JPH0568861B2 - - Google Patents

Info

Publication number
JPH0568861B2
JPH0568861B2 JP59174645A JP17464584A JPH0568861B2 JP H0568861 B2 JPH0568861 B2 JP H0568861B2 JP 59174645 A JP59174645 A JP 59174645A JP 17464584 A JP17464584 A JP 17464584A JP H0568861 B2 JPH0568861 B2 JP H0568861B2
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
silicon
film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59174645A
Other languages
Japanese (ja)
Other versions
JPS6151976A (en
Inventor
Hideto Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17464584A priority Critical patent/JPS6151976A/en
Publication of JPS6151976A publication Critical patent/JPS6151976A/en
Publication of JPH0568861B2 publication Critical patent/JPH0568861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明はMIS型半導体装置の構造に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to the structure of a MIS type semiconductor device.

〔従来技術〕[Prior art]

従来、MNOS型と称されるシリコン酸化膜及
びシリコン窒化膜とからなる複合膜を絶縁膜とす
るMIS型半導体装置において、シリコン窒化膜と
多結晶シリコンよりなるゲート電極とは、実質的
に同じ形状をしている。第1図に従来のMNOS
半導体装置の断面図を示す。1はシリコン基体、
2はシリコン酸化膜、3はシリコン窒化膜、4は
多結晶シリコンよりなるゲート電極である。
Conventionally, in MIS type semiconductor devices whose insulating film is a composite film of silicon oxide film and silicon nitride film called MNOS type, gate electrodes made of silicon nitride film and polycrystalline silicon have substantially the same shape. doing. Figure 1 shows the conventional MNOS
A cross-sectional view of a semiconductor device is shown. 1 is a silicon substrate;
2 is a silicon oxide film, 3 is a silicon nitride film, and 4 is a gate electrode made of polycrystalline silicon.

ところでゲート電極4と交差してこれと電気的
に絶縁された配線層8を設けるとき、一般的にゲ
ート電極4の表面を酸化して絶縁性被膜で覆うこ
とが行なわれている。しかし従来例に示す構造で
は、ゲート電極4とシリコン窒化膜3の形状が実
質的に同じであるため、ゲート電極4を酸化した
際にゲート電極4の表面に形成されるシリコン酸
化膜5とシリコン基体1の表面上に形成されるシ
リコン酸化膜6との間、すなわちシリコン窒化膜
3の側面部7に間隙ができる。このため配線層8
とゲート電極4間の絶縁耐圧が低下するという欠
点がある。これはシリコン窒化膜3の難酸化性に
よつて起きる現象である。
By the way, when providing a wiring layer 8 that intersects with and is electrically insulated from the gate electrode 4, the surface of the gate electrode 4 is generally oxidized and covered with an insulating film. However, in the structure shown in the conventional example, since the shapes of the gate electrode 4 and the silicon nitride film 3 are substantially the same, the silicon oxide film 5 formed on the surface of the gate electrode 4 and the silicon A gap is formed between the silicon oxide film 6 formed on the surface of the base 1, that is, the side surface portion 7 of the silicon nitride film 3. Therefore, the wiring layer 8
There is a drawback that the dielectric strength between the gate electrode 4 and the gate electrode 4 decreases. This is a phenomenon caused by the oxidation resistance of the silicon nitride film 3.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み提案されたものであ
り、ゲート・配線間耐圧のすぐれたMIS型半導体
装置の提供を目的とする。
The present invention has been proposed in view of the above points, and an object of the present invention is to provide an MIS type semiconductor device with excellent gate-to-wiring breakdown voltage.

〔発明の構成〕[Structure of the invention]

本発明は、半導体基体の一主表面上に形成され
た該半導体基体の酸化物を主成分とする第1の絶
縁膜と、該第1の絶縁膜を覆い難酸化性物質より
なる第2絶縁膜と、前記第1及び第2の絶縁膜か
らなる複合膜をゲート絶縁膜とし、多結晶半導体
を主成分とする前記ゲート絶縁膜を覆うゲート電
極とを有するMIS型半導体装置において、 前記第2の絶縁膜の形状が前記ゲート電極の形
状と相似形で、かつ前記ゲート電極の形状より小
さいことを特徴とする。
The present invention provides a first insulating film mainly composed of an oxide of the semiconductor substrate formed on one main surface of the semiconductor substrate, and a second insulating film covering the first insulating film and made of an oxidizable material. A MIS type semiconductor device having a gate insulating film that is a composite film composed of the first and second insulating films, and a gate electrode that covers the gate insulating film mainly composed of a polycrystalline semiconductor. The shape of the insulating film is similar to the shape of the gate electrode and smaller than the shape of the gate electrode.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を説明す
る。第2図は本発明の実施例に係るMIS型半導体
装置の構造を形成するための製造プロセスを示す
図であり、11はシリコン基体、12はシリコン
酸化膜、13はシリコン窒化膜、14は多結晶シ
リコンによるゲート電極、15はシリコンゲート
電極14の酸化によるシリコン酸化膜、16は基
板11の酸化によるシリコン酸化膜、18は配線
層である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a manufacturing process for forming the structure of a MIS type semiconductor device according to an embodiment of the present invention, in which 11 is a silicon substrate, 12 is a silicon oxide film, 13 is a silicon nitride film, and 14 is a multilayer film. A gate electrode made of crystalline silicon, 15 a silicon oxide film formed by oxidizing the silicon gate electrode 14, 16 a silicon oxide film formed by oxidizing the substrate 11, and 18 a wiring layer.

次に実施例の製造プロセスを説明する。まずシ
リコン基体11の表面に約100Åの厚さのシリコ
ン酸化膜12を形成し、次いで気相成長法で約
200Åの厚さのシリコン窒化膜13を形成し、こ
の後多結晶シリコンよりなるゲート電極14を形
成する(第2図−a)。次いでゲート電極14を
マスクとしてシリコン窒化膜13をエツチング処
理して整形する。上記のエツチング処理の際、エ
ツチング時間を適当に制御することにより、シリ
コン窒化膜13はゲート電極14の端部より例え
ば0.2mm後退した形状とすることができる(第2
図−b)。次いで酸化性雰囲気内で熱処理するこ
とにより、ゲート電極14の表面にシリコン酸化
膜15が形成されるとともに、シリコン基体11
の表面にシリコン酸化膜16が成長する。この熱
処理により、シリコン窒化膜13の側面部17
は、下部から成長するシリコン酸化膜16と上部
から下方向へ成長するシリコン酸化膜15により
充填される。このため間隙は埋まり(第2図−
c)、配線層18とゲート電極14間の耐圧は向
上する。
Next, the manufacturing process of the example will be explained. First, a silicon oxide film 12 with a thickness of approximately 100 Å is formed on the surface of a silicon substrate 11, and then approximately 100 Å thick is formed by vapor phase growth.
A silicon nitride film 13 with a thickness of 200 Å is formed, and then a gate electrode 14 made of polycrystalline silicon is formed (FIG. 2-a). Next, using the gate electrode 14 as a mask, the silicon nitride film 13 is etched and shaped. By appropriately controlling the etching time during the above etching process, the silicon nitride film 13 can be shaped to be recessed by, for example, 0.2 mm from the end of the gate electrode 14 (the second
Figure-b). Next, by heat treatment in an oxidizing atmosphere, a silicon oxide film 15 is formed on the surface of the gate electrode 14, and the silicon substrate 11 is
A silicon oxide film 16 grows on the surface. By this heat treatment, the side surface 17 of the silicon nitride film 13 is
is filled with a silicon oxide film 16 growing from the bottom and a silicon oxide film 15 growing downward from the top. Therefore, the gap is filled (Fig. 2-
c) The breakdown voltage between the wiring layer 18 and the gate electrode 14 is improved.

なお実施例ではMIS型キヤパシタの構造を示し
たが、ゲート電極14の側面に隣接してシリコン
基体11内にソース、ドレイン拡散層を有する
MIS型トランジスタに対しても本発明を適用でき
る事はいうまでもない。
Note that although the structure of the MIS type capacitor is shown in the embodiment, source and drain diffusion layers are provided in the silicon substrate 11 adjacent to the side surfaces of the gate electrode 14.
It goes without saying that the present invention can also be applied to MIS type transistors.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、難酸化性
のシリコン窒化膜の側部が酸化膜で覆われるの
で、配線層とゲート電極間の耐圧が良好で半導体
装置の信頼性が向上する。
As described above, according to the present invention, the sides of the silicon nitride film, which is difficult to oxidize, are covered with an oxide film, so that the withstand voltage between the wiring layer and the gate electrode is good, and the reliability of the semiconductor device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例に係る半導体装置の概略断面
図、第2図は本発明の実施例に係る半導体装置の
構造を形成するために製造プロセスを示す概略断
面図である。 1,11……半導体基体、2,12……シリコ
ン酸化膜、3,13……シリコン窒化膜、4,1
4……多結晶シリコンによるゲート電極、5,1
5……ゲート電極の表面に形成されるシリコン酸
化膜、6,16……シリコン基体表面に形成され
るシリコン酸化膜、7,17……シリコン窒化膜
の側面部、8,18……配線層。
FIG. 1 is a schematic cross-sectional view of a conventional semiconductor device, and FIG. 2 is a schematic cross-sectional view showing a manufacturing process for forming the structure of a semiconductor device according to an embodiment of the present invention. 1, 11... Semiconductor substrate, 2, 12... Silicon oxide film, 3, 13... Silicon nitride film, 4, 1
4...Gate electrode made of polycrystalline silicon, 5,1
5... Silicon oxide film formed on the surface of the gate electrode, 6, 16... Silicon oxide film formed on the surface of the silicon substrate, 7, 17... Side part of silicon nitride film, 8, 18... Wiring layer .

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基体の一主表面上に形成され
た該半導体基体の酸化物を主成分とする第1の絶
縁膜および該第1の絶縁膜を覆いシリコン窒化膜
よりなる第2の絶縁膜からなる複合絶縁膜と、こ
の複合絶縁膜を誘電膜としてその上に形成され多
結晶半導体を主成分とするキヤパシタ電極と、該
キヤパシタ電極を酸化して得られた絶縁膜で電気
的に絶縁された状態で該キヤパシタ電極上に延在
して形成された配線層とを有し、前記第2の絶縁
膜の形状が前記キヤパシタ電極の形状より小さい
ことを特徴とするMIS型半導体装置。
1. A first insulating film mainly composed of an oxide of the semiconductor substrate formed on one main surface of a semiconductor substrate of one conductivity type, and a second insulating film made of a silicon nitride film covering the first insulating film. A capacitor electrode formed on the composite insulating film as a dielectric film and mainly composed of a polycrystalline semiconductor, and an insulating film obtained by oxidizing the capacitor electrode are electrically insulated. and a wiring layer formed extending over the capacitor electrode in a state where the second insulating film has a shape smaller than the shape of the capacitor electrode.
JP17464584A 1984-08-22 1984-08-22 Mis type semiconductor device Granted JPS6151976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17464584A JPS6151976A (en) 1984-08-22 1984-08-22 Mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17464584A JPS6151976A (en) 1984-08-22 1984-08-22 Mis type semiconductor device

Publications (2)

Publication Number Publication Date
JPS6151976A JPS6151976A (en) 1986-03-14
JPH0568861B2 true JPH0568861B2 (en) 1993-09-29

Family

ID=15982212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17464584A Granted JPS6151976A (en) 1984-08-22 1984-08-22 Mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6151976A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569365B2 (en) * 1989-04-03 1997-01-08 山口日本電気株式会社 Method for manufacturing semiconductor integrated circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157264A (en) * 1979-05-25 1980-12-06 Fujitsu Ltd Manufacturing method for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157264A (en) * 1979-05-25 1980-12-06 Fujitsu Ltd Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JPS6151976A (en) 1986-03-14

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
JPH0465548B2 (en)
JPH07112020B2 (en) EPROM cell manufacturing method
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPH06101518B2 (en) Method of manufacturing integrated circuit
JPS5856263B2 (en) Manufacturing method of semiconductor device
JPH0568861B2 (en)
JPH07297284A (en) Manufacture of semiconductor device
JPS5922364A (en) Semiconductor device and method of producing same
JPH0254960A (en) Manufacture of semiconductor device
JPH039572A (en) Manufacture of semiconductor device
JPH0322567A (en) Semiconductor device and manufacture thereof
JPH0454390B2 (en)
JPH01192157A (en) Semiconductor device
JPS5685840A (en) Manufacture of semiconductor device
JP3667907B2 (en) Manufacturing method of semiconductor device
JPS61174742A (en) Manufacture of semiconductor device
JPS6254940A (en) Manufacturing semiconductor device
JPH0620138B2 (en) Method of manufacturing thin film MOS structure semiconductor device
JPH07120805B2 (en) Semiconductor device and manufacturing method thereof
JPS63281469A (en) Semiconductor device and manufactrue thereof
JPS6278853A (en) Manufacture of semiconductor device
JPS6219076B2 (en)
JPH04316371A (en) Thin film transistor and manufacture thereof
JPH0377376A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees