D1 (en) 1983-08-11 1984-04-24 Output control of short circuit welding power source
EP84104601A EP0133448B1 (en) 1983-08-11 1984-04-24 Output control of short circuit welding power source
US06/896,104 USRE33330E (en) 1983-08-11 1986-08-13 Output control of short circuit welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP112884A JPS60145277A (en) 1984-01-06 1984-01-06 Method for controlling output of welding power source

Publications (2)

Publication Number Publication Date
JPS60145277A JPS60145277A (en) 1985-07-31
JPH0570550B2 true JPH0570550B2 (en) 1993-10-05

Family

ID=11492803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP112884A Granted JPS60145277A (en) 1983-08-11 1984-01-06 Method for controlling output of welding power source

Country Status (1)

Country Link
JP (1) JPS60145277A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109439B2 (en) * 2004-02-23 2006-09-19 Lincoln Global, Inc. Short circuit arc welder and method of controlling same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111574A (en) * 1980-02-06 1981-09-03 Matsushita Electric Ind Co Ltd Output control device of power source for welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111574A (en) * 1980-02-06 1981-09-03 Matsushita Electric Ind Co Ltd Output control device of power source for welding

Also Published As

Publication number Publication date
JPS60145277A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
EP0133448B1 (en) Output control of short circuit welding power source
JP4875311B2 (en) Current control method for constriction detection in consumable electrode arc welding
US5938945A (en) Method of welding weld studs to a workpiece
US4560857A (en) Consumable electrode type arc welding apparatus having a selectable start current
JP2007075827A (en) Method of detecting/controlling constriction in consumable electrode arc welding
KR890009524A (en) Short circuit arc welding device and method
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
US4476376A (en) Direct-current arc welding machine having current control for preventing arc extinction following short circuits
US4485292A (en) Arc blowing control method and apparatus for pulse arc welding
JP2672173B2 (en) Welding power output control method
JPH0570550B2 (en)
JPH0641026B2 (en) Welding power output control method
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JPS60145278A (en) Method for controlling output of welding power source
JP2672172B2 (en) Welding power output control method
JPH05261535A (en) Method for controlling consumable electrode ac arc welding machine
JPS6064774A (en) Method for controlling current of welding accompanying short-circuit transfer
JPS60223661A (en) Arc welding method
KR880000950B1 (en) Arc welder for short circuiting
JPS61115680A (en) Two-stage pulsed arc welding
JPS61253176A (en) Power source for arc welding
JPS6352995B2 (en)
JPS6255472B2 (en)
JPS60130469A (en) Method for controlling output of power source for welding
JPS6127152B2 (en)