JPH056880A - Surface treatment method - Google Patents

Surface treatment method

Info

Publication number
JPH056880A
JPH056880A JP15705891A JP15705891A JPH056880A JP H056880 A JPH056880 A JP H056880A JP 15705891 A JP15705891 A JP 15705891A JP 15705891 A JP15705891 A JP 15705891A JP H056880 A JPH056880 A JP H056880A
Authority
JP
Japan
Prior art keywords
gas
sample
oxide film
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15705891A
Other languages
Japanese (ja)
Other versions
JP3086719B2 (en
Inventor
Hirotake Nishino
弘剛 西野
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03157058A priority Critical patent/JP3086719B2/en
Publication of JPH056880A publication Critical patent/JPH056880A/en
Application granted granted Critical
Publication of JP3086719B2 publication Critical patent/JP3086719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a surface treatment method wherein halogens which are left on the surface of a semiconductor or a metal can be removed simply. CONSTITUTION:In a surface treatment method wherein a spontaneous oxide film and a halogen contaminant layer on the surface of a substrate to be treated are removed, an Al alloy thin film 22 is formed on an Si substrate 20 via a thermal oxide film 21. The method is featured in the following manner: regarding the substrate, to be treated, wherein a CVD oxide film 23 having an opening in one part on it, a spontaneous oxide film 25 formed on the surface of the Al alloy thin film 22 is removed by using BCl3, gas; after that, 2H6, gas is brought into contact with the surface of the substrate to be treated without exposing the substrate to the air; a halogenide layer 26 which contains B and lis removed; and a W thin film 27 is formed selectively on the Al alloy thin film 22 without exposing the substrate to be treated to the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の製造技術
に係わり、特にハロゲン元素を含むガスを用いた処理工
程を経ることにより表面に残留したハロゲンを除去する
ための表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element manufacturing technique, and more particularly to a surface treatment method for removing halogen remaining on a surface by a treatment process using a gas containing a halogen element.

【0002】[0002]

【従来の技術】半導体素子の製造においては、Si等の
半導体やAl等の金属の表面に自然酸化膜が形成される
ことが問題となる。例えば、自然酸化膜が形成された半
導体上に膜を推積すると、得られる膜は自然酸化膜を除
去して形成した膜に比べて膜質が劣り、また膜と下地と
の接触抵抗が大きくなる。半導体と絶縁物の間で選択的
に薄膜を推積させる選択CVDなどの選択プロセスにお
いても、絶縁物である自然酸化膜が半導体表面に形成さ
れていると、CVDの選択性が低下する。
2. Description of the Related Art In the manufacture of semiconductor devices, it is a problem that a natural oxide film is formed on the surface of a semiconductor such as Si or a metal such as Al. For example, when a film is deposited on a semiconductor on which a native oxide film is formed, the quality of the resulting film is inferior to that of a film formed by removing the native oxide film, and the contact resistance between the film and the underlying layer is increased. . Even in a selective process such as selective CVD in which a thin film is selectively deposited between a semiconductor and an insulator, if a natural oxide film that is an insulator is formed on the surface of a semiconductor, the selectivity of CVD is lowered.

【0003】そこで最近、自然酸化膜を除去する方法が
種々検討されている。自然酸化膜は一旦除去しても大気
に晒すと再形成されるため、真空中或いは不活性ガス雰
囲気中で、ドライエッチングにより自然酸化膜を除去す
る試みが成されている。その多くは、ハロゲン元素を含
む活性種を用いるものである。例えば、Siの自然酸化
膜であれば、CF4 やSF6 等のフッ素元素を含むガス
のプラズマエッチングやダウンフローエッチング,HF
ガスやHFを含む固体や液体(NH4 F,HSO3
等;ガスの凝縮により生成)を用いたエッチングが提案
されている。しかしながら、このようなハロゲン元素を
含む活性種を用いて自然酸化膜を除去すると、自然酸化
膜除去後の表面が活性であるため、表面にハロゲンが残
留してしまう。即ち、半導体表面に半導体のハロゲン化
物層が形成され、このハロゲン化物層もまた自然酸化膜
同様、推積膜の膜質の劣化や電気抵抗の増大,選択プロ
セスの選択性の低下などを引き起こす。
Therefore, various methods for removing the natural oxide film have been recently studied. Even if the natural oxide film is once removed, it is reformed when exposed to the atmosphere. Therefore, attempts have been made to remove the natural oxide film by dry etching in a vacuum or an inert gas atmosphere. Most of them use active species containing a halogen element. For example, in the case of a natural oxide film of Si, plasma etching or downflow etching of a gas containing a fluorine element such as CF 4 or SF 6 , HF
Solids and liquids containing gas and HF (NH 4 F, HSO 3 F
Et al .; generated by condensation of gas) is proposed. However, when the natural oxide film is removed by using such active species containing a halogen element, halogen remains on the surface because the surface after the natural oxide film is removed is active. That is, a semiconductor halide layer is formed on the semiconductor surface, and like the natural oxide film, this halide layer also causes deterioration of the film quality of the deposited film, increase of electric resistance, deterioration of selectivity of the selection process, and the like.

【0004】さらにハロゲンは、ハロゲンガスを用いた
処理を内部で行う反応容器の壁面やハロゲンガスを扱う
バルブ等の真空部品、配管等の金属表面にも残留する
が、このハロゲンは、水分と反応して酸を生成し、金属
表面を溶かしてリークの原因となる。
Further, the halogen remains on the wall surface of the reaction vessel in which the treatment using the halogen gas is performed, vacuum parts such as a valve for handling the halogen gas, and metal surfaces such as pipes. The halogen reacts with moisture. As a result, acid is generated and the metal surface is melted to cause a leak.

【0005】[0005]

【発明が解決しようとする課題】このように従来、ハロ
ゲンガスを用いて処理すると、半導体や金属表面にハロ
ゲンが残留するが、このハロゲンは水分と反応して酸を
生成し、金属配線を断線させたり、その上に形成する膜
の膜質を劣化させたり、接触抵抗を増大させるなどの問
題を生じる。また、処理装置内部に残留したハロゲンに
より、反応容器や真空部品,配管等が腐食され、リーク
が生じる問題もあった。
As described above, conventionally, when the halogen gas is used for the treatment, the halogen remains on the surface of the semiconductor or the metal, but the halogen reacts with the water to generate an acid and disconnects the metal wiring. However, there are problems such as deterioration of the film quality of the film formed thereon, and increase of contact resistance. Further, there is a problem in that the halogen remaining in the processing device corrodes the reaction container, the vacuum parts, the piping, etc., and causes a leak.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、半導体や金属表面に残
留したハロゲンを簡易に除去することのできる表面処理
方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface treatment method capable of easily removing halogen remaining on a semiconductor or metal surface. .

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、被処理
体表面に残存するハロゲンを、ガスの供給や電子線の照
射により除去することにある。
The essence of the present invention is to remove the halogen remaining on the surface of the object to be processed by supplying gas or irradiating an electron beam.

【0008】即ち本発明(請求項1)は、少なくともハ
ロゲン元素を含むガスを用いた処理工程を経た被処理体
の表面に、COガス,NOガス,及び分子内に水素元
素,CO,NOの少なくとも一つを含む化合物ガスの少
なくとも一つを含むガスを接触させ、被処理基体表面に
残留したハロゲンを除去することを特徴とする。
That is, according to the present invention (claim 1), CO gas, NO gas, and hydrogen elements, CO, and NO in the molecule are formed on the surface of the object to be processed which has undergone the processing step using a gas containing at least a halogen element. It is characterized in that a gas containing at least one of the compound gases containing at least one is brought into contact to remove the halogen remaining on the surface of the substrate to be treated.

【0009】また、本発明(請求項2)は、被処理基体
の表面に形成された自然酸化膜を少なくともハロゲン元
素を含むガスを用いて除去したのち、大気に晒すことな
く被処理基体表面にCOガス,NOガス,及び分子内に
水素元素,CO,NOの少なくとも一つを含む化合物ガ
スの少なくとも一つを含むガスを接触させ、次いで被処
理基体を大気に晒すことなく該基体の表面に所定の薄膜
を形成することを特徴とする。
Further, according to the present invention (claim 2), the natural oxide film formed on the surface of the substrate to be processed is removed by using a gas containing at least a halogen element, and then the surface of the substrate to be processed is exposed without being exposed to the atmosphere. CO gas, NO gas, and a gas containing at least one compound gas containing at least one of hydrogen element, CO, and NO in the molecule are brought into contact with each other, and then the surface of the substrate to be treated is exposed to the atmosphere without exposing the substrate to the atmosphere. It is characterized in that a predetermined thin film is formed.

【0010】また、本発明(請求項3)は、少なくとも
ハロゲン元素を含むガスを用いた処理工程を経た被処理
体表面に、電子線を照射して被処理基体表面に残留した
ハロゲンを除去することを特徴とする。
Further, according to the present invention (claim 3), the surface of the object to be processed which has undergone the processing step using a gas containing at least a halogen element is irradiated with an electron beam to remove the halogen remaining on the surface of the substrate to be processed. It is characterized by

【0011】また、本発明の望ましい実施態様として
は、以下に述べる (1)〜(10)があげられる。 (1) ハロゲン元素を含むガスを用いた処理工程は、被処
理基体の表面に形成された金属或いは半導体の自然酸化
膜を除去する処理、又は被処理基体の表面に形成された
金属,半導体,有機物,絶縁膜のエッチング処理であ
る。 (2) 被処理基体の表面は、半導体素子形成に用いられる
半導体や金属の表面、又はハロゲン元素を含むガスに晒
される真空部品,反応容器,ガス配管のいずれかの表面
である。
Preferred embodiments of the present invention include the following (1) to (10). (1) The treatment step using a gas containing a halogen element is a treatment for removing the natural oxide film of the metal or semiconductor formed on the surface of the substrate to be treated, or the metal, semiconductor, or the metal formed on the surface of the substrate to be treated. It is an etching process for organic substances and insulating films. (2) The surface of the substrate to be processed is the surface of a semiconductor or a metal used for forming a semiconductor element, or the surface of a vacuum component, a reaction container, or a gas pipe exposed to a gas containing a halogen element.

【0012】(3) 水素元素を含む化合物分子は、Bx
x+4 ,Bx x+6 ,Bx 2 x+2 ,Cx 2x-2,Cx
2x,x 2x+2,NH3 ,NHR1 2 (R1 ,R2
=Cxy ),N2 4 ,Six 2x+2,PH3 ,H2
S,Gex 2x+2,AsH3 ,HCN,CsH,HIの
いずれかである。 (4) COを含む化合物分子は、C3 2 ,カルボニル化
合物,カルボン酸のいずれかである。 (5) NOを含む化合物分子は、Nx y である。
(3) The compound molecule containing a hydrogen element is B x H
x + 4 , B x H x + 6 , B x C 2 H x + 2 , C x H 2x-2 , C x
H 2x, C x H 2x + 2 , NH 3 , NHR 1 R 2 (R 1 , R 2
= C x H y), N 2 H 4, Si x H 2x + 2, PH 3, H 2
S, Ge x H 2x + 2 , AsH 3 , HCN, CsH, or HI. (4) The compound molecule containing CO is any one of C 3 O 2 , carbonyl compound and carboxylic acid. (5) compound molecules containing NO is the N x O y.

【0013】(6) 被処理基体の表面に電気的に中性なガ
スを接触させる際に、被処理基体表面に、加熱,電子線
照射,光照射のいずれかを施す。 (7) (6) において、加熱処理を施す際には、被処理基体
を電気的に中性なガスが熱解離する温度以上に加熱す
る。 (8) (6) において、電子線或いは光を照射する際には、
電気的に中性なガスの解離エネルギーよりも大きなエネ
ルギーを持った電子線或いは光を用いる。 (9) (6) において、光は電気的に中性なガスが吸収せ
ず、かつ金属或いは半導体の仕事関数以上のエネルギー
を持った光である。 (10)薄膜の形成工程は、WF6 ガスを用いたWの選択C
VDである。
(6) When the electrically neutral gas is brought into contact with the surface of the substrate to be treated, the surface of the substrate to be treated is subjected to heating, electron beam irradiation, or light irradiation. (7) In (6), when the heat treatment is performed, the substrate to be treated is heated to a temperature at which the electrically neutral gas is thermally dissociated or higher. (8) In (6), when irradiating an electron beam or light,
An electron beam or light having an energy higher than the dissociation energy of an electrically neutral gas is used. (9) In (6), light is light which is not absorbed by an electrically neutral gas and has energy higher than the work function of metal or semiconductor. (10) In the thin film forming process, W selection using WF 6 gas C
It is VD.

【0014】[0014]

【作用】本発明によれば、前述したガスを用いることに
より半導体や金属表面に残留したハロゲンを還元処理し
て除去することができる。その結果、金属配線の腐食を
抑制したり、熱酸化膜や結晶の膜質を向上させたり、高
選択CVD,高選択エッチングの選択性を上げたり、接
触抵抗の低い膜形成などが可能となる。また、ハロゲン
ガスを用いる真空部品や配管などの腐食を抑制すること
も可能となる。
According to the present invention, by using the above-mentioned gas, the halogen remaining on the semiconductor or metal surface can be reduced and removed. As a result, it is possible to suppress the corrosion of the metal wiring, improve the film quality of the thermal oxide film or the crystal, increase the selectivity of high selective CVD or high selective etching, and form a film with low contact resistance. It is also possible to suppress corrosion of vacuum parts and pipes that use halogen gas.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (第1の実施例)
Embodiments of the present invention will be described below with reference to the drawings. (First embodiment)

【0016】図1は、本発明の第1の実施例方法に使用
した表面処理装置の概略構成を示す断面図である。反応
容器11内には、試料(被処理基体)10が載置される
試料台13と、これに対向配置した電極14が収納され
ている。試料台13の内部には試料10を加熱するため
のヒータ15が埋め込まれており、このヒータ15によ
り試料10は例えば500℃まで加熱される。電極14
には、13.56MHzの高周波が印加され、この高周波
印加により反応容器11内にプラズマが発生される。ま
た、16はガス導入口、17はガス排気口であり、反応
容器11内は10-8Torr台まで真空排気されるものとな
っている。
FIG. 1 is a sectional view showing a schematic structure of a surface treatment apparatus used in the method of the first embodiment of the present invention. The reaction container 11 accommodates a sample table 13 on which a sample (substrate to be processed) 10 is placed, and an electrode 14 arranged to face the sample table 13. A heater 15 for heating the sample 10 is embedded inside the sample table 13, and the heater 15 heats the sample 10 to, for example, 500 ° C. Electrode 14
Is applied with a high frequency of 13.56 MHz, and plasma is generated in the reaction vessel 11 by the high frequency application. Further, 16 is a gas inlet, and 17 is a gas exhaust port, and the inside of the reaction vessel 11 is evacuated to a level of 10 −8 Torr.

【0017】次に、図1の装置を用いて多層配線を形成
する工程を、図2(a)〜(f)を参照して説明する。
まず、図2(a)に示すように、Si基板20上に厚さ
10nmの熱酸化膜21、厚さ800nmの第1層Al
合金薄膜22を形成し、Al合金薄膜22をパターニン
グした後、厚さ800nmのCVD酸化膜23を推積
し、反応性イオンエッチングによりヴィアホール24を
形成する。この試料10を、図1に示した表面処理装置
の試料台13上に載置し、容器11内を真空排気した。
このとき、ヴィアホール24の第1層Al合金薄膜22
の表面には自然酸化膜25が形成されていた。
Next, a process of forming a multilayer wiring using the apparatus of FIG. 1 will be described with reference to FIGS.
First, as shown in FIG. 2A, a thermal oxide film 21 having a thickness of 10 nm and a first layer Al having a thickness of 800 nm are formed on a Si substrate 20.
After forming the alloy thin film 22 and patterning the Al alloy thin film 22, a 800-nm-thick CVD oxide film 23 is deposited and a via hole 24 is formed by reactive ion etching. The sample 10 was placed on the sample table 13 of the surface treatment apparatus shown in FIG. 1, and the inside of the container 11 was evacuated.
At this time, the first layer Al alloy thin film 22 of the via hole 24
A natural oxide film 25 was formed on the surface of the.

【0018】次いで、ガス導入口16からBCl3 ガス
50sccmを導入し、反応容器11内を0.1Torrに保つ
と共に電極14に13.56MHzの高周波を印加し、
BCl3 ガスのプラズマを発生させた。約1分間の処理
により、自然酸化膜(Al2 3 )25は、Al2 Cl
6 や(BClO)3 として除去された。しかし、その結
果、図2(b)に示すようにヴィアホール24の第1層
Al合金薄膜22の表面にBやClを含むハロゲン化物
層26が形成された。
Then, 50 sccm of BCl 3 gas was introduced from the gas inlet 16, the inside of the reaction vessel 11 was kept at 0.1 Torr, and a high frequency of 13.56 MHz was applied to the electrode 14,
A plasma of BCl 3 gas was generated. By the treatment for about 1 minute, the natural oxide film (Al 2 O 3 ) 25 becomes Al 2 Cl.
6 and (BClO) 3 . However, as a result, as shown in FIG. 2B, the halide layer 26 containing B and Cl was formed on the surface of the first-layer Al alloy thin film 22 in the via hole 24.

【0019】次いで、ガス導入口16よりB2 6 ガス
50sccmを導入し、試料10を 100℃に加熱して10分
間保持した。B2 6 は試料表面で分解し、図2(c)
に示すようにハロゲン化物層26のClはHClやBC
3 として除去された。
Next, 50 sccm of B 2 H 6 gas was introduced through the gas inlet 16, the sample 10 was heated to 100 ° C. and held for 10 minutes. B 2 H 6 decomposed on the sample surface, as shown in Fig. 2 (c).
As shown in, Cl of the halide layer 26 is HCl or BC.
It was removed as l 3 .

【0020】次いで、ガス導入口16からWF6 ガス1
0sccm,SiH4 ガス30sccmを導入し、試料10を2
00℃に保持した。この処理により、W薄膜27がヴィ
アホール24の第1層Al合金薄膜22の表面のみに選
択的に、かつ均一性良く推積した。約5分間の処理によ
り、図2(d)に示すように、ヴィアホール24はW薄
膜27で完全に埋め込まれた。
Then, the WF 6 gas 1 is introduced from the gas inlet 16.
0 sccm and SiH 4 gas of 30 sccm were introduced, and sample 10 was added to 2
Hold at 00 ° C. By this treatment, the W thin film 27 was deposited selectively and with good uniformity only on the surface of the first layer Al alloy thin film 22 of the via hole 24. By the treatment for about 5 minutes, the via hole 24 was completely filled with the W thin film 27 as shown in FIG.

【0021】次いで、図2(e)に示すように、Al合
金薄膜28を推積し、パターニングして2層目の配線を
形成した。このようにして形成された多層配線の配線抵
抗は十分低かった。
Then, as shown in FIG. 2 (e), an Al alloy thin film 28 was deposited and patterned to form a second layer wiring. The wiring resistance of the multilayer wiring thus formed was sufficiently low.

【0022】これに対し、BやClを含むハロゲン化物
層26を除去せずにW薄膜を形成すると、図2(f)に
示すように、不均一なW薄膜29が形成され、またAl
合金薄膜22上だけでなく、CVD酸化膜23上にもW
薄膜29が推積した。配線抵抗も、B2 6 処理を行っ
たものに比べて約1桁高かった。
On the other hand, when the W thin film is formed without removing the halide layer 26 containing B or Cl, a nonuniform W thin film 29 is formed as shown in FIG.
W not only on the alloy thin film 22 but also on the CVD oxide film 23
Thin film 29 was deposited. The wiring resistance was also about one digit higher than that of the one subjected to the B 2 H 6 treatment.

【0023】このように本実施例方法によれば、自然酸
化膜15を除去したのちに残留するハロゲン化物層26
をB2 6 ガスの導入により除去することによって、選
択性の高い選択CVDを行うことができ、ヴィアホール
24をW薄膜27で完全に埋込み、配線抵抗の低い多層
配線を形成することができる。 (第2の実施例)
As described above, according to the method of this embodiment, the halide layer 26 remaining after the natural oxide film 15 is removed.
Is removed by introducing B 2 H 6 gas, selective CVD with high selectivity can be performed, the via hole 24 can be completely filled with the W thin film 27, and a multilayer wiring with low wiring resistance can be formed. . (Second embodiment)

【0024】この実施例は、コンタクトホールへのWの
埋め込みに関するものであり、第1の実施例とおよそ同
じである。即ち、第1層Al合金配線ではなく、Siの
不純物拡散層にWを推積させるが、Si表面の自然酸化
膜除去には、F2 プラズマやF2 ガスダウンフローエッ
チング等、F元素を含むガスが用いられる。その結果S
i表面にはFが残留するが、このFは、例えばSi基板
を約300℃に保ちながらSiH4 ガスに晒すことで除
去できる。これは、SiH4 がSi表面で分解し、生じ
たHやSiがFをHFやSiF4 として除去するためで
ある。
This embodiment relates to the embedding of W in the contact hole, and is approximately the same as the first embodiment. That is, W is deposited not on the first layer Al alloy wiring but on the impurity diffusion layer of Si, but the native oxide film on the Si surface is removed by including F element such as F 2 plasma or F 2 gas downflow etching. Gas is used. As a result S
Although F remains on the i surface, this F can be removed by exposing it to SiH 4 gas while keeping the Si substrate at about 300 ° C., for example. This is because SiH 4 decomposes on the Si surface, and the generated H or Si removes F as HF or SiF 4 .

【0025】この場合も、先に説明した第1の実施例と
同様に、コンタクトホールに高い選択性で均一なW薄膜
を推積することができ、コンタクト抵抗の低いコンタク
トを形成することができる。
Also in this case, similarly to the first embodiment described above, a uniform W thin film can be deposited in the contact hole with high selectivity, and a contact with low contact resistance can be formed. .

【0026】なお、上記実施例におけるSiH4 ガス処
理を、例えば基板温度を室温に保ちながら、ArFレー
ザ(193nm)のようにSiの仕事関数(約4.8e
V)よりも高いエネルギーを持ち、かつSiH4 ガスに
よる吸収が少ない光を照射する処理に変えてもよい。こ
の場合、コンタクトホールのSiから光電子が放出さ
れ、この電子がSiH4 ガスを分解、生じたSiやHで
Si表面のFが除去される。この方法を用いると、Si
表面のFが酸化膜上のFよりも速かに除去され、W堆積
の際の選択性もより向上する。 (第3の実施例)
In the SiH 4 gas treatment in the above embodiment, for example, the work function of Si (about 4.8e) like that of an ArF laser (193 nm) is maintained while the substrate temperature is kept at room temperature.
V) may be changed to a process of irradiating with light having higher energy and less absorption by SiH 4 gas. In this case, photoelectrons are emitted from Si in the contact hole, and the electrons decompose SiH 4 gas, and the produced Si and H remove F on the Si surface. Using this method, Si
The F on the surface is removed faster than the F on the oxide film, and the selectivity during W deposition is further improved. (Third embodiment)

【0027】図3は、第3〜第5の実施例方法で用いる
表面処理装置の概略構成を示す断面図である。この装置
は、自然酸化膜やハロゲンを除去するための処理室31
と、酸化,不純物拡散,単結晶成長等のプロセスを行う
ためのプロセス室32から構成されており、試料30は
ゲートバルブ33を介して表面が大気に晒されることな
く、処理室31とプロセス室32の間を搬送される。処
理室31内で試料30は、ヒータ34が埋め込まれた試
料台35上に載置され、試料台35の上で約500℃ま
で加熱される。
FIG. 3 is a sectional view showing a schematic structure of a surface treatment apparatus used in the third to fifth embodiment methods. This equipment is equipped with a processing chamber 31 for removing a natural oxide film and halogen.
And a process chamber 32 for performing processes such as oxidation, impurity diffusion, and single crystal growth. The sample 30 does not have its surface exposed to the atmosphere via the gate valve 33 and the process chamber 31 and the process chamber. It is transported between 32. In the processing chamber 31, the sample 30 is placed on a sample table 35 in which a heater 34 is embedded, and heated to about 500 ° C. on the sample table 35.

【0028】36は電子線源であり、試料30の全面に
電子線を照射することができる。また、ガス導入口37
aから導入されたガスはガス排気口37bから排気され
る。プロセス室32は、ガス導入口38a,ガス排気口
38b,試料を1000℃まで加熱できるヒータ39を
備えており、酸素,不純物ガス,推積ガスなどをガス導
入口38aから導入することにより、酸化,不純物拡
散,単結晶成長などのプロセスを行うことができる。次
に、図3の装置を用いて、シリコンの熱酸化膜を形成す
る工程について、図4(a)〜(e)を用いて説明す
る。
An electron beam source 36 can irradiate the entire surface of the sample 30 with an electron beam. In addition, the gas inlet 37
The gas introduced from a is exhausted from the gas exhaust port 37b. The process chamber 32 includes a gas inlet 38a, a gas outlet 38b, and a heater 39 capable of heating the sample up to 1000 ° C. By introducing oxygen, an impurity gas, a deposition gas, etc. from the gas inlet 38a, the process chamber 32 is oxidized. Processes such as impurity diffusion and single crystal growth can be performed. Next, a process of forming a thermal oxide film of silicon using the apparatus of FIG. 3 will be described with reference to FIGS.

【0029】まず、硫酸/過酸化水素水混合液や塩酸/
過酸化水素水混合液を用いて表面の金属汚染や有機物を
除去したシリコン基板を、図3に示す装置の試料台35
の上に載置し、処理室31の内部を真空排気する。この
とき、図4(a)に示すように、シリコン基板40の表
面には自然酸化膜41が形成されていた。
First, a mixed solution of sulfuric acid / hydrogen peroxide water and hydrochloric acid /
A silicon substrate from which surface metal contamination and organic substances have been removed by using a hydrogen peroxide solution mixture is used as a sample table 35 of the apparatus shown in FIG.
And the inside of the processing chamber 31 is evacuated. At this time, as shown in FIG. 4A, the natural oxide film 41 was formed on the surface of the silicon substrate 40.

【0030】次いで、ガス導入口37aからHFガスを
導入し、処理室31内を100Torrに保った。この処理
により、自然酸化膜(SiO2 )41はSiF4 やHF
として除去された。処理後のSi表面は、図4(b)に
示すようにHやFで覆われていた。即ち、ハロゲンの残
存層42が形成されていた。
Then, HF gas was introduced from the gas inlet 37a to keep the inside of the processing chamber 31 at 100 Torr. By this treatment, the natural oxide film (SiO 2 ) 41 is changed to SiF 4 or HF.
Was removed as. The Si surface after the treatment was covered with H and F as shown in FIG. That is, the residual layer 42 of halogen was formed.

【0031】次いで、処理室31内を10-8Torr台まで
真空排気したのち、試料30を約300℃に保ったま
ま、500eVの電子線を約20分間照射した。その結
果、図4(c)に示すようにFで汚染された層42が除
去され、部分的にHで覆われた表面が得られた。これ
は、電子線照射によりSi表面のFがF2 やSiF4
HFとして除去され、Hの一部もH2 やSiH4 として
脱離したためである。
Then, the inside of the processing chamber 31 was evacuated to a level of 10 -8 Torr, and then, while keeping the sample 30 at about 300 ° C., an electron beam of 500 eV was irradiated for about 20 minutes. As a result, as shown in FIG. 4C, the layer 42 contaminated with F was removed, and a surface partially covered with H was obtained. This is because F on the Si surface is F 2 , SiF 4 ,
This is because it was removed as HF and part of H was also released as H 2 and SiH 4 .

【0032】次いで、ガス導入口37aからArガスを
導入し、処理室31の内部を大気圧に戻した後、内部が
Arガスで置換されたプロセス室32に、試料30をゲ
ートバルブ33を介して搬送する。このとき、試料30
の表面が大気に晒されることはない。
Then, Ar gas is introduced from the gas inlet 37a to return the inside of the processing chamber 31 to the atmospheric pressure, and then the sample 30 is placed in the process chamber 32 whose inside is replaced with Ar gas through the gate valve 33. To transport. At this time, sample 30
Surfaces are not exposed to the atmosphere.

【0033】次いで、試料30を約900℃に加熱した
まま、ガス導入口38aから酸素ガスを導入し、図4
(d)に示すように約5nmの熱酸化膜43を形成し
た。このようにして形成した熱酸化膜43の絶縁耐圧を
測定したところ、95%が8kV/cm以上の絶縁破壊
耐圧を示した。このように本実施例により、高い絶縁破
壊耐圧を有する高品質の熱酸化膜を形成できた。
Then, while the sample 30 is heated to about 900 ° C., oxygen gas is introduced from the gas inlet 38a, as shown in FIG.
As shown in (d), a thermal oxide film 43 of about 5 nm was formed. When the dielectric breakdown voltage of the thermal oxide film 43 thus formed was measured, 95% showed a dielectric breakdown breakdown voltage of 8 kV / cm or more. As described above, according to this example, a high-quality thermal oxide film having a high breakdown voltage could be formed.

【0034】これに対して、上述のF除去処理を施さず
に熱酸化を行って形成された熱酸化膜は80%しか8k
V/cm以上の耐圧を示さなかった。これは、図4
(e)に示すように、熱酸化膜43とSi基板40の間
にF汚染層44が形成されているためである。 (第4の実施例)本発明の第4の実施例として、シリコ
ン基板上にシリコン単結晶を成長する方法について説明
する。
On the other hand, the thermal oxide film formed by thermal oxidation without the above-mentioned F removal treatment is only 80% and 8 k.
It did not show a withstand voltage of V / cm or higher. This is shown in Figure 4.
This is because the F contamination layer 44 is formed between the thermal oxide film 43 and the Si substrate 40, as shown in (e). (Fourth Embodiment) As a fourth embodiment of the present invention, a method for growing a silicon single crystal on a silicon substrate will be described.

【0035】まず、第3の実施例と同様に、硫酸/過酸
化水素水混合液や塩酸/過酸化水素水混合液を用いてシ
リコン基板表面の金属汚染や有機物を除去し、さらに処
理室31内でHFガスにより自然酸化膜を除去する。次
いで、ガス導入口37aからH2 ガスを導入し、処理室
内部を10-7Torrに保持したまま、試料30を約 400℃
に加熱すると共に、試料表面に100eVの電子線を1
5分間照射した。この処理により、HFガスを用いた処
理によりSi表面に残留したFが、HFやF2 ,SiF
4 となり除去された。
First, as in the third embodiment, the metal contamination and organic substances on the surface of the silicon substrate are removed by using a sulfuric acid / hydrogen peroxide mixture solution or a hydrochloric acid / hydrogen peroxide mixture solution, and the processing chamber 31 is used. The natural oxide film is removed by HF gas inside. Then, H 2 gas was introduced from the gas inlet 37a, and the sample 30 was heated to about 400 ° C. while maintaining the inside of the processing chamber at 10 −7 Torr.
And heat the sample surface to 100 eV of electron beam
Irradiate for 5 minutes. By this treatment, the F remaining on the Si surface due to the treatment using the HF gas is converted into HF, F 2 , SiF.
It became 4 and was removed.

【0036】次にこの試料を、真空排気されたプロセス
室32に表面を大気に晒すことなく搬送した後、ガス導
入口38aからSiH2 Cl2 ガスを導入すると共に試
料を約1000℃に加熱し、Siをエピタキシャル成長
させた。このようにして形成した単結晶Siは、膜厚が
均一であり、欠陥も殆ど見られなかった。これに対し
て、Fを除去せずにエピタキシャル成長させたものは、
不均一にSiが成長し、また非常に欠陥が多かった。こ
のように本実施例によれば、高品質の単結晶Siを成長
させることができた。 (第5の実施例)本発明の第5の実施例として、不純物
拡散工程について説明する。
Next, this sample was conveyed to the vacuum-exhausted process chamber 32 without exposing the surface to the atmosphere, and SiH 2 Cl 2 gas was introduced from the gas inlet 38a and the sample was heated to about 1000 ° C. , Si was epitaxially grown. The single crystal Si thus formed had a uniform film thickness and had almost no defects. On the other hand, the epitaxially grown one without removing F is
Si grew unevenly and had many defects. As described above, according to this example, it was possible to grow high-quality single crystal Si. (Fifth Embodiment) An impurity diffusion step will be described as a fifth embodiment of the present invention.

【0037】まず、シリコン基板表面の金属汚染や有機
物汚染等をウエット洗浄により除去した後、この試料3
0を図3に示した処理室31の試料台35上に載置し、
処理室内部を真空排気する。
First, after removing metal contamination, organic contamination, etc. on the surface of the silicon substrate by wet cleaning, this sample 3
0 on the sample table 35 of the processing chamber 31 shown in FIG.
The inside of the processing chamber is evacuated.

【0038】次いで、固体のNH4 Fを加熱し、生じた
ガスをガス導入口37aから導入すると、試料表面で再
びNH4 Fが形成される。このNH4 Fは自然酸化膜S
iO2 と反応し、(NH4 2 SiF6 とH2 Oを形成
する。H2 Oはすぐにガスとして排気されるが、(NH
4 2SiF6 も試料を100度℃以上に加熱すること
でNH3 ,HF,SiF4 に分解し、除去される。この
ような処理により自然酸化膜を除去したSi表面はFと
Hで覆われている。
Next, solid NH 4 F is heated, and the generated gas is introduced from the gas introduction port 37a, whereby NH 4 F is formed again on the surface of the sample. This NH 4 F is a natural oxide film S
Reacts with iO 2 to form (NH 4 ) 2 SiF 6 and H 2 O. H 2 O is immediately exhausted as a gas, but (NH
4 ) 2 SiF 6 is also decomposed into NH 3 , HF, and SiF 4 by heating the sample to 100 ° C. or higher and removed. The Si surface from which the natural oxide film has been removed by such treatment is covered with F and H.

【0039】次いで、シュウ酸の結晶((COO
H)2 )を120℃に加熱して昇華させ、生じた気体を
ガス導入口37aから処理室31内に導入し、試料30
を300℃に保ったまま10分間保持した。この処理に
よりSi表面のFは除去された。これは、シュウ酸が試
料表面で分解してCO,CO2 ,HCOOH等が生じ、
これらのうちCOやHCOOHがFと反応、COF,C
OF2 ,HFなどが生成してFが除去されたものと考え
られる。
Then, crystals of oxalic acid ((COO
H) 2 ) is heated to 120 ° C. for sublimation, and the generated gas is introduced into the processing chamber 31 through the gas introduction port 37a.
Was kept at 300 ° C. for 10 minutes. By this treatment, F on the Si surface was removed. This is because oxalic acid decomposes on the sample surface to produce CO, CO 2 , HCOOH, etc.
Of these, CO and HCOOH react with F, COF, C
It is considered that OF 2 and HF were generated and F was removed.

【0040】次いで、試料30を大気に晒すことなくプ
ロセス室32に搬送した後、試料30を約500℃に保
ったままガス導入口38aからAsH3 を導入し、As
をSi内部に拡散させた。その結果、均一な拡散層が形
成できた。これに対してFを除去せずにAsを拡散させ
た試料では、不均一にAsが拡散しており、また拡散し
たAsも少なかった。これはSi表面に残留したFが拡
散を阻害したためである。このように本実施例によれ
ば、効率の良い、均一な不純物拡散を行うことができ
る。 (第6の実施例)本発明の第6の実施例として、Al合
金薄膜の異方性ドライエッチング加工とレジスト除去に
ついて述べる。
Next, after the sample 30 was conveyed to the process chamber 32 without being exposed to the atmosphere, AsH 3 was introduced from the gas inlet 38a while keeping the sample 30 at about 500 ° C.
Was diffused inside Si. As a result, a uniform diffusion layer could be formed. On the other hand, in the sample in which As was diffused without removing F, As was diffused nonuniformly, and the diffused As was small. This is because F remaining on the Si surface hindered diffusion. As described above, according to the present embodiment, it is possible to perform efficient and uniform impurity diffusion. (Sixth Embodiment) As a sixth embodiment of the present invention, anisotropic dry etching processing of an Al alloy thin film and resist removal will be described.

【0041】図5は、本実施例で用いる表面処理装置の
概略構成を示す断面図である。試料50は、反応容器5
1内に収納された試料台52上に載置される。また、図
示していないが、試料台52には回転機能が備えられて
おり、試料50はその中心を軸として水平方向に回転さ
れる。反応容器51には、ガス導入口53aから放電管
54を介してガスが導入され、ガス導出口53cから排
気される、また、反応容器51内に、ガス導入口53b
から直接ガスを導入することもできる。
FIG. 5 is a sectional view showing a schematic structure of the surface treatment apparatus used in this embodiment. The sample 50 is the reaction container 5
It is placed on the sample table 52 housed in 1. Although not shown, the sample table 52 has a rotation function, and the sample 50 is horizontally rotated about its center. Gas is introduced into the reaction vessel 51 from the gas introduction port 53a through the discharge tube 54 and exhausted from the gas introduction port 53c. Further, the gas is introduced into the reaction vessel 51 through the gas introduction port 53b.
It is also possible to introduce the gas directly from.

【0042】放電管54には、導波管55に接続された
キャビティ57が設置され、キャビティ57にはマイク
ロ波電源56で発生した245GHzのマイクロ波が伝
えられる。そして、放電管54の内部にマイクロ波放電
を発生させるものとなっている。
A cavity 57 connected to a waveguide 55 is installed in the discharge tube 54, and a microwave of 245 GHz generated by a microwave power source 56 is transmitted to the cavity 57. Then, a microwave discharge is generated inside the discharge tube 54.

【0043】反応容器51の内部には、試料台52に対
向して電極58が設けられており、この電極58に1
3.56MHzの高周波を印加することにより高周波放
電が生起される。また、反応容器51の上壁部には石英
窓59が設置されており、この窓59を通して試料50
に光を照射することが可能となっている。次に、Al合
金薄膜の異方性ドライエッチング加工とレジスト除去に
ついて、図6の工程断面図を用いて説明する。
An electrode 58 is provided inside the reaction vessel 51 so as to face the sample table 52.
A high frequency discharge is generated by applying a high frequency of 3.56 MHz. Further, a quartz window 59 is installed on the upper wall portion of the reaction vessel 51, and the sample 50 is passed through this window 59.
It is possible to irradiate light on. Next, anisotropic dry etching processing and resist removal of the Al alloy thin film will be described with reference to process sectional views of FIGS.

【0044】まず、図6(a)に示すように、Si基板
60上に熱酸化により100nmの酸化膜61を形成
し、スパッタにより500nmのAl−Si−Cu合金
薄膜62を推積する。さらに、レジスト63を塗布した
後、フォトリソグラフィーによりレジスト63をパター
ニングする。
First, as shown in FIG. 6A, a 100 nm oxide film 61 is formed on a Si substrate 60 by thermal oxidation, and a 500 nm Al-Si-Cu alloy thin film 62 is deposited by sputtering. Further, after applying the resist 63, the resist 63 is patterned by photolithography.

【0045】次いで、この試料50を図5に示した装置
の試料台52上に載置し、反応容器51内を真空排気し
たのち、ガス導入口53aからBCl3 ガス30sccmを
導入し、反応容器51の内部を0.03Torrに保つ。さ
らに、電極58に13.56MHzの高周波を印加し、
BCl3ガスのプラズマを発生させてAl合金薄膜62
表面の自然酸化膜を除去する。
Next, this sample 50 is placed on the sample table 52 of the apparatus shown in FIG. 5, the inside of the reaction vessel 51 is evacuated, and then 30 sccm of BCl 3 gas is introduced from the gas introduction port 53a, Keep the inside of 51 at 0.03 Torr. Furthermore, a high frequency of 13.56 MHz is applied to the electrode 58,
A plasma of BCl 3 gas is generated to generate an Al alloy thin film 62.
The native oxide film on the surface is removed.

【0046】次いで、BCl3 に代えてCl2 ガス50
sccmを導入し、反応容器51の内部を0.01Torrに保
って電極58に高周波を印加し、Cl2 プラズマを発生
させる。10分間処理することにより、図6(b)に示
すようにAl合金薄膜62は垂直にエッチングされた。
このとき、Al合金薄膜62の側壁には、Clを含む汚
染層64が形成された。
Then, instead of BCl 3 , Cl 2 gas 50 was added.
A sccm is introduced, a high frequency is applied to the electrode 58 while keeping the inside of the reaction vessel 51 at 0.01 Torr, and Cl 2 plasma is generated. By processing for 10 minutes, the Al alloy thin film 62 was vertically etched as shown in FIG.
At this time, a contamination layer 64 containing Cl was formed on the side wall of the Al alloy thin film 62.

【0047】次いで、CF4 ガス50sccm,O2 ガス5
00sccmをガス導入口53aから導入し、反応容器51
の内部を0.2Torrに保ったまま、放電管54の内部で
ガスを放電させた。約15分間の処理により、図6
(c)に示すようにレジスト63は除去された。この処
理により、Al合金薄膜62の上面にはFを含む層65
が形成され、側壁にはClとFを含む層66が形成され
た。
Next, CF 4 gas 50 sccm and O 2 gas 5
00 sccm is introduced through the gas introduction port 53a, and the reaction container 51
The gas was discharged inside the discharge tube 54 while keeping the inside of 0.2 Torr. As a result of processing for about 15 minutes,
The resist 63 was removed as shown in FIG. By this treatment, a layer 65 containing F is formed on the upper surface of the Al alloy thin film 62.
Was formed, and a layer 66 containing Cl and F was formed on the sidewall.

【0048】次いで、NH3 ガス100sccmをガス導入
口53aから導入し、反応容器51の内部を1Torrに保
ったまま、石英窓59を介してArFレーザ光(波長1
93nm)を試料50に照射し、同時に試料50を回転
させた。NH3 はArFレーザ光により分解し、Hラジ
カルを生成する。このHラジカルは汚染層65,66の
FやClと反応し、これらをHF,HClとして除去す
るため、図6(d)に示すように汚染層65,66を除
去することができた。
Next, 100 sccm of NH 3 gas was introduced from the gas inlet 53a, and the ArF laser beam (wavelength 1) was passed through the quartz window 59 while keeping the inside of the reaction vessel 51 at 1 Torr.
(93 nm) was irradiated to the sample 50, and the sample 50 was rotated at the same time. NH 3 is decomposed by ArF laser light to generate H radicals. The H radicals react with F and Cl of the contaminated layers 65 and 66 and remove them as HF and HCl, so that the contaminated layers 65 and 66 can be removed as shown in FIG. 6D.

【0049】このようにしてFやClの除去処理を行っ
たものは、大気に晒しても全く腐食を生じなかった。こ
れに対し、上記の処理を行わなかったものは、95%が
腐食を起こし、Al合金薄膜が断線した。このように本
実施例によれば、Al合金薄膜表面のハロゲンを除去
し、腐食を抑制することができた。
The thus-processed F and Cl removal treatment did not cause any corrosion even when exposed to the atmosphere. On the other hand, in the case where the above treatment was not performed, 95% caused corrosion and the Al alloy thin film was broken. As described above, according to this example, the halogen on the surface of the Al alloy thin film was removed, and the corrosion could be suppressed.

【0050】なお、本実施例では、ハロゲンを用いた処
理とハロゲンを除去する処理を同一容器で行っている
が、別の容器で行ってもよい。但し、試料を搬送する
際、雰囲気をコントロールせずに表面をそのまま大気に
晒すと腐食が生じるため、搬送を窒素ガスなどの不活性
なガス中や真空中で行うか、本実施例のように同一容器
内で表面を大気に晒さずに連続して処理を行う方が望ま
しい。
Although the treatment using halogen and the treatment for removing halogen are carried out in the same container in this embodiment, they may be carried out in different containers. However, when transporting the sample, if the surface is directly exposed to the atmosphere without controlling the atmosphere, corrosion occurs, so the transport should be performed in an inert gas such as nitrogen gas or in a vacuum, or as in this example. It is desirable to continuously perform the treatment in the same container without exposing the surface to the atmosphere.

【0051】また、上記実施例ではCF4 ,O2 混合ガ
スを放電させ、生じた活性種を用いてレジストを除去し
ているが、他のハロゲンを含むガスを用いて除去するこ
ともできる。例えば、ガス導入口53aからNF3 ガス
50sccmを導入し、放電管54で放電させると共に、ガ
ス導入口53bからH2 Oガス100sccmを導入すると
約5分間の処理でレジストは除去された。このときもA
l合金薄膜62表面にFが残留したが、上記実施例で述
べた方法により完全に除去され、処理後に試料を大気に
晒しても全く腐食は生じなかった。 (第7の実施例)本発明の第7の実施例として、コンタ
クトホールへのWの埋込みについて、図7の工程断面図
を参照して説明する。
In the above embodiment, the CF 4 and O 2 mixed gas is discharged and the active species generated are used to remove the resist, but it is also possible to remove the resist using another halogen-containing gas. For example, when 50 sccm of NF 3 gas was introduced from the gas introduction port 53a and discharged by the discharge tube 54, and 100 sccm of H 2 O gas was introduced from the gas introduction port 53b, the resist was removed by the treatment for about 5 minutes. Also at this time A
Although F remained on the surface of the 1-alloy thin film 62, it was completely removed by the method described in the above embodiment, and no corrosion occurred even if the sample was exposed to the atmosphere after the treatment. (Seventh Embodiment) As a seventh embodiment of the present invention, embedding of W into a contact hole will be described with reference to the process sectional views of FIGS.

【0052】まず、図7(a)に示すようにシリコン基
板70の上に層間絶縁膜71を形成した後、反応性イオ
ンエッチングによりコンタクトホール72を開孔し、コ
ンタクトホール72に露出した基板表面に不純物拡散層
73を形成する。
First, as shown in FIG. 7A, after forming an interlayer insulating film 71 on a silicon substrate 70, a contact hole 72 is opened by reactive ion etching, and the substrate surface exposed in the contact hole 72. Then, the impurity diffusion layer 73 is formed.

【0053】次いで、図7(b)に示すように、スパッ
タにより100nmのTi膜74を形成する。続いて、
図7(c)に示すように、700℃で20分アニールし
てコンタクトホール底部のTiをシリサイド化してTi
Si2 膜75を形成し、さらに試料を硫酸/過酸化水素
水に浸して、未反応のTiを除去する。このとき、Ti
Si2 膜75の表面には、自然酸化膜76が形成されて
いた。
Next, as shown in FIG. 7B, a Ti film 74 of 100 nm is formed by sputtering. continue,
As shown in FIG. 7C, annealing is performed at 700 ° C. for 20 minutes to silicify Ti at the bottom of the contact hole to form Ti.
A Si 2 film 75 is formed, and the sample is immersed in a sulfuric acid / hydrogen peroxide solution to remove unreacted Ti. At this time, Ti
The natural oxide film 76 was formed on the surface of the Si 2 film 75.

【0054】次に、この試料10を図1に示した反応容
器11内の試料台13上に載置し、容器内部を真空排気
する。次いで、ガス導入口16からHeで希釈したF2
を導入し、反応容器11の内部を0.1Torrに保ったま
ま、電極14に高周波を印加してF2 /Heガスのプラ
ズマを発生させた。約2分間、この状態で保持すること
により、TiSi2 表面の自然酸化膜76は除去できた
が、図7(d)に示すように、代わりにTiFx やSi
x といったFを含む層78で覆われた。
Next, this sample 10 is placed on the sample table 13 in the reaction container 11 shown in FIG. 1, and the inside of the container is evacuated. Then, F 2 diluted with He was introduced from the gas inlet 16
Was introduced, and a high frequency was applied to the electrode 14 while maintaining the inside of the reaction vessel 11 at 0.1 Torr to generate plasma of F 2 / He gas. By maintaining this state for about 2 minutes, the native oxide film 76 on the TiSi 2 surface could be removed. However, as shown in FIG. 7D, TiF x or Si was used instead.
It was covered with a layer 78 containing F, such as F x .

【0055】次いで、F2 /Heガスをガス排気口17
から排気した後、COガスをガス導入口16から導入
し、反応容器11内部を0.6Torrに保ったまま、試料
10を350℃に加熱し、10分間保持した。この処理
により、図7(e)に示すように、TiSi2 膜表面の
Fを含む層78は除去された。これは、FをCOがCO
FやCOF2 として引き抜いたためと考えられる。
Then, the F 2 / He gas is introduced into the gas exhaust port 17
After evacuating from the above, CO gas was introduced from the gas inlet 16 and the sample 10 was heated to 350 ° C. and kept for 10 minutes while keeping the inside of the reaction vessel 11 at 0.6 Torr. By this treatment, as shown in FIG. 7E, the F-containing layer 78 on the surface of the TiSi 2 film was removed. This is F for CO
It is thought that it was extracted as F or COF 2 .

【0056】次いで、COの代わりにWF6 /SiH4
混合ガスをガス導入口16から反応容器内部に導入し、
試料10を250℃に加熱して5分間保持した。その結
果、図7(f)に示すように、コンタクトホール72は
W膜79で埋め込まれた。この時、WはTiSi膜75
の表面からのみ成長し、絶縁膜71の上には全く成長し
なかった。また、コンタクト抵抗は十分低かった。これ
に対して、COを用いた処理を行わなかったものは、W
が異常成長したり、絶縁膜71の上にも成長したり、コ
ンタクト抵抗が高いなどの問題を生じた。
Then, instead of CO, WF 6 / SiH 4
The mixed gas is introduced into the reaction vessel through the gas inlet port 16,
Sample 10 was heated to 250 ° C. and held for 5 minutes. As a result, as shown in FIG. 7F, the contact hole 72 was filled with the W film 79. At this time, W is the TiSi film 75
, But it did not grow at all on the insulating film 71. Moreover, the contact resistance was sufficiently low. On the other hand, if the treatment using CO is not performed, W
Causes abnormal growth, grows on the insulating film 71, and has high contact resistance.

【0057】このように本実施例によれば、F2 /He
ガスプラズマを用いた自然酸化膜除去処理によりTiS
2 表面に形成されたFを、COガスの導入により除去
することができ、Wの選択CVDの選択性向上やコンタ
クト抵抗の低減をはかることができた。 (第8の実施例)本発明による第8の実施例として、多
層配線の形成について、図2を参照しながら説明する。
本実施例は、第1の実施例と概略は同じである。
As described above, according to this embodiment, F 2 / He
TiS by natural oxide film removal process using gas plasma
F formed on the i 2 surface could be removed by introducing CO gas, and the selectivity of W selective CVD could be improved and the contact resistance could be reduced. (Eighth Embodiment) As an eighth embodiment of the present invention, formation of multilayer wiring will be described with reference to FIG.
This embodiment is roughly the same as the first embodiment.

【0058】まず、図2(a)に示すように、Si基板
20の上に100nmの熱酸化膜21、800nmの第
1層Al合金膜22を形成し、Al合金膜をパターニン
グした後、CVD酸化膜23を推積し、CHF3 /H2
混合ガスを用いた反応性イオンエッチングによりヴィア
ホール24を開孔する。
First, as shown in FIG. 2A, a 100 nm thermal oxide film 21 and a 800 nm first layer Al alloy film 22 are formed on a Si substrate 20, and the Al alloy film is patterned. The oxide film 23 is deposited and CHF 3 / H 2
The via hole 24 is opened by reactive ion etching using a mixed gas.

【0059】この試料10を図1に示した反応容器11
の試料台13に載置し、容器11内を真空排気する。こ
のとき、第1層Al合金膜22の表面にはFを含む層が
形成されていたが、ガス導入口16よりCOガスを導入
し、試料10を300℃に加熱しながら10分間保持す
ることにより、このFはCOFやCOF2 として除去さ
れ、図2(a)に示すように、自然酸化膜(A1
23 )25のみがAl合金膜の表面に形成していた。
This sample 10 is a reaction container 11 shown in FIG.
The sample is placed on the sample table 13 and the inside of the container 11 is evacuated. At this time, although a layer containing F was formed on the surface of the first layer Al alloy film 22, CO gas was introduced from the gas inlet 16 and the sample 10 was heated to 300 ° C. and held for 10 minutes. As a result, this F is removed as COF or COF 2, and as shown in FIG.
Only 20 3 ) 25 was formed on the surface of the Al alloy film.

【0060】次いで、ガス導入口16からBCl3 ガス
50sccmを導入し、反応容器11内を0.3Torrに保ち
ながら、電極14に高周波を印加し、BCl3 ガスのプ
ラズマを発生させた。約2分間処理することにより、自
然酸化膜(A12 3 )25は、Al2 Cl6 や、(B
ClO)3 として除去された。しかし代わりに、図2
(b)に示すように、表面にはClを含む層26が形成
された。
Next, 50 sccm of BCl 3 gas was introduced from the gas inlet 16, and high frequency was applied to the electrode 14 while maintaining the inside of the reaction vessel 11 at 0.3 Torr to generate BCl 3 gas plasma. By performing the treatment for about 2 minutes, the natural oxide film (A1 2 0 3 ) 25 becomes Al 2 Cl 6 or (B
It was removed as ClO) 3 . But instead,
As shown in (b), a layer 26 containing Cl was formed on the surface.

【0061】次いで、ガス導入口16よりCOガスを導
入し、試料10を300℃に加熱しながら10分間保持
した。この処理により、図2(c)に示すように、層2
6のClは、COClやCOCl2 として除去された。
Then, CO gas was introduced through the gas inlet 16 and the sample 10 was heated to 300 ° C. and held for 10 minutes. As a result of this treatment, as shown in FIG.
Cl of 6 was removed as COCl and COCl 2 .

【0062】次いで、ガス導入口16からWF6 /Si
4 混合ガスを導入し、試料10を200℃に加熱し
た。この処理によってW膜が、Al合金膜22の上のみ
に選択的に推積し、CVD酸化膜23上には全く推積し
なかった。約5分間の処理により、図2(d)に示すよ
うに、ヴィアホール24にW膜27が完全に埋め込まれ
た。さらに、図2(e)に示すように、Al合金膜を形
成,パターニングして、第2層目のAl配線28を形成
した。
Next, from the gas inlet 16 to WF 6 / Si
The H 4 mixed gas was introduced, and the sample 10 was heated to 200 ° C. By this treatment, the W film was selectively deposited only on the Al alloy film 22 and was not deposited on the CVD oxide film 23 at all. By the treatment for about 5 minutes, the W film 27 was completely embedded in the via hole 24 as shown in FIG. Further, as shown in FIG. 2E, an Al alloy film was formed and patterned to form a second-layer Al wiring 28.

【0063】このようにして形成された多層配線の配線
抵抗は十分低かった。これに対し、Clを除去せずにW
を形成すると、図2(f)に示すように、不均一なW膜
29が成長し、またCVD酸化膜23の上にもW膜29
が成長した。また、W/Al界面に残留しているClに
より、Al合金に腐食が生じた。
The wiring resistance of the multilayer wiring thus formed was sufficiently low. In contrast, W without removing Cl
2F, a non-uniform W film 29 grows, and the W film 29 is also formed on the CVD oxide film 23, as shown in FIG.
Grew up. In addition, the residual Cl at the W / Al interface caused corrosion of the Al alloy.

【0064】このように、本実施例によれば、選択性の
高いWの選択CVDが行え、ヴィアホール24を完全に
埋め込んで、配線抵抗が低く、腐食が生じない、信頼性
の高い多層配線を形成することができた。 (第9の実施例)
As described above, according to this embodiment, the selective CVD of W having a high selectivity can be performed, the via hole 24 is completely filled, the wiring resistance is low, the corrosion does not occur, and the multilayer wiring is highly reliable. Could be formed. (Ninth Example)

【0065】本発明の第9の実施例として、図6を参照
しながら、Al合金薄膜のドライエッチング加工とレジ
スト除去について述べる。この実施例は、第6の実施例
とおおよそは同じである。
As a ninth embodiment of the present invention, dry etching processing and resist removal of an Al alloy thin film will be described with reference to FIG. This embodiment is approximately the same as the sixth embodiment.

【0066】まず、図6(a)に示すように、Si基板
60上に熱酸化により100nmの酸化膜61を形成
し、その上にスパッタにより厚さ800nmのAl−S
i−Cu合金膜62を推積する。さらに、この上にレジ
スト63を塗布し、フォトリソグラフィーによりレジス
ト63をパターニングする。
First, as shown in FIG. 6A, a 100 nm oxide film 61 is formed on a Si substrate 60 by thermal oxidation, and an Al-S film having a thickness of 800 nm is sputtered on the oxide film 61.
The i-Cu alloy film 62 is deposited. Further, a resist 63 is applied on this, and the resist 63 is patterned by photolithography.

【0067】次いで、この試料を図5に示した反応容器
51内に収納し、真空排気した後、ガス導入口53aか
らBCl3 ガス10sccm,Cl2 ガス30sccmを導入
し、反応容器51の内部を0.06Torrに保ったまま、
電極58に13.56MHzの高周波を印加してBCl
3 /Cl2 混合ガスのプラズマを発生させる。10分間
の処理により、図6(b)に示すように、Al合金膜6
2は垂直にエッチングされた。このとき、Al合金膜6
2の側壁には、Clを含む汚染層64が形成された。
Next, this sample was placed in the reaction vessel 51 shown in FIG. 5, and after being evacuated, BCl 3 gas of 10 sccm and Cl 2 gas of 30 sccm were introduced from the gas introduction port 53a to remove the inside of the reaction vessel 51. While keeping at 0.06 Torr,
Applying a high frequency of 13.56 MHz to the electrode 58 and applying BCl
A plasma of 3 / Cl 2 mixed gas is generated. By the treatment for 10 minutes, as shown in FIG. 6B, the Al alloy film 6
2 was etched vertically. At this time, the Al alloy film 6
A contamination layer 64 containing Cl was formed on the sidewall of No. 2.

【0068】次いで、CF4 ガス30sccm,O2 ガス3
00sccmをガス導入口53aから導入し、反応容器51
の内部を0.3Torrに保ったまま、放電管54内でCF
4 /O2 混合ガスを放電させた。約20分間の処理によ
り、図6(c)に示すようにレジスト63は除去され
た。このような処理を経たAl合金膜62の上面にはF
を含む層65が、側壁にはClとFを含む層66が形成
されていた。
Next, CF 4 gas 30 sccm and O 2 gas 3
00 sccm is introduced through the gas introduction port 53a, and the reaction container 51
CF inside the discharge tube 54 while keeping the inside of 0.3 Torr
The 4 / O 2 mixed gas was discharged. By the treatment for about 20 minutes, the resist 63 was removed as shown in FIG. On the upper surface of the Al alloy film 62 that has undergone such treatment, F
And a layer 66 containing Cl and F was formed on the side wall.

【0069】次いで、CF4 /O2 混合ガスの代わり
に、COガスをガス導入口53aから導入し、試料50
を約300℃に保ったまま10分間保持した。この処理
によって、図6(d)に示すように、Al合金膜62表
面のFやClは,COFx やCOClx として除去され
た。
Then, instead of the CF 4 / O 2 mixed gas, CO gas is introduced through the gas introduction port 53a, and the sample 50
Was kept at about 300 ° C. for 10 minutes. By this treatment, as shown in FIG. 6D, F and Cl on the surface of the Al alloy film 62 were removed as COF x and COCl x .

【0070】このようにAl合金表面のFやClを除去
した試料は、大気に晒しても全く腐食を生じなかった。
これに対して、除去処理を行わなかったものは、約90
%の配線に腐食が発生し、断線した。このように本実施
例によれば、Al合金表面のハロゲンを除去することが
でき、腐食を抑制して配線の信頼性を向上させることが
できた。 (第10の実施例)
The sample from which F and Cl were removed from the surface of the Al alloy as described above did not cause any corrosion even when exposed to the atmosphere.
On the other hand, about 90
% Of wiring was corroded and disconnected. As described above, according to the present embodiment, the halogen on the surface of the Al alloy can be removed, the corrosion can be suppressed, and the reliability of the wiring can be improved. (Tenth Example)

【0071】本実施例は、ハロゲンの除去を真空部品の
表面に適用したものである。即ち、図1に示したような
反応容器11内で、ハロゲンを含むガスを用いたエッチ
ングやCVDなどを行うと、反応容器11の壁面にはハ
ロゲンが残留し、容器11内に残留した水分などと反応
して酸となり、容器壁面を腐食する。
In this embodiment, halogen removal is applied to the surface of a vacuum component. That is, when etching or CVD using a gas containing halogen is performed in the reaction vessel 11 as shown in FIG. 1, halogen remains on the wall surface of the reaction vessel 11 and the water content remaining in the vessel 11 Reacts with acid to corrode the container wall.

【0072】本発明を適用し、ハロゲンガスを用いた処
理を行った後、COガスを流しながら、容器壁面を約1
50℃に加熱することでハロゲンは除去され、腐食は全
く生じなくなった。 (第11の実施例)本実施例は、第7の実施例の変形例
で、第7の実施例と異なる点はTiSi2表面の自然酸
化膜の除去方法にある。
After the present invention is applied and a treatment using a halogen gas is performed, the wall surface of the container is reduced to about 1 while flowing CO gas.
By heating to 50 ° C., the halogen was removed and no corrosion occurred. (Eleventh Embodiment) This embodiment is a modification of the seventh embodiment and is different from the seventh embodiment in the method of removing the natural oxide film on the TiSi 2 surface.

【0073】即ち、TiSi2 膜75の表面の自然酸化
膜76を、図1に示した装置の代わりに図5に示した装
置を用いて除去する。具体的には、ガス導入口53aか
らSF6 ガス30sccm,H2 Oガス60sccmを導入し、
反応容器51の内部を5Torrに保ったまま、キャビティ
57に2,45GHzのマイクロ波(300W)を印加
し、SF6 /H2 O混合ガスを放電させて10分間保持
する。これによって、TiSi2 膜75の表面に、H
F,H2 SO4 ,HSO3 Fなどを含む液体を形成して
自然酸化膜76を除去する。
That is, the native oxide film 76 on the surface of the TiSi 2 film 75 is removed by using the device shown in FIG. 5 instead of the device shown in FIG. Specifically, 30 sccm of SF 6 gas and 60 sccm of H 2 O gas are introduced from the gas introduction port 53a,
While maintaining the inside of the reaction vessel 51 at 5 Torr, a microwave (300 W) of 2,45 GHz is applied to the cavity 57 to discharge the SF 6 / H 2 O mixed gas and hold it for 10 minutes. As a result, H is formed on the surface of the TiSi 2 film 75.
A liquid containing F, H 2 SO 4 , HSO 3 F, etc. is formed to remove the natural oxide film 76.

【0074】このような処理により自然酸化膜76を除
去すると、TiSi2 膜75の表面にはTiFx やSi
x に加えて、S,SOx ,SOx y ,SFx などの
イオウやイオウ化合物78が残留する。第7の実施例と
同様に、COガスを流しながら試料を350℃に加熱
し、10分間保持したところ、TiFx やSiFx のよ
うなフッ化物に加えて、イオウやイオウ化合物も除去さ
れた。これは、COがSを引き抜き、OCSガスとして
除去されたためと考えられる。
When the natural oxide film 76 is removed by such a treatment, TiF x and Si are formed on the surface of the TiSi 2 film 75.
In addition to F x , sulfur such as S, SO x , SO x F y , and SF x and sulfur compound 78 remain. Similar to the seventh example, when the sample was heated to 350 ° C. while flowing CO gas and held for 10 minutes, sulfur and sulfur compounds were removed in addition to fluorides such as TiF x and SiF x . . It is considered that this is because CO extracted S and was removed as OCS gas.

【0075】このような処理を施したTiSi2 膜75
上にも、均一性の良い良好なW膜79が形成され、第7
の実施例と同様に、選択CVDの選択性の向上、コンタ
クト抵抗の低減が行えた。 (第12の実施例)本実施例は、第6の実施例の変形例
で、レジスト除去後の残留ハロゲンを除去する手段とし
て、NH3 の代わりにCOを用いたことにある。
TiSi 2 film 75 which has been subjected to such a treatment
A good W film 79 with good uniformity is formed on the
Similar to the example, the selective CVD selectivity was improved and the contact resistance was reduced. (Twelfth Embodiment) The present embodiment is a modification of the sixth embodiment, in that CO is used instead of NH 3 as a means for removing residual halogen after resist removal.

【0076】即ち、図6(b)に示す状態から、レジス
ト63をCF4 /O2 或いはNF3/H2 Oガスを用い
て除去した後、NH3 ガスを流しながらArFレーザ光
を当てるかわりに、反応容器51内にガス導入口53a
からCOガスを導入し、試料50を350℃に加熱、1
0分間保持した。このような処理によっても、Al合金
薄膜62に残留したFは完全に除去され、試料50を大
気に晒しても、全く腐食は生じなかった。
That is, from the state shown in FIG. 6B, the resist 63 is removed by using CF 4 / O 2 or NF 3 / H 2 O gas, and then ArF laser light is applied while flowing NH 3 gas. In addition, the gas inlet 53a is provided in the reaction vessel 51.
CO gas is introduced from above, and the sample 50 is heated to 350 ° C., 1
Hold for 0 minutes. Even by such a treatment, the F remaining on the Al alloy thin film 62 was completely removed, and even when the sample 50 was exposed to the atmosphere, no corrosion occurred.

【0077】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、分子内に水素元素を含
む化合物ガスとして、ボランガスやSiH4,NH3
用いているが、カルボランガス(Bx 2 x+2 )やB
x x+4 ,Bx x+6 ,Cx 2x-2,Cx 2x,Cx
2x+2,N2 4 ,Six 2x+2,PH3 ,AsH3 ,G
x 2x+2,H2 S,HCN,CsH,HI,さらにN
HR1 2(R1 ,R2 =Cx y ),などのガスを試
料表面で分解させてもよい。また、このような水素元素
を含むガスを試料と離れた場所で放電や光などを用いて
分解すれば水素原子が生じるが、この水素原子を試料に
供給しても、試料表面のハロゲンを除去することができ
る。これらの化合物ガスは、水素元素の発生効率が非常
に高く、ハロゲンの除去効率を飛躍的に向上させること
ができる。
The present invention is not limited to the above embodiments. In the embodiment, borane gas, SiH 4 , and NH 3 are used as the compound gas containing hydrogen element in the molecule, but carborane gas (B x C 2 H x + 2 ) and B are used.
x H x + 4 , B x H x + 6 , C x H 2x-2 , C x H 2x , C x H
2x + 2 , N 2 H 4 , Si x H 2x + 2 , PH 3 , AsH 3 , G
e x H 2x + 2 , H 2 S, HCN, CsH, HI, and N
A gas such as HR 1 R 2 (R 1 , R 2 = C x H y ) may be decomposed on the sample surface. Also, if a gas containing such a hydrogen element is decomposed using a discharge or light at a place apart from the sample, hydrogen atoms are generated, but even if this hydrogen atom is supplied to the sample, the halogen on the sample surface is removed. can do. These compound gases have a very high hydrogen element generation efficiency and can dramatically improve the halogen removal efficiency.

【0078】また、実施例では、COガスを用いてハロ
ゲンを除去しているが、NO,N2 O,NO2 等のNx
y ガスを用いると、例えばFはNOFx 等として除去
される。さらに、(COOH)2 以外の、HCOOHや
CH3 COOHなどのカルボン酸、HCHOやCH3
HOなどのアルデヒド,カルボニル化合物,C3 2
どを用いても分解によってCOが生じるためハロゲンを
除去できる。さらに本発明では、分子内に水素元素,C
O,NOの少なくとも一つを含む化合物分子を含有する
ガスを用いればよく、また上記したガスの混合ガスを用
いてもよい。さらにまた、ハロゲンを除去する表面とし
ては、半導体素子を形成する金属や半導体に限定される
ものではなく、第10の実施例で述べた、ハロゲンガス
を用いた処理を内部で行う反応容器の壁面など、ハロゲ
ンガスに晒される反応容器,真空部品,ガス配管の表面
のように、腐食が問題となる金属表面に用いてもよい。
その他、本発明の要旨を逸脱しない範囲で、種々変形し
て適用できる。次に、本発明の別の実施例について説明
する。
Further, in the embodiment, halogen is removed by using CO gas, but N x such as NO, N 2 O, NO 2 and the like is used.
If O y gas is used, F is removed as NOF x or the like. Furthermore, other than (COOH) 2 , carboxylic acids such as HCOOH and CH 3 COOH, HCHO and CH 3 C
Even if an aldehyde such as HO, a carbonyl compound, C 3 O 2 or the like is used, CO is generated by the decomposition, so that the halogen can be removed. Further, in the present invention, hydrogen element, C
A gas containing a compound molecule containing at least one of O and NO may be used, or a mixed gas of the above gases may be used. Furthermore, the surface for removing the halogen is not limited to the metal or the semiconductor forming the semiconductor element, and the wall surface of the reaction container for internally performing the treatment using the halogen gas described in the tenth embodiment. For example, it may be used on a metal surface where corrosion is a problem, such as a surface of a reaction container, a vacuum component, or a gas pipe exposed to a halogen gas.
Besides, various modifications can be applied without departing from the scope of the present invention. Next, another embodiment of the present invention will be described.

【0079】これ以降の実施例は、自然酸化膜が形成さ
れた半導体(或いは金属)を有する試料を反応容器に収
納し、容器内で半導体表面をハロゲン化水素を含む気
体,液体,固体のいずれかと接触させたのち、半導体の
電位を接地電位,半導体に対向して設置された電極の電
位,又は容器壁の電位に対して負に保ちながら、ハロゲ
ン化水素を含む気体,液体,固体を半導体から除去する
ことを特徴とする。 (第13の実施例)
In the subsequent examples, a sample having a semiconductor (or metal) on which a natural oxide film was formed was housed in a reaction vessel, and the semiconductor surface in the vessel was selected from gas, liquid and solid containing hydrogen halide. After making contact with the ground, the potential of the semiconductor is kept negative with respect to the ground potential, the potential of the electrode installed facing the semiconductor, or the potential of the container wall, while the gas, liquid, or solid containing hydrogen halide is used as the semiconductor. It is characterized in that it is removed from. (Thirteenth Example)

【0080】図8は第13の実施例に係わる表面処理装
置の概略構成を示す断面図である。この装置は、試料8
0が浸される、ハロゲン化水素を含む液体82を保持す
る容器81と、試料80の半導体素子が形成される面の
反対側に設置される電極85と、試料80に対向して設
置される対向電極86からなる。ここで、電極85は対
向電極86に対して電位が負になるようにバイアスが印
加される。また、電極85や電極86は、図8のように
液体82の中に設置されていてもよいし、容器81の外
に設置されていてもよい。また、図示していないが、試
料80と電極85、対向電極86の位置関係及びバイア
スの向きを保ったまま、試料80を液体82から引き上
げる手段が備えられている。 (第14の実施例)
FIG. 8 is a sectional view showing the schematic arrangement of a surface treatment apparatus according to the 13th embodiment. This device is used for sample 8
A container 81 holding a liquid 82 containing hydrogen halide, in which 0 is dipped, an electrode 85 provided on the opposite side of the surface of the sample 80 on which a semiconductor element is formed, and an electrode 85 provided opposite to the sample 80. The counter electrode 86 is included. Here, a bias is applied to the electrode 85 so that the potential becomes negative with respect to the counter electrode 86. The electrodes 85 and 86 may be installed in the liquid 82 as shown in FIG. 8 or may be installed outside the container 81. Further, although not shown, a means for pulling up the sample 80 from the liquid 82 is provided while maintaining the positional relationship between the sample 80, the electrode 85, and the counter electrode 86 and the bias direction. (Fourteenth Example)

【0081】図9は第14の実施例に係わる表面処理装
置の概略構成を示す断面図である。この装置は、図1に
示す装置と類似しており、真空容器91、試料台93,
ヒータ95,ガス導入口96a,96b,ガス導出口9
7及び対向電極98から構成されている。試料台93に
は、対向電極98に対して電位が負になるようバイアス
が印加される。
FIG. 9 is a sectional view showing the schematic arrangement of a surface treatment apparatus according to the 14th embodiment. This device is similar to the device shown in FIG. 1 and includes a vacuum container 91, a sample stage 93,
Heater 95, gas inlets 96a and 96b, gas outlet 9
7 and a counter electrode 98. A bias is applied to the sample table 93 so that the potential is negative with respect to the counter electrode 98.

【0082】この装置は、ガス導入口96a,96bか
ら、ハロゲン化水素を含むガスを導入することで試料表
面の自然酸化膜を除去することができ、またCVDガス
を導入することにより、WやSiなどの金属や半導体を
試料表面に形成することができる。このようにこの装置
は、試料表面の自然酸化膜を除去する装置として、或い
はCVD装置として、さらに試料表面の自然酸化膜を除
去した後、表面を大気に晒すこと無くその上に膜を形成
するCVD装置として用いることができる。 (第15の実施例)
This apparatus can remove the natural oxide film on the sample surface by introducing a gas containing hydrogen halide from the gas inlets 96a and 96b, and by introducing a CVD gas, A metal such as Si or a semiconductor can be formed on the sample surface. As described above, this apparatus serves as an apparatus for removing the natural oxide film on the sample surface, or as a CVD apparatus, and after removing the natural oxide film on the sample surface, forms a film on the surface without exposing the surface to the atmosphere. It can be used as a CVD apparatus. (Fifteenth Example)

【0083】次に、図8に示した表面処理装置を用い
て、コンタクトホールへのWの埋め込みを行う実施例に
ついて説明する。なお、本実施例では、図9に示した装
置を、WのCVD装置として用いる。図10は、その工
程の断面図である。
Next, an example in which W is embedded in the contact hole using the surface treatment apparatus shown in FIG. 8 will be described. In this example, the apparatus shown in FIG. 9 is used as a W CVD apparatus. FIG. 10 is a sectional view of the process.

【0084】まず、図10(a)に示すように、シリコ
ン基板100上に厚さ1μmの絶縁膜101を形成した
後、CF4 とH2 の混合ガスを用いた反応性イオンエッ
チングにより、直径を1μmのコンタクトホール102
を開孔し、さらに、Asのイオンインプランテーション
により拡散層103を形成する。続いて、H2 SO4
2 2の混合液を用いて、拡散層103の表面の有機
物汚染を除去した。この処理により、拡散層103の表
面には自然酸化膜104が形成された。
First, as shown in FIG. 10A, after forming an insulating film 101 having a thickness of 1 μm on a silicon substrate 100, the diameter of the insulating film 101 was reduced by reactive ion etching using a mixed gas of CF 4 and H 2. 1 μm contact hole 102
And a diffusion layer 103 is formed by ion implantation of As. Then, using a mixed solution of H 2 SO 4 and H 2 O 2 , organic contaminants on the surface of the diffusion layer 103 were removed. By this treatment, the natural oxide film 104 was formed on the surface of the diffusion layer 103.

【0085】この試料を、図8に示す容器81の中の1
%のHF水溶液82の中に浸し、約2分間保持した。次
いで、電極85に−0.5V、対向電極86に+0.5
Vのバイアスを印加した。この試料と電極、対向電極の
位置関係とバイアスの状態を保持したまま、試料80を
HF水溶液から大気へと引き上げ、試料表面に若干付着
していたHF水溶液を乾燥した窒素ガスを吹き付けて除
去した後、電極85,対向電極86のバイアスを切り、
電極85から試料80を離した。この処理を行った後、
拡散層103の表面を分析したところ、水素とシリコン
以外には、物理吸着した酸素が僅かに検出されただけあ
った。この表面から、フッ素は検出されなかった。
This sample was placed in a container 81 shown in FIG.
% HF aqueous solution 82 and kept for about 2 minutes. Next, the electrode 85 is -0.5 V, and the counter electrode 86 is +0.5 V.
A bias of V was applied. The sample 80 was pulled up from the HF aqueous solution to the atmosphere while maintaining the positional relationship between the sample and the electrode and the counter electrode and the bias state, and the HF aqueous solution slightly adhering to the sample surface was removed by spraying dry nitrogen gas. After that, the bias of the electrode 85 and the counter electrode 86 is cut off,
The sample 80 was separated from the electrode 85. After doing this process,
When the surface of the diffusion layer 103 was analyzed, only a small amount of physically adsorbed oxygen was detected in addition to hydrogen and silicon. No fluorine was detected on this surface.

【0086】このように、拡散層103の表面は、図1
0(b)に示すように、自然酸化膜やフッ素のない、殆
ど水素のみで覆われた表面105となった。これは、試
料をHF水溶液から引き上げる時、試料表面の電位を負
に保っていたため、試料表面にF- 、イオンやOH-
オンは近付くことができず、液中で唯一、正電荷を持っ
たイオンであるH+イオンがシリコン表面に接近し、吸
着したためである。
As described above, the surface of the diffusion layer 103 is formed as shown in FIG.
As shown in FIG. 0 (b), the surface 105 was covered with almost only hydrogen without a natural oxide film or fluorine. This is when raising the sample from the aqueous HF solution, because it was kept potential of the sample surface in the negative, F on the sample surface - , Ions and OH - This is because the ions cannot come close to each other, and the H + ion, which is the only ion having a positive charge, approaches the silicon surface and is adsorbed in the liquid.

【0087】次に、試料を図9に示す真空容器91内の
試料台93上に載置し、容器91の内部を真空排気した
後、試料90を300℃まで昇温し、ガス導入口96a
からWF6 ガス30sccm,SiH4 ガス50sccmを導入
して1分間保持した。その結果、図10(c)に示すよ
うに、コンタクトホール102はW膜106で完全に埋
め込まれた。W膜106の推積形状は非常に良好であ
り、また絶縁膜101の上には全くW膜106は推積し
ていなかった。また、コンタクト抵抗も、コンタクトホ
ール102をスパッタによりAl合金で埋め込んだ場合
と同等であった。これに対して、バイアスを印加せず
に、試料をHF水溶液82から引き出し、Wを推積させ
たものは、5分間WF6 ,SiH4 ガスを流しても、図
10(d)に示すように、コンタクトホール102を完
全に埋め込むことはできなかった。さらに、推積したW
膜106は異常な形状をしており、また長時間ガスを流
したため、絶縁膜101の上にもW膜107が推積し
た。また、コンタクト抵抗も図10(c)に示したもの
よりも約1桁高かった。
Next, the sample is placed on the sample table 93 in the vacuum container 91 shown in FIG. 9, the interior of the container 91 is evacuated, and then the temperature of the sample 90 is raised to 300 ° C., and the gas inlet 96a.
30 sccm of WF 6 gas and 50 sccm of SiH 4 gas were introduced from the above and held for 1 minute. As a result, as shown in FIG. 10C, the contact hole 102 was completely filled with the W film 106. The deposited shape of the W film 106 was very good, and the W film 106 was not deposited on the insulating film 101 at all. The contact resistance was also the same as when the contact hole 102 was filled with Al alloy by sputtering. On the other hand, the sample drawn out from the HF aqueous solution 82 without applying a bias and having W deposited thereon, as shown in FIG. 10 (d), even if WF 6 and SiH 4 gas was flowed for 5 minutes. In addition, it was not possible to completely fill the contact hole 102. Furthermore, the accumulated W
Since the film 106 had an abnormal shape and the gas was allowed to flow for a long time, the W film 107 was also deposited on the insulating film 101. Further, the contact resistance was about one digit higher than that shown in FIG.

【0088】このようにWを推積させる前の表面を、図
8,図9の表面処理装置を用いて水素のみで覆われたも
のにすることにより、W膜を良好に推積させ、接触抵抗
の低い、W/Si界面を形成することができた。Si表
面を覆っている水素はWの推積を殆ど阻害しないが、こ
れは水素の電気陰性度が比較的小さく、WF6 ガスのS
i表面での解離を阻害しないか、WF6 ガスのFが水素
をHFとして除去したためと考えられる。 (第16の実施例)図11は、表面処理装置の概略構成
を示す断面図である。
As described above, the surface before deposition of W is covered with only hydrogen by using the surface treatment apparatus shown in FIGS. 8 and 9, so that the W film is well deposited and contacted. It was possible to form a W / Si interface with low resistance. The hydrogen covering the Si surface hardly hinders the deposition of W. However, this is because the electronegativity of hydrogen is relatively small and the S of WF 6 gas is relatively small.
It is considered that the dissociation on the i surface is not hindered or the F of the WF 6 gas removes hydrogen as HF. (Sixteenth Embodiment) FIG. 11 is a sectional view showing a schematic structure of a surface treatment apparatus.

【0089】この装置は、前記図5に示した装置と類似
しており、真空容器111,試料台112,ガス導入口
113a,ガス導出口113c,放電管114,導波管
115,マイクロ波電源116,キャビティ117,電
極118及びヒータ119等から構成されている。
This device is similar to the device shown in FIG. 5, and includes a vacuum container 111, a sample table 112, a gas inlet 113a, a gas outlet 113c, a discharge tube 114, a waveguide 115, and a microwave power source. 116, a cavity 117, an electrode 118, a heater 119 and the like.

【0090】ヒータ119は試料台112の内部に埋め
込まれており、試料110を200℃まで加熱すること
ができる。また、試料台112は、対向して設置された
対向電極118に対して電位が負になるようバイアスが
印加される。ガス導入口113aから導入されたガス
は、放電管114の中で放電する。放電により生じた活
性種のうち、寿命の長いものだけが容器111内に輸送
され、試料110の表面に供給されるものとなってい
る。 (第17の実施例)
The heater 119 is embedded inside the sample table 112 and can heat the sample 110 to 200 ° C. Further, a bias is applied to the sample table 112 so that the potential becomes negative with respect to the counter electrode 118 that is installed to face it. The gas introduced from the gas introduction port 113a is discharged in the discharge tube 114. Of the active species generated by the discharge, only those having a long life are transported into the container 111 and supplied to the surface of the sample 110. (17th Example)

【0091】次に、図11に示した表面処理装置を用い
た表面処理方法について説明する。本実施例は、シリコ
ン表面の自然酸化膜を図8に示した装置の代わりに図1
1に示した装置を用いて除去すること以外は、第15の
実施例と同じである。即ちまず、図10(a)に示した
試料を試料台112上に載置し、真空容器111の内部
を真空排気する。次いで、試料110を室温に保ったま
ま、NF3 ガス5sccmとNH3 ガス30sccmの混合ガス
をガス導入口113aから放電管114に導入し、2.
45GHzのマイクロ波を印加して放電させて5分保持
した。この処理により、拡散層103表面の自然酸化膜
104は、(NH4 2 SiF6 とNH4 Fを含む膜に
変化した。NH4 Fの生成は、NF3 の放電により生じ
たFラジカルがNH3 からHを引き抜いてHFを形成
し、HFとNH3 が結合したものとして説明できる。他
方、(NH4 2 SiF6 は、NH4 FとSiO2 が反
応してできた生成物である。
Next, a surface treatment method using the surface treatment apparatus shown in FIG. 11 will be described. In the present embodiment, the natural oxide film on the silicon surface is replaced by the one shown in FIG.
It is the same as the fifteenth embodiment except that it is removed using the apparatus shown in FIG. That is, first, the sample shown in FIG. 10A is placed on the sample table 112, and the inside of the vacuum container 111 is evacuated. Then, with the sample 110 kept at room temperature, a mixed gas of 5 sccm of NF 3 gas and 30 sccm of NH 3 gas was introduced into the discharge tube 114 through the gas introduction port 113a.
A microwave of 45 GHz was applied and discharged to hold for 5 minutes. By this treatment, the natural oxide film 104 on the surface of the diffusion layer 103 was changed to a film containing (NH 4 ) 2 SiF 6 and NH 4 F. The generation of NH 4 F can be explained as F radicals generated by discharging NF 3 abstract H from NH 3 to form HF, and HF and NH 3 are bound to each other. On the other hand, (NH 4 ) 2 SiF 6 is a product formed by the reaction of NH 4 F and SiO 2 .

【0092】次いで、試料台112に−0.5V、対向
電極118に+0.5Vのバイアスを印加し、前記混合
ガスを流しながらこの試料110を150℃まで加熱
し、30秒間保持して膜を昇華、除去したあと室温に戻
し、さらに前記混合ガスの導入を止めて真空容器111
の内部を真空排気した。このような処理によって、第1
5の実施例と同様に拡散層103の表面を、図10
(b)に示すような水素のみで覆われたものにすること
ができ、さらにこの表面にWを推積させることで、良好
なWの推積、及び接触抵抗の低いW/Si界面を形成す
ることができた。
Next, a bias of −0.5 V is applied to the sample table 112 and a bias of +0.5 V is applied to the counter electrode 118, the sample 110 is heated to 150 ° C. while flowing the mixed gas, and held for 30 seconds to form a film. After sublimation and removal, the temperature is returned to room temperature, the introduction of the mixed gas is stopped, and the vacuum container 111
The inside of was evacuated. By such processing, the first
As in the embodiment of FIG.
It can be covered with only hydrogen as shown in (b), and by depositing W on this surface, a good W deposit and a W / Si interface with low contact resistance are formed. We were able to.

【0093】なお本実施例では、NH4 Fの形成にNH
3 とNF3 の混合ガスの放電を用いたが、NH3 かNF
3 のどちらか一方を放電させ、真空容器内で混合させた
り、NH4 F粉末を加熱し、生じたガスを真空容器41
内に導入したり、NH3 ガスとHFガスを真空容器41
内に導入してもよい。 (第18の実施例)
In this embodiment, NH 4 F is used for forming NH 4 F.
Discharge of mixed gas of 3 and NF 3 was used, but NH 3 or NF
Either one of 3 is discharged and mixed in the vacuum container, or the NH 4 F powder is heated, and the generated gas is mixed with the vacuum container 41.
Or to introduce NH 3 gas and HF gas into the vacuum container 41.
You may introduce in. (Eighteenth Example)

【0094】この実施例は、第17の実施例での、コン
タクトホール底部のSiをビヤホール底部のAl合金
に、NH4 FをNH4 Clに置き換えたものである。こ
の場合も、Al合金表面の自然酸化膜をNH4 Clを用
いて除去した後、バイアスをかけながらNH4 Clを除
去することにより、水素で覆われたAl合金表面が形成
され、Al合金上にWを良好に推積させ、ビヤ抵抗の低
いW/Al界面を形成することができる。また、このよ
うにして形成したW/Al界面には塩素が残留していな
いので、水がW膜を通ってW/Al界面に到達しても腐
食は生じない。 (第19の実施例)第19の実施例としてSiのエピタ
キシャル成長について説明する。装置としては、図9に
示したものを用いる。
In this embodiment, Si at the bottom of the contact hole in the seventeenth embodiment is replaced with Al alloy at the bottom of the via hole, and NH 4 F is replaced with NH 4 Cl. Also in this case, the natural oxide film on the Al alloy surface is removed by using NH 4 Cl, and then the NH 4 Cl is removed while applying a bias to form an Al alloy surface covered with hydrogen. It is possible to form a W / Al interface having a low via resistance by satisfactorily depositing W. Further, since chlorine does not remain at the W / Al interface formed in this way, corrosion does not occur even when water reaches the W / Al interface through the W film. (Nineteenth Embodiment) As a nineteenth embodiment, epitaxial growth of Si will be described. As the device, the one shown in FIG. 9 is used.

【0095】まず、H2 SO4 /H2 2混合液やHC
l/H2 2 混合液を用いて、Si基板表面の有機物汚
染や重金属汚染を除去する。次に、この試料を図9に示
した装置の試料台93の上に載置し、真空容器91の内
部を真空排気した後、ガス導入口96bからHFガス2
0Torr,H2 Oガス20Torrを導入し、5分間保持し
た。次に、前記ガスを流しながら、試料台93に−0.
5V、対向電極98に+0.5Vのバイアスを印加し、
30秒間保持した後、前記ガスの供給を止め、真空容器
91内部を10-8Torr以上の超高真空まで真空排気し、
次いで前記バイアスを止めた。この処理により、シリコ
ン基板表面の自然酸化膜は除去され、水素のみで覆われ
た表面となった。
First, the H 2 SO 4 / H 2 O 2 mixture liquid and HC
Using a 1 / H 2 O 2 mixed solution, organic contaminants and heavy metal contaminants on the Si substrate surface are removed. Next, this sample is placed on the sample table 93 of the apparatus shown in FIG. 9, the inside of the vacuum container 91 is evacuated, and then the HF gas 2 is supplied from the gas inlet 96b.
0 Torr and H 2 O gas of 20 Torr were introduced and held for 5 minutes. Next, while the gas is flowing, −0.
5V, + 0.5V bias is applied to the counter electrode 98,
After holding for 30 seconds, the supply of the gas is stopped, and the inside of the vacuum container 91 is evacuated to an ultrahigh vacuum of 10 -8 Torr or more,
The bias was then turned off. By this treatment, the natural oxide film on the surface of the silicon substrate was removed and the surface was covered only with hydrogen.

【0096】次に、この試料を1000℃まで加熱し
た。この昇温過程でシリコン表面の水素は除去された。
次にガス導入口96aから、SiH2 Cl2ガス50sc
cm,H2 ガス100sccmを導入して10分間保持した。
この処理により厚さ約1μmのシリコンがエピタキシャ
ル成長した。このようにして形成されたエピタキシャル
シリコンは、全く欠陥を含んでおらず、またシリコン基
板との間の界面から、フッ素や酸素などの不純物は検出
されなかった。
Next, this sample was heated to 1000.degree. Hydrogen on the silicon surface was removed during this temperature rising process.
Next, from the gas inlet 96a, SiH 2 Cl 2 gas 50sc
cm, H 2 gas of 100 sccm was introduced and held for 10 minutes.
By this treatment, silicon having a thickness of about 1 μm was epitaxially grown. The epitaxial silicon thus formed did not contain any defects, and impurities such as fluorine and oxygen were not detected from the interface with the silicon substrate.

【0097】これに対して、図9に示す装置を用いて成
長させても、自然酸化膜を除去する際、バイアスをかけ
ずにHF,H2 Oガスを導入したものは、多くの欠陥を
含んだシリコンしか成長しなかった。エピシリコンとシ
リコン基板との界面からはフッ素が検出され、このフッ
素が欠陥を誘起させたものと考えられる。このように本
実施例方法を用いることで、良質のエピタキシャルシリ
コン膜を成長させることができた。 (第20の実施例)第20の実施例として、Siの熱酸
化装置について説明する。図12はその概略図である。
On the other hand, even if the device shown in FIG. 9 is used for the growth, when the natural oxide film is removed and HF and H 2 O gas are introduced without applying a bias, many defects are generated. Only the contained silicon grew. Fluorine was detected from the interface between the epi-silicon and the silicon substrate, and it is considered that this fluorine caused defects. As described above, by using the method of this example, a good-quality epitaxial silicon film could be grown. (Twentieth Embodiment) As a twentieth embodiment, a thermal oxidation apparatus for Si will be described. FIG. 12 is a schematic diagram thereof.

【0098】本装置は、前処理室510と熱酸化室52
0から構成されており、両者は、ゲートバルブ530で
仕切られている。前処理室510は、ガス導入口511
とガス排気口512と、Siウエハ513を載置する試
料台514を備えており、例えば、ガス導入口511か
らHFを含むガスを導入してSiウエハ513表面の自
然酸化膜を除去し、前記HFを含むガスをガス排気口5
12から排気することができる。さらに、試料台514
には正電極515,負電極516が備えられており、S
iウエハ513の素子形成表面517の電位を対向して
設置された正電極515よりも低くすることができるも
のとなっている。
This apparatus comprises a pretreatment chamber 510 and a thermal oxidation chamber 52.
0, and both are separated by a gate valve 530. The pretreatment chamber 510 has a gas introduction port 511.
And a gas exhaust port 512 and a sample table 514 on which the Si wafer 513 is placed. For example, a gas containing HF is introduced from the gas introduction port 511 to remove the natural oxide film on the surface of the Si wafer 513, Gas containing HF gas exhaust port 5
It can be exhausted from 12. Further, the sample table 514
Is provided with a positive electrode 515 and a negative electrode 516.
The electric potential of the element formation surface 517 of the i-wafer 513 can be made lower than that of the positive electrode 515 which is installed facing each other.

【0099】また、図示してはいないが、この装置には
Siウエハを前処理室510と熱酸化室520の間で搬
送することができる。熱酸化室520には、ガス導入口
521とガス排気口522に加えて、Siウエハを10
00℃まで加熱できるヒータ523を備えており、ガス
導入口521から酸素を含むガスを導入して熱酸化を行
うことができるものとなっている。 (第21の実施例)第21の実施例として、図12の装
置を用いたSiの熱酸化方法について説明する。
Although not shown, this apparatus can transfer Si wafers between the pretreatment chamber 510 and the thermal oxidation chamber 520. In the thermal oxidation chamber 520, in addition to the gas introduction port 521 and the gas exhaust port 522, the Si wafer 10
A heater 523 that can heat up to 00 ° C. is provided, and a gas containing oxygen can be introduced from the gas introduction port 521 to perform thermal oxidation. (Twenty-first Embodiment) As a twenty-first embodiment, a thermal oxidation method of Si using the apparatus of FIG. 12 will be described.

【0100】まず、Siウエハ表面の有機物汚染や重金
属汚染などをH2 SO4 /H2 2やHCl/H2 2
液などを用いたウエット処理により除去する。この処理
により、ウエハ表面には自然酸化膜が形成された。次
に、このウエハを図12に示した前処理室510内の試
料台514上に載置し、内部を窒素で置換した後、ガス
導入口511から窒素で希釈したHFガスとCH3 OH
ガスを導入し、約5分保持した。
First, the contamination of organic substances and the contamination of heavy metals on the surface of the Si wafer is confirmed by H 2 SO 4 / H 2 O 2 and HCl / H 2 O 2.
It is removed by a wet process using a liquid or the like. By this treatment, a natural oxide film was formed on the wafer surface. Next, this wafer is placed on the sample stage 514 in the pretreatment chamber 510 shown in FIG. 12, the inside is replaced with nitrogen, and then HF gas diluted with nitrogen and CH 3 OH are introduced from the gas inlet 511.
Gas was introduced and held for about 5 minutes.

【0101】続いて、正電極515に+0.5V、負電
極516に−0.5Vのバイアスをかけ、試料の素子形
成表面の電位を正電極515よりも負に保ちながら、前
記窒素で希釈したHFガスとCH3 OHガスを排気し、
前処理室510内部を再び窒素で置換した。これらの処
理によりSiウエハ表面の自然酸化膜は除去され、水素
で覆われた。
Subsequently, the positive electrode 515 was biased with +0.5 V and the negative electrode 516 was biased with −0.5 V, and the sample was diluted with nitrogen while keeping the potential of the element formation surface more negative than that of the positive electrode 515. Exhausting HF gas and CH 3 OH gas,
The inside of the pretreatment chamber 510 was replaced with nitrogen again. By these processes, the natural oxide film on the surface of the Si wafer was removed and covered with hydrogen.

【0102】次に、Siウエハを、ゲートバルブ530
を介して、予め内部が窒素で置換された熱酸化室520
に搬送した。熱酸化室520内部でSiウエハを900
℃まで加熱すると共にガス導入口521から窒素希釈の
酸素ガスを導入し、約60分保持した後、再びSiウエ
ハを前処理室510に搬送し、取り出した。これらの処
理により厚さ約3nmの熱酸化膜がSiウエハ表面に形
成された。このようにして形成した熱酸化膜の絶縁破壊
耐圧を測定したところ、約95%が8MV/cm以上の耐
圧を示した。
Next, the Si wafer is treated with a gate valve 530.
Through the thermal oxidation chamber 520 whose interior is previously replaced with nitrogen.
Transported to. 900 Si wafers inside the thermal oxidation chamber 520
After heating to 0 ° C. and introducing oxygen gas diluted with nitrogen from the gas introduction port 521 and holding for about 60 minutes, the Si wafer was again conveyed to the pretreatment chamber 510 and taken out. By these treatments, a thermal oxide film having a thickness of about 3 nm was formed on the Si wafer surface. When the breakdown voltage of the thermal oxide film thus formed was measured, about 95% showed a breakdown voltage of 8 MV / cm or more.

【0103】これに対して自然酸化膜除去処理の際、バ
イアスを掛けずにHF/N2 ,CH3 OHガスを排気し
たものは、絶縁耐圧の値が非常にばらついており、約2
0%が8MV/cm以下であった。これは自然酸化膜除
去の際に表面にフッ素が残留し、このフッ素が酸化膜の
膜質を低下させたり、厚さを不均一にしたためと考えら
れる。このように本実施例方法を用いることにより、絶
縁耐圧の高い、良質のSi熱酸化膜を形成することがで
きた。
On the other hand, in the natural oxide film removal treatment, the HF / N 2 and CH 3 OH gas was exhausted without applying a bias, and the value of the withstand voltage was extremely varied, and the value was about 2
0% was 8 MV / cm or less. It is considered that this is because fluorine remained on the surface when the natural oxide film was removed, and this fluorine deteriorated the film quality of the oxide film or made the thickness uneven. As described above, by using the method of this example, a high-quality Si thermal oxide film having a high withstand voltage could be formed.

【0104】なお、第13〜第21の実施例ではいずれ
も試料に対向して電極を設け、この電極に対して試料の
電位を負に保ったが、接地電位や容器器壁に対して負に
なるよう保持してもよい。また、自然酸化膜を除去する
材料としては、SiやAl合金に限らず、他の半導体や
金属、金属シリサイド等でもよい。また、自然酸化膜を
除去する方法としては、HF水溶液,NH4 F,NH4
Cl,HF/H2 O,HF/N2 +CH3OH以外の、
ハロゲン化水素を含む気体,液体,固体を用いてもよ
い。また、自然酸化膜除去後の処理としては、酸化,推
積,結晶成長に限らず、エッチングや不純物拡散などを
行ってもよい。さらに、自然酸化膜を除去した表面は水
素で覆われるが、この水素は実施例で述べたように、W
6 などの中性ガスと反応させたり、加熱によって除去
できるが、光照射や電子照射、イオン照射などにより除
去してもよい。
In each of the thirteenth to twenty-first embodiments, an electrode is provided so as to face the sample and the potential of the sample is kept negative with respect to this electrode, but it is negative with respect to the ground potential or the container wall. You may hold so that. Further, the material for removing the natural oxide film is not limited to Si or Al alloy, but may be other semiconductor, metal, metal silicide, or the like. Further, as a method for removing the natural oxide film, an HF aqueous solution, NH 4 F, NH 4 is used.
Other than Cl, HF / H 2 O, HF / N 2 + CH 3 OH,
A gas, liquid or solid containing hydrogen halide may be used. Further, the processing after the removal of the natural oxide film is not limited to oxidation, deposition, crystal growth, and etching or impurity diffusion may be performed. Further, the surface from which the natural oxide film has been removed is covered with hydrogen, and this hydrogen is W as described in the embodiment.
Although it can be removed by reacting with a neutral gas such as F 6 or by heating, it may be removed by light irradiation, electron irradiation, ion irradiation or the like.

【0105】[0105]

【発明の効果】以上詳述したように、本発明を用いるこ
とで半導体や金属表面のハロゲンを除去することがで
き、選択CVDの選択性の向上、接触抵抗の低いコンタ
クトホールやヴィアホールの埋め込み、熱酸化膜や結晶
の膜質向上、不純物拡散の均一性向上などが行え、半導
体素子の電気的特性が向上する。また、Al合金などの
配線の腐食を抑制することができるため、半導体素子製
造の歩留まりが向上する。さらに、反応容器や真空部
品,配管の腐食も抑制できるため、これらの寿命を延ば
し、また腐食により生じるリークなどをなくすことがで
きる。
As described in detail above, by using the present invention, halogen on the surface of a semiconductor or a metal can be removed, the selectivity of selective CVD is improved, and contact holes or via holes with low contact resistance are buried. Further, the film quality of the thermal oxide film or the crystal can be improved, the uniformity of the impurity diffusion can be improved, and the electrical characteristics of the semiconductor element can be improved. In addition, since the corrosion of the wiring such as the Al alloy can be suppressed, the yield of manufacturing the semiconductor element is improved. Further, since it is possible to suppress the corrosion of the reaction container, the vacuum component, and the piping, it is possible to extend the life of these and to eliminate the leakage caused by the corrosion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例方法に使用した表面処理
装置の概略構成を示す断面図、
FIG. 1 is a sectional view showing a schematic configuration of a surface treatment apparatus used in a method of a first embodiment of the present invention,

【図2】第1の実施例方法を説明するための工程断面
図、
2A to 2C are process cross-sectional views for explaining the first embodiment method,

【図3】第3〜第5の実施例方法で用いる表面処理装置
の概略構成を示す断面図、
FIG. 3 is a cross-sectional view showing a schematic configuration of a surface treatment apparatus used in the methods of the third to fifth embodiments,

【図4】第3の実施例方法を説明するための工程断面
図、
FIG. 4 is a process sectional view for explaining a third embodiment method,

【図5】第6の実施例方法に使用した表面処理装置の概
略構成を示す断面図、
FIG. 5 is a cross-sectional view showing a schematic configuration of a surface treatment apparatus used in a sixth embodiment method,

【図6】第6の実施例方法を説明するための工程断面
図、
FIG. 6 is a process sectional view for explaining a sixth embodiment method,

【図7】第7の実施例方法を説明するための工程断面
図、
FIG. 7 is a process sectional view for explaining a method according to a seventh embodiment,

【図8】第13の実施例に係わる表面処理装置の概略構
成を示す断面図、
FIG. 8 is a sectional view showing a schematic configuration of a surface treatment apparatus according to a thirteenth embodiment,

【図9】第14の実施例に係わる表面処理装置の概略構
成を示す断面図、
FIG. 9 is a sectional view showing a schematic structure of a surface treatment apparatus according to a fourteenth embodiment,

【図10】第15の実施例方法を説明するための工程断
面図、
FIG. 10 is a process sectional view for explaining the method of the fifteenth embodiment;

【図11】第16の実施例に係わる表面処理装置の概略
構成を示す断面図、
FIG. 11 is a sectional view showing a schematic configuration of a surface treatment apparatus according to a sixteenth embodiment,

【図12】第20の実施例に係わるSiの熱酸化装置の
概略構成を示す断面図、
FIG. 12 is a sectional view showing a schematic configuration of a Si thermal oxidation device according to a twentieth embodiment,

【符号の説明】[Explanation of symbols]

10,30,50…試料(被処理基体)、 11,51…反応容器、 13,35,52…試料台、 15,34,39…ヒータ、 16,37a,38a,53a,53b…ガス導入口、 17,37b,38b,53c…ガス排気口、 20,40,60,70…Si基板、 25,41,76…自然酸化膜、 26,42…ハロゲン化物層、 31…処理室、 32…プロセス室、 33…ゲートバルブ、 36…電子線源、 44,64,65,66,78…ClやFの汚染層、 54…放電管、 55…導波管。 10, 30, 50 ... Sample (substrate to be processed), 11, 51 ... Reaction vessel, 13, 35, 52 ... Sample stand, 15, 34, 39 ... Heater, 16, 37a, 38a, 53a, 53b ... Gas inlet, 17, 37b, 38b, 53c ... Gas exhaust port, 20, 40, 60, 70 ... Si substrate, 25, 41, 76 ... Natural oxide film, 26, 42 ... Halide layer, 31 ... Processing room, 32 ... Process room, 33 ... Gate valve, 36 ... electron beam source, 44, 64, 65, 66, 78 ... Contamination layer of Cl or F, 54 ... Discharge tube, 55 ... Waveguide.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともハロゲン元素を含むガスを用い
た処理工程を経た被処理基体の表面に、COガス,NO
ガス,及び分子内に水素元素,CO,NOの少なくとも
一つを含む化合物ガスの少なくとも一つを含むガスを接
触させることを特徴とする表面処理方法。
1. A surface of a substrate to be treated which has been subjected to a treatment process using a gas containing at least a halogen element, CO gas and NO.
A surface treatment method comprising contacting a gas and a gas containing at least one compound gas containing at least one of hydrogen element, CO and NO in the molecule.
【請求項2】被処理基体の表面に形成された自然酸化膜
を少なくともハロゲン元素を含むガスを用いて除去する
工程と、次いで前記被処理基体を大気に晒すことなく、
該基体表面にCOガス,NOガス,及び分子内に水素元
素,CO,NOの少なくとも一つを含む化合物ガスの少
なくとも一つを含むガスを接触させる工程と、次いで前
記被処理基体を大気に晒すことなく、該基体の表面に所
定の薄膜を形成する工程とを含むことを特徴とする表面
処理方法。
2. A step of removing a natural oxide film formed on the surface of a substrate to be treated using a gas containing at least a halogen element, and then exposing the substrate to be treated to the atmosphere,
Contacting the surface of the substrate with CO gas, NO gas, and gas containing at least one compound gas containing at least one of hydrogen element, CO, and NO in the molecule, and then exposing the substrate to be treated to the atmosphere And a step of forming a predetermined thin film on the surface of the base body without any treatment.
【請求項3】少なくともハロゲン元素を含むガスを用い
た処理工程を経た被処理基体の表面に、電子線を照射す
ることを特徴とする表面処理方法。
3. A surface treatment method, which comprises irradiating an electron beam onto the surface of a substrate to be treated which has undergone a treatment step using a gas containing at least a halogen element.
JP03157058A 1991-06-27 1991-06-27 Surface treatment method Expired - Lifetime JP3086719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03157058A JP3086719B2 (en) 1991-06-27 1991-06-27 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03157058A JP3086719B2 (en) 1991-06-27 1991-06-27 Surface treatment method

Publications (2)

Publication Number Publication Date
JPH056880A true JPH056880A (en) 1993-01-14
JP3086719B2 JP3086719B2 (en) 2000-09-11

Family

ID=15641294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03157058A Expired - Lifetime JP3086719B2 (en) 1991-06-27 1991-06-27 Surface treatment method

Country Status (1)

Country Link
JP (1) JP3086719B2 (en)

Cited By (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838391B2 (en) 1998-05-29 2005-01-04 Osram Opto Semiconductors Gmbh & Co. Ohg Method of semiconductor processing including fluoride
WO2007046204A1 (en) * 2005-10-19 2007-04-26 Tokyo Electron Limited Substrate treating apparatus, method of substrate treatment, program, and recording medium in which program is recorded
JP2007520879A (en) * 2004-01-14 2007-07-26 東京エレクトロン株式会社 Method for trimming gate electrode
JP2007217296A (en) * 2006-02-14 2007-08-30 Central Glass Co Ltd Method for surface-treating organosilane-producing device or preserving container
WO2008108369A1 (en) * 2007-03-08 2008-09-12 Tokyo Electron Limited Method for manufacturing semiconductor device and recording medium
JP2009158774A (en) * 2007-12-27 2009-07-16 Tokyo Electron Ltd Substrate processing method, substrate processing apparatus and storage medium
JP2017069313A (en) * 2015-09-29 2017-04-06 株式会社日立国際電気 Method for manufacturing semiconductor device, apparatus for processing substrate, gas-supply system and program
JP2018059182A (en) * 2016-07-19 2018-04-12 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Selective deposition of tungsten
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838391B2 (en) 1998-05-29 2005-01-04 Osram Opto Semiconductors Gmbh & Co. Ohg Method of semiconductor processing including fluoride
US6864112B1 (en) 1998-05-29 2005-03-08 Osram Opto Semiconductors Gmbh & Co. Ohg Method of production of a patterned semiconductor layer
JP2007520879A (en) * 2004-01-14 2007-07-26 東京エレクトロン株式会社 Method for trimming gate electrode
WO2007046204A1 (en) * 2005-10-19 2007-04-26 Tokyo Electron Limited Substrate treating apparatus, method of substrate treatment, program, and recording medium in which program is recorded
JP2007115797A (en) * 2005-10-19 2007-05-10 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, program, and recording medium having program
JP2007217296A (en) * 2006-02-14 2007-08-30 Central Glass Co Ltd Method for surface-treating organosilane-producing device or preserving container
WO2008108369A1 (en) * 2007-03-08 2008-09-12 Tokyo Electron Limited Method for manufacturing semiconductor device and recording medium
JP2008226924A (en) * 2007-03-08 2008-09-25 Tokyo Electron Ltd Manufacturing method of semiconductor device, and recording medium
JP2009158774A (en) * 2007-12-27 2009-07-16 Tokyo Electron Ltd Substrate processing method, substrate processing apparatus and storage medium
US8991333B2 (en) 2007-12-27 2015-03-31 Tokyo Electron Limited Substrate processing method and system
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
JP2017069313A (en) * 2015-09-29 2017-04-06 株式会社日立国際電気 Method for manufacturing semiconductor device, apparatus for processing substrate, gas-supply system and program
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
JP2018059182A (en) * 2016-07-19 2018-04-12 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Selective deposition of tungsten
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Also Published As

Publication number Publication date
JP3086719B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP3086719B2 (en) Surface treatment method
US5030319A (en) Method of oxide etching with condensed plasma reaction product
JP2981243B2 (en) Surface treatment method
US5885361A (en) Cleaning of hydrogen plasma down-stream apparatus
US5620559A (en) Hydrogen radical processing
US5022961A (en) Method for removing a film on a silicon layer surface
US6589890B2 (en) Precleaning process for metal plug that minimizes damage to low-κ dielectric
US6329298B1 (en) Apparatus for treating samples
JP3400293B2 (en) CVD apparatus and cleaning method thereof
JP2000236021A (en) Method for burying contact hole in semiconductor device
US5332444A (en) Gas phase cleaning agents for removing metal containing contaminants from integrated circuit assemblies and a process for using the same
US6914208B2 (en) Method for semiconductor wafer etching
US6664184B2 (en) Method for manufacturing semiconductor device having an etching treatment
JPH0817815A (en) Method for manufacturing semiconductor device and methods for treating, analyzing, and manufacturing semiconductor substrate
JPH0496226A (en) Manufacture of semiconductor device
JP4058669B2 (en) Method for forming conductive silicide layer on silicon substrate and method for forming conductive silicide contact
JPH0629264A (en) Surface treatment
JPH03204932A (en) Removal of coating film on silicon layer and selective removal of silicon natural oxide film
JPH03129731A (en) Cleaning of substrate surface after removal treatment of oxide film and the like
JPH0360123A (en) Surface treatment and device therefor
JPH0239523A (en) Method of forming film on semiconductor substrate
JP2544129B2 (en) Plasma processing device
JP2983244B2 (en) Surface treatment method
JPH06349801A (en) Surface treatment method
JPS6276632A (en) Surface treatment device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100707