JPH0567730B2 - - Google Patents
Info
- Publication number
- JPH0567730B2 JPH0567730B2 JP4236386A JP4236386A JPH0567730B2 JP H0567730 B2 JPH0567730 B2 JP H0567730B2 JP 4236386 A JP4236386 A JP 4236386A JP 4236386 A JP4236386 A JP 4236386A JP H0567730 B2 JPH0567730 B2 JP H0567730B2
- Authority
- JP
- Japan
- Prior art keywords
- water glass
- grout
- injected
- cement
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011440 grout Substances 0.000 claims description 58
- 238000002347 injection Methods 0.000 claims description 55
- 239000007924 injection Substances 0.000 claims description 55
- 235000019353 potassium silicate Nutrition 0.000 claims description 51
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 43
- 239000000376 reactant Substances 0.000 claims description 32
- 239000004568 cement Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 10
- 230000035699 permeability Effects 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000004576 sand Substances 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 238000009472 formulation Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000002386 leaching Methods 0.000 description 3
- 238000009738 saturating Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
〔産業上の利用分野〕
本発明は水ガラスを用いた地盤注入工法に係
り、特に一体化された強固な地盤を形成し得る地
盤注入工法に関する。
〔従来技術とその問題点〕
水ガラスを用いた地盤注入工法として、従来、
セメントグラウトあるいはセメント−水ガラスグ
ラウトを一次注入したあと、水ガラスグラウトを
二次注入する工法が知られている。しかし、この
工法では一次注入材は地盤中の粗い部分にのみ浸
透して細い部分には浸透し得ず、したがつて、地
盤を拘束するための粗詰注入としての効果しか奏
し得ず、細粒土部分において二次注入材との化学
反応を期待し得ないものである。
また、一次注入材として瞬結性グラウトを注入
してから緩結性グラウトを二次注入する工法もま
た知られている。この一次注入材は地盤の粗い部
分に脈状注入されて細い部分には浸透され得ず、
したがつて両グラウトの地盤中における化学反応
は期待できないものであつた。
さらに、地盤中にあらかじめ反応剤を注入して
おき、その後この注入領域に中性水ガラスグラウ
トを注入する工法も知られている。しかし、この
方法では中性水ガラスグラウトのゲル化時間が短
いためグラウトが土粒子間に浸透し難く、このた
め地盤中の細粒土部分で前記グラウトと反応剤と
の反応が起り難く、細粒土地盤の改良が不充分で
ある。
さらに、水ガラスの注入に際してストレーナ注
入管を打ち込み、この注入管を通じて塩化カルシ
ウムを注入しながら該注入管を引き上げ、地盤中
で水ガラスと塩化カルシウムを反応させる工法も
また、知られている。しかし、この工法では塩化
カルシウムの注入の際に高粘度の水ガラスが外側
に押し出され、注入管まわりの一定範囲で水ガラ
スと塩化カルシウムによる固結が不均質になつて
しまう。
〔発明の目的〕
しかして、本発明の目的は一体化された強固な
地盤を形成し、前述の公知技術に存する欠点を改
良した地盤注入工法を提供することにある。
〔発明の要点〕
前述の目的を達成するため、本発明によれば、
地盤中に浸透性の悪いグラウトをまず、地盤中に
注入し、次いでこの注入領域に非セメント系反応
剤配合液を注入し、その後さらに注入領域にPHが
9以上の浸透性の良い水ガラスグラウトを注入す
ることを特徴とする。
〔発明の具体的説明〕
本発明を完成するに至つた経緯を説明すると以
下のとおりである。
(1) アルカリ領域の非セメント系水ガラスグラウ
トで固結したサンドゲルは養生水中に浸漬して
おくと水ガラスのシリカ分が時間とともに溶脱
して強度が経日的に大幅に低下する。特にゲル
化時間を長くするために反応剤の量を少なくし
た場合には数十日以内で崩壊してしまう。とこ
ろがこのようなサンドゲルでも非セメント系反
応剤配合液からなる養生水中では強度の低下が
見られず、むしろ強度は経日的に増大してい
く。
(2) セメント固結物あるいはセメント−水ガラス
ゲル化物中に上記サンドゲルを養生しても強度
の改善は得られない。
(3) 砂を填充した水槽中にあらかじめ非セメント
系反応剤配合液を浸透させておき、その後非セ
メント系中性水ガラスグラウトおよびPH9以上
のアルカリ性非セメント系水ガラスグラウト
(これらはいずれも同一水ガラス濃度で同一ゲ
ルタイム)をそれぞれ同一注入圧力で注入した
ところ、後者の方が浸透範囲が著しく大きかつ
た。
(4) 砂を填充した水槽中に非セメント系反応剤配
合液をあらかじめ浸透させておき、その後水ガ
ラス水溶液およびPH9以上のアルカリ性非セメ
ント系水ガラスグラウトを前述(3)と同じ条件で
注入したところ、後者の方が均質で充分大きな
固結強度の固結体を得た。
(5) 砂を填充した水槽中に水ガラス水溶液および
PH9以上の非セメント系水ガラスグラウトをそ
れぞれ浸透させ、次いでこれらがゲル化しない
うちに反応剤水溶液を注入したところ、注入領
域によつては均質な固結体が得られず、かつ充
分な強度も得られなかつた。
(6) 砂を填充した水槽中に非セメント系反応剤配
合液をあらかじめ浸透させておき、その後PH9
以上のアルカリ性を呈する非セメント系水ガラ
スグラウトを前述と同じ条件で注入したとこ
ろ、均質でかつ経日的強度が著しく改善された
固結体を得た。
(7) 砂を填充した水槽中にあらかじめセメントグ
ラウトあるいはセメント−水ガラスグラウトを
注入しておき、その後PH9以上のアルカリ性を
呈する非セメント系水ガラスグラウトを前述と
同様な条件で注入したところ、固結体の経日的
強度改善は達成されなかつた。
(8) 砂を填充した水槽中に非セメント系反応剤水
溶液をあらかじめ浸透させておき、その後セメ
ント系グラウトあるいはセメント−水ガラスグ
ラウトを前述と同様な条件で注入したところ、
脈状の固結体しか得られず、サンドゲルはほと
んど得られなかつた。
(9) 実際の施工において透水性の異なる複雑な互
層よりなる地盤中に非セメント系反応剤水溶液
を注入しておいてから、PH9以上の水ガラスグ
ラウト注入したところ耐久性の改善は殆ど得ら
れなかつた。
(10) 実際の地盤中に一次注入としてセメントグラ
ウト、セメント−水ガラスグラウトあるいは瞬
結性水ガラスグラウトを注入しておいてから非
セメント系反応剤水溶液を注入した上で、PH9
以上の水ガラスグラウトを二次注入したとこ
ろ、耐久性の著しい改善が見られた。
上述の(1)乃至(10)の経緯により本発明にかかる前
述の目的は次により達成される。
(イ) 一次注入として浸透性の悪いグラウトをま
ず、地盤中に注入する。このグラグトには懸濁
型グラウトも含む。この注入によつて地盤中の
粗い部分がまず填充され、これによりグラウト
の逸脱しやすい部分を閉束し、地盤を均質化す
る。
(ロ) 次いで非セメント系反応剤配合液を前記一次
注入された領域に注入し、これを細粒土部分ま
で土粒子間浸透させる。非セメント系反応剤配
合液は極めて浸透性がよいが、すでに一次注入
によつて逸脱しやすい部分が閉束されているた
め、注入された前記反応剤配合液は逸脱せずに
保持される。
(ハ) 二次注入としてPHが9以上の浸透性のよい水
ガラスグラウトを前記応動剤配合液の注入され
た領域に重ね合わせて注入する。このとき前記
水ガラスグラウトは注入圧力によつて上記反応
剤配合液を周辺に押し出し、これに置き換わつ
て土粒子間に浸透する。この際、水ガラスグラ
ウト浸透領域の周辺部がまず、前記反応剤配合
液によつて急速にゲル化し、次いで内部がゲル
化し、この結果、二次注入による固結部は反応
剤配合液中に浸透された状態となる。その後、
前記反応剤配合液が経時的に徐々に固結部中に
浸透して固結部中の未反応水ガラスと反応し、
水ガラス中の全てのシリカ分が析出して反応が
進行し、強度増加が達成される。
さらに、前記反応剤配合液は一次注入材にも
作用して一次注入材の強度増強あるいは耐久性
の向上も達成し、全体として一体化された強固
な地盤が形成される。
以下、本発明を実験により具体的に詳述する。
実験−1
3号ガラスと反応剤との混合液についてPHとゲ
ル化時間を測定し、結果を表−1に示す。
[Industrial Application Field] The present invention relates to a ground injection method using water glass, and more particularly to a ground injection method capable of forming an integrated and strong foundation. [Conventional technology and its problems] Conventionally, as a ground injection method using water glass,
A construction method is known in which cement grout or cement-water glass grout is firstly injected, and then water glass grout is secondarily injected. However, in this construction method, the primary injection material penetrates only into the rough parts of the ground and cannot penetrate into the thin parts, so it can only be effective as a rough filler to restrain the ground, and only into the fine parts. A chemical reaction with the secondary injection material cannot be expected in the granular soil area. Also known is a construction method in which instant setting grout is injected as a primary injection material and then slow setting grout is secondarily injected. This primary injection material is injected in veins into the rough parts of the ground and cannot penetrate into the thin parts.
Therefore, the chemical reaction of both grouts in the ground could not be expected. Furthermore, a method is also known in which a reactive agent is injected into the ground in advance, and then a neutral water glass grout is injected into the injection area. However, in this method, because the gelation time of the neutral water glass grout is short, it is difficult for the grout to penetrate between the soil particles, and therefore, the reaction between the grout and the reactant is difficult to occur in the fine-grained soil parts of the ground. Improvement of the granular ground is insufficient. Furthermore, there is also known a construction method in which a strainer injection pipe is driven in when water glass is injected, and calcium chloride is injected through the injection pipe while the injection pipe is pulled up to cause the water glass and calcium chloride to react in the ground. However, with this method, highly viscous water glass is pushed outward when calcium chloride is injected, resulting in non-uniform solidification of water glass and calcium chloride in a certain area around the injection pipe. [Object of the Invention] Therefore, the object of the present invention is to provide a ground injection method that forms an integrated and strong ground and improves the drawbacks of the above-mentioned known techniques. [Summary of the Invention] In order to achieve the above-mentioned object, according to the present invention,
First, a grout with poor permeability is injected into the ground, then a non-cement reaction agent mixture is injected into this injection area, and then a water glass grout with good permeability with a pH of 9 or higher is injected into the injection area. It is characterized by injecting. [Specific Description of the Invention] The circumstances leading to the completion of the present invention are as follows. (1) If sand gel solidified with non-cement water glass grout in the alkaline region is immersed in curing water, the silica content of the water glass will leach out over time and its strength will decrease significantly over time. In particular, if the amount of reactant is reduced in order to prolong the gelation time, the gel will collapse within several tens of days. However, even with this type of sand gel, no decrease in strength is observed in curing water made of a non-cement-based reactant mixture, but rather the strength increases over time. (2) Even if the above-mentioned sand gel is cured in cement cement or cement-water glass gel, no improvement in strength can be obtained. (3) Infiltrate a water tank filled with sand with a non-cement reaction agent mixture in advance, and then add non-cement neutral water glass grout and alkaline non-cement water glass grout with a pH of 9 or higher (both are the same). When water glass concentration and gel time) were injected at the same injection pressure, the latter had a significantly larger penetration range. (4) A non-cement reaction agent mixture solution was infiltrated in advance into a water tank filled with sand, and then a water glass solution and an alkaline non-cement water glass grout with a pH of 9 or higher were injected under the same conditions as in (3) above. However, the latter was more homogeneous and had a sufficiently large solidification strength. (5) Water glass solution and
When non-cement water glass grout with a pH of 9 or higher was infiltrated and then a reactant aqueous solution was injected before the grout gelled, a homogeneous solid could not be obtained depending on the injection area and the strength was insufficient. I couldn't even get it. (6) Infiltrate the non-cement reaction agent mixture into a water tank filled with sand, and then adjust the pH to 9.
When the above alkaline non-cement water glass grout was injected under the same conditions as above, a homogeneous solid with significantly improved strength over time was obtained. (7) When cement grout or cement-water glass grout was injected in advance into a water tank filled with sand, and then non-cement water glass grout, which is alkaline with a pH of 9 or higher, was injected under the same conditions as above, solidification was observed. No improvement in the strength of the body over time was achieved. (8) When a non-cement based reactant aqueous solution was pre-infiltrated into a water tank filled with sand, and then cement based grout or cement-water glass grout was injected under the same conditions as above.
Only vein-like solids were obtained, and almost no sand gel was obtained. (9) In actual construction, when a non-cement reactant aqueous solution is injected into the ground, which consists of complex alternating layers with different permeability, and water glass grout with a pH of 9 or higher is injected, almost no improvement in durability is obtained. Nakatsuta. (10) Inject cement grout, cement-water glass grout, or instant setting water glass grout into the actual ground as the primary injection, then inject the non-cement reactant aqueous solution, and then
When the above water glass grout was injected secondarily, a significant improvement in durability was observed. Based on the circumstances described in (1) to (10) above, the above-mentioned objects of the present invention are achieved as follows. (b) As the primary injection, grout with poor permeability is first injected into the ground. This type of grout also includes suspended grout. This injection first fills the rough areas in the ground, thereby sealing up areas where the grout is likely to deviate and homogenizing the ground. (b) Next, a non-cement based reactant mixture is injected into the area where the first injection was performed, and is allowed to penetrate between the soil particles up to the fine-grained soil portion. Although the non-cement based reactant mixture has extremely good permeability, the parts that are likely to escape are already confined by the primary injection, so the injected reactant mixture is retained without escaping. (c) As a secondary injection, water glass grout with good permeability and a pH of 9 or more is injected in a manner overlapping the area into which the reactive agent mixture has been injected. At this time, the water glass grout pushes out the reactant mixture liquid to the periphery by the injection pressure, and permeates between the soil particles to replace it. At this time, the peripheral part of the water glass grout permeation area is first rapidly gelled by the reactant mixture, and then the inside is gelled, and as a result, the solidified part due to the secondary injection is immersed in the reactant mixture. It becomes infiltrated. after that,
The reactant mixture gradually penetrates into the solidified portion over time and reacts with unreacted water glass in the solidified portion,
All the silica in the water glass is precipitated, the reaction progresses, and an increase in strength is achieved. Furthermore, the reactant mixture also acts on the primary injection material, thereby increasing the strength or improving the durability of the primary injection material, thereby forming a solid foundation that is integrated as a whole. Hereinafter, the present invention will be specifically explained in detail through experiments. Experiment-1 The pH and gelation time of the mixed solution of No. 3 glass and the reactant were measured, and the results are shown in Table-1.
【表】【table】
【表】
実験−2
表−1中の配合No.6、10、13、16および23の試
料を用いて標準砂を固結し、得られた供試体(直
径5cm、長さ10cm)を水導水1中で養生して養
生水中のSiO2含有量を測定し、これにより固結
薬液中のSiO2総量に対する溶脱SiO2量の累計を
測定し、溶脱率の経日的変化を調べた。(表−2)
表−2中の数字は溶脱率(%)/一軸圧縮強度
(Kg/cm2)である。また表−2中、「−」は崩壊を
表す。[Table] Experiment 2 Standard sand was consolidated using samples of composition Nos. 6, 10, 13, 16, and 23 in Table 1, and the resulting specimens (diameter 5 cm, length 10 cm) were soaked in water. The SiO 2 content in the curing water was measured after curing in water introduction 1, and the cumulative amount of leached SiO 2 relative to the total amount of SiO 2 in the solidification chemical solution was measured, and changes over time in the leaching rate were investigated. (Table-2)
The numbers in Table 2 are leaching rate (%)/uniaxial compressive strength (Kg/cm 2 ). Moreover, in Table-2, "-" represents collapse.
【表】
実験−3
実験−2における養生水として塩化アルミニウ
ムの20重量%液を用いて同様の実験を行い3結果
を表−3に示した。[Table] Experiment 3 A similar experiment was conducted using a 20% by weight solution of aluminum chloride as the curing water in Experiment 2, and the results are shown in Table 3.
【表】
実験−4
実験−2と同様な方法で配合No.10を用いて固結
したサンドゲル(固結標準砂)を種々の反応剤の
20重量%液で養生して、28日後のSiO2の溶脱率
と強度を測定し、結果を表−4に示した。[Table] Experiment-4 Sand gel (consolidated standard sand) consolidated using formulation No. 10 in the same manner as in Experiment-2 was mixed with various reactants.
After curing with a 20% by weight solution, the SiO 2 leaching rate and strength were measured after 28 days, and the results are shown in Table 4.
【表】【table】
【表】
実験−5
実験−2と同様な方法で養生水中にポルトラン
ドセメント100gを混入してのち配合No.10のサン
ドゲルを養生し、28日後の一軸圧縮強度を測定し
たところ1.6Kg/cm2を示した。このことから耐久
性に関する改良効果は得られないことがわかる。
実験−6
実験−5と同じ方向を用いて配合No.11のゲル化
物100cm3を砕いて養生水中に混入した。また、セ
メント−水ガラスゲル化物100cm3を砕いて養生水
中に混入した。セメント−水ガラスのゲル化物
100cm3当たりの配合は、
3号水ガラス 25c.c.
セメント 50g
水 残り
である。
これらについて28日後の一軸圧縮強度を測定し
たところ、配合No.11は1.5Kg/cm2を示し、セメン
ト−水ガラスのゲル化物は1.6Kg/cm2を示した。
これらはいずれも耐久性に関する改良効果を奏し
得なかつた。
実験−7
水槽の砂を20%塩化カルシウム溶液で飽和させ
てから配合No.15、16のグラウトを30cmの水頭差で
浸透しなくなるまで注入し、1週間後に固結体の
大きさを調べたところ、配合No.15では直径約20
cm、配合No.16では直径約45cmの固結径が得られ、
配合No.16の方が著しい浸透効果を示している。
同様な実験を配合No.19、20を用いて行つたとこ
ろ、配合No.19の直径は約15cm、配合No.20の直径は
約23cmであつた。
以上より、同一条件でありながら、PHが中性で
は浸透範囲が狭いのに対し、PHが9以上のアルカ
リ性では浸透範囲が極めて広くなることがわかつ
た。これは注入液がゲル化用反応剤の含まれた水
ガラス配合液でかつPHがアルカリ性である場合に
は注入液中のアルカリの存在のために地盤中の反
応剤と注入液との反応がゆるやかになるためと思
われる。
実験−8
実験−7と同様にして、20容量%の3号水ガラ
ス水溶液と、配合No.21のグラウトを注入した。前
者では直径10〜25cmの不均質な固結体が得られた
のに対し、後者では直径30cmのほぼ球体の固結体
が得られた。また、前者の一軸圧縮強度は5Kg/
cm2であつたのに対し、後者のそれは9.5Kg/cm2で
あつた。
以上より、注入液はPHが9以上でかつゲル化用
反応剤の含まれた配合液であることが均質でかつ
強固に固結するために必要であることがわかる。
実験−9
水槽中の砂を20容量%の3号水ガラス水溶液で
飽和して30cmの水頭差で20%塩化カルシウム溶液
を注入してのち、一週間後の注入孔まわりの固結
体強度を測定したところ、2Kg/cm2の一軸圧縮強
度を示した。また、同様にして水槽中の砂を配合
No.21の配合液で飽和してのち、配合液がゲル化し
ないうちに20%塩化カルシウム溶液を注入し、一
週間後の注入孔まわりの固結体強度を測定したと
ころ、2.6Kg/cm2の一軸圧縮強度を示した。
これより水ガラス配合液を注入しておいてから
反応剤を注入すると、反応剤によつて水ガラス配
合液が外側に押し出されて注入管まわりの水ガラ
ス濃度がうすくなり強度が低くなるのに対し、実
験−8のように逆の場合は注入管まわりの水ガラ
ス配合液による固結体の内部に周辺部に位置する
反応剤が経日的に徐々に浸透して反応が進行する
ことがわかる。
実験−10
砂を填充した水槽中にセメントグラウト(100
c.c.当たりセメント50g、残り水)あるいはセメン
ト−水ガラスグラウト(実験−6と同じ)を500
c.c.を注入してのち、同一個所に配合No.10のグラウ
トを1注入し、その後一週間後に掘削し、注入
してから28日後の一軸圧縮強度を測定し、結果を
表−5に示した。[Table] Experiment-5 100g of Portland cement was mixed into the curing water in the same manner as in Experiment-2, and then the sand gel of composition No. 10 was cured, and the unconfined compressive strength after 28 days was measured to be 1.6Kg/cm 2 showed that. This shows that no improvement effect regarding durability can be obtained. Experiment 6 Using the same direction as Experiment 5, 100 cm 3 of the gelled material of formulation No. 11 was crushed and mixed into the curing water. In addition, 100 cm 3 of cement-water glass gel was crushed and mixed into the curing water. Cement - water glass gel
The composition per 100 cm3 is: No. 3 water glass 25 c.c. Cement 50 g Water The rest. When the unconfined compressive strength of these was measured after 28 days, Blend No. 11 showed 1.5 Kg/ cm2 , and cement-water glass gelatinized product showed 1.6 Kg/ cm2 .
None of these had any effect of improving durability. Experiment 7 After saturating the sand in the aquarium with a 20% calcium chloride solution, grouts of formulations No. 15 and 16 were injected with a water head difference of 30 cm until no longer penetrated, and the size of the solids was examined one week later. However, in formulation No. 15, the diameter is approximately 20
cm, and with formulation No. 16, a solidification diameter of approximately 45 cm was obtained.
Formulation No. 16 shows a more significant penetration effect. A similar experiment was conducted using Formulation Nos. 19 and 20, and the diameter of Formulation No. 19 was approximately 15 cm, and the diameter of Formulation No. 20 was approximately 23 cm. From the above, it was found that under the same conditions, when the pH is neutral, the permeation range is narrow, but when the pH is alkaline, 9 or higher, the permeation range is extremely wide. This is because if the injection liquid is a water glass mixture containing a gelling reactant and the pH is alkaline, the reaction between the reactant in the ground and the injection liquid will occur due to the presence of alkali in the injection liquid. This seems to be because it becomes more gradual. Experiment 8 In the same manner as Experiment 7, a 20% by volume aqueous solution of No. 3 water glass and grout of formulation No. 21 were injected. In the former case, a heterogeneous solid body with a diameter of 10 to 25 cm was obtained, whereas in the latter case, a nearly spherical solid body with a diameter of 30 cm was obtained. In addition, the unconfined compressive strength of the former is 5Kg/
cm2 , while that of the latter was 9.5Kg/ cm2 . From the above, it can be seen that it is necessary for the injection liquid to be a compounded liquid having a pH of 9 or higher and containing a gelling reactant in order to achieve homogeneous and strong solidification. Experiment-9 After saturating the sand in the aquarium with a 20% by volume aqueous No. 3 water glass solution and injecting a 20% calcium chloride solution with a water head difference of 30 cm, the strength of the solids around the injection hole was measured one week later. When measured, it showed an unconfined compressive strength of 2 Kg/cm 2 . Also, mix the sand in the aquarium in the same way.
After being saturated with the No. 21 mixture, a 20% calcium chloride solution was injected before the mixture gelled, and the strength of the solids around the injection hole was measured one week later, and the result was 2.6Kg/cm. It showed an unconfined compressive strength of 2 . If you inject the water glass mixture and then inject the reactant, the reactant will push the water glass mixture outward, which will dilute the water glass concentration around the injection tube and reduce its strength. On the other hand, in the opposite case as in Experiment 8, the reactant located in the periphery gradually penetrates into the solidified body of the water glass mixture around the injection tube over time, and the reaction progresses. Recognize. Experiment-10 Cement grout (100
50 g of cement per cc, remaining water) or 500 g of cement-water glass grout (same as Experiment 6)
After injecting cc, one grout of composition No. 10 was injected in the same place, excavated one week later, and the unconfined compressive strength was measured 28 days after the injection, and the results are shown in Table 5. .
【表】
表−5からセメントグラウトやセメント−水ガ
ラスグラウトを一次注入材として用いても二次注
入材の経日強度の改良はなされないことがわか
る。
実験−11
水槽中の砂を20%塩化カルシウム溶液で飽和さ
せてから実験−10のセメントグラウトならびにセ
メント−水ガラスグラウトを500c.c.注入し、一週
間後に掘削したが、脈状に固結しているだけで土
粒子間浸透による全体的な固結体は得られなかつ
た。すなわち、このような方法では土粒子間浸透
による固結効果の改善はなされないことがわかつ
た。
実験−12
水槽中の砂に20%塩化アルミニウム溶液を5
注入してから配合No.10の水ガラスグラウトを5
注入した場合(実験−A)、および配合No.10の水
ガラスグラウトを5注入してのち、ゲル化して
から20%塩化アルミニウム溶液を5注入した場
合(実験−B)の比較実験を行つた。
また20%塩化アルミニウム溶液を5注入して
から配合No.21の水ガラスグラウトを5注入した
場合(実験−C)、および配合No.21の水ガラスグ
ラウトを5注入してのちゲル化しないうちに20
%塩化アルミニウム溶液を5注入した場合(実
験−D)の試験も行つた。
注入後7日、28日および3ケ月後に注入管まわ
りを掘削し、試料を採取して一軸圧縮強度とPHを
測定し、結果を表−6に示した。[Table] Table 5 shows that even if cement grout or cement-water glass grout is used as the primary injection material, the aging strength of the secondary injection material will not be improved. Experiment-11 After saturating the sand in the water tank with a 20% calcium chloride solution, 500 c.c. of the cement grout and cement-water glass grout from Experiment-10 were injected, and excavation was carried out one week later, but the results solidified in veins. However, it was not possible to obtain an overall solidified body due to infiltration between soil particles. In other words, it was found that this method does not improve the consolidation effect due to penetration between soil particles. Experiment-12 Add 20% aluminum chloride solution to the sand in the aquarium.
After pouring, add 50% of water glass grout with formulation No. 10.
A comparative experiment was conducted in which the water glass grout of composition No. 10 was injected (experiment-A), and after gelling, 20% aluminum chloride solution was injected five times (experiment-B). . In addition, when 5 injections of 20% aluminum chloride solution and then 5 injections of water glass grout of formulation No. 21 were made (Experiment-C), and after injection of 5 water glass grouts of formulation No. 21 without gelation. to 20
A test was also conducted in which 5% aluminum chloride solution was injected (Experiment-D). Seven days, 28 days, and three months after injection, excavations were made around the injection pipe, samples were taken, and the unconfined compressive strength and pH were measured. The results are shown in Table 6.
【表】
表−6より経時的強度の増加、すなわち耐久性
は注入順序、固結物のPH、雰囲気等の大きな関係
があることがわかる。すなわち、あらかじめ反応
剤を注入してから水ガラスグラウトを注入する場
合には反応剤のPHが酸性の場合でもアルカリ性の
雰囲気下で水ガラスの重合が促進され、これが耐
久性の改善、強度増加に大きな影響を与える。こ
れに対して水ガラスグラウトを注入してのち酸性
反応剤を注入する場合には、固結物のPH値は酸性
乃至中性になり、強度の大幅な増加は生じない。
比較のために実験−Bにおいて、反応剤をあとか
ら注入しないで7日強度を測定したところ2.8、
1.5を示した。このことより実験−Bでは水ガラ
スグラウトを注入してゲル化後反応剤を注入する
と固結物は中性雰囲気になるが、固結物が破壊さ
れ、その後破壊部分が修復されにくく、このため
強度が低くなるものと思われる。
また、実験−Dでは水ガラスグラウトがゲル化
する前に酸性反応剤を注入すると、水ガラスグラ
ウトが外側に押し出されて注入管まわりは水ガラ
スグラウトよりも反応剤が主体となつて酸性乃至
中性雰囲気になり、注入管まわりに強固な固結物
が形成されにくくなることが示される。
実験−13
砂を填充した水槽中に一次注入材としてセメン
トグラウト(実験−10と同じ)、セメント−水ガ
ラスグラウト(実験−6と同じ)、表−1の配合
No.2、11、22を500c.c.注入した上で、表−4の反
応剤20重量%液を500c.c.注入し、次いで二次注入
材として表−1の配合No.6、10、13、16、21のグ
ラウトを1注入し、一週間後、28日後、3ケ月
後の一軸圧縮強度qu(Kg/cm2)を測定し、結果を
表−7に示した。[Table] From Table 6, it can be seen that the increase in strength over time, that is, durability, is largely related to the injection order, the pH of the solidified material, the atmosphere, etc. In other words, if you inject the reactant in advance and then inject the water glass grout, the polymerization of water glass will be promoted in an alkaline atmosphere even if the reactant's pH is acidic, which will improve durability and increase strength. make a big impact. On the other hand, when water glass grout is injected and then an acidic reactant is injected, the PH value of the solidified material becomes acidic or neutral, and the strength does not increase significantly.
For comparison, in Experiment B, the strength was measured for 7 days without injecting the reactant later, and the result was 2.8.
It showed 1.5. From this, in Experiment B, when water glass grout was injected and the reactant was injected after gelling, the solidified material became a neutral atmosphere, but the solidified material was destroyed, and the broken part was difficult to repair after that. It seems that the strength will be lower. In addition, in Experiment D, when the acidic reactant was injected before the water glass grout gelled, the water glass grout was pushed outward and the area around the injection tube was made up mainly of the reactant rather than the water glass grout, resulting in a medium to acidic state. This indicates that the atmosphere becomes more stable, making it difficult for hard caking to form around the injection tube. Experiment-13 Cement grout (same as Experiment-10), cement-water glass grout (same as Experiment-6), and the formulation in Table-1 as the primary injection material in a water tank filled with sand.
After injecting 500 c.c. of Nos. 2, 11, and 22, 500 c.c. of the 20% by weight solution of the reactant shown in Table 4 was injected, and then as secondary injection materials, the mixture No. 6 shown in Table 1, One grout of No. 10, 13, 16, or 21 was injected, and the unconfined compressive strength qu (Kg/cm 2 ) was measured one week, 28 days, and three months later, and the results are shown in Table 7.
上述の本発明は次の効果を奏し得る。
(1) ゲル化時間の長いアルカリ領域の水ガラスグ
ラウトの経日的強度が大幅に改善され、固結体
の耐久性が向上する。
(2) 充分に範囲の広い浸透固結効果を得る。
(3) 二次注入材の注入範囲外への逸脱を防止し、
所定範囲で均質な固結体を得る。
The present invention described above can have the following effects. (1) The long-term strength of water glass grout in the alkaline region, which has a long gelation time, is significantly improved, and the durability of the solid body is improved. (2) Obtain a sufficiently wide range of penetration and consolidation effects. (3) Preventing the secondary injection material from deviating outside the injection range,
Obtain a homogeneous solid within a predetermined range.
第1図および第2図はいずれも本発明工法を実
施するための注入管の一具体例を示す。
1……外管、2……内管、3……上部吐出口、
4……下部吐出口、7……バルブ、8……バネ。
FIG. 1 and FIG. 2 both show a specific example of an injection pipe for carrying out the construction method of the present invention. 1... Outer pipe, 2... Inner pipe, 3... Upper discharge port,
4... lower discharge port, 7... valve, 8... spring.
Claims (1)
し、次いでこの注入領域に非セメント系反応剤配
合液を注入し、その後さらにこの注入領域にPHが
9以上の浸透性の良い水ガラスグラウトを注入す
ることを特徴とする地盤注入工法。1 First, a grout with poor permeability is injected into the ground, then a non-cement based reactant mixture is injected into this injection area, and then water glass grout with good permeability with a pH of 9 or higher is added into this injection area. A ground injection method characterized by injection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4236386A JPS62202113A (en) | 1986-02-27 | 1986-02-27 | Ground grouting work |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4236386A JPS62202113A (en) | 1986-02-27 | 1986-02-27 | Ground grouting work |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62202113A JPS62202113A (en) | 1987-09-05 |
JPH0567730B2 true JPH0567730B2 (en) | 1993-09-27 |
Family
ID=12633952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4236386A Granted JPS62202113A (en) | 1986-02-27 | 1986-02-27 | Ground grouting work |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62202113A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6034530B1 (en) * | 2016-07-01 | 2016-11-30 | 東曹産業株式会社 | Method for producing adhesive grout and grout injection method |
-
1986
- 1986-02-27 JP JP4236386A patent/JPS62202113A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62202113A (en) | 1987-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0273445B1 (en) | Chemical grout for ground injection and method for accretion | |
JPH0330636B2 (en) | ||
JP3514614B2 (en) | Grout material and grouting method | |
JPH0567730B2 (en) | ||
JPS62172088A (en) | Ground grouting process | |
JPH024634B2 (en) | ||
US3626699A (en) | Grouting of soils | |
JPS6118593B2 (en) | ||
JP6474180B1 (en) | Method of pouring groundwater ground board into hardened grout | |
JPS5993788A (en) | Grauting method into ground | |
JPS5993787A (en) | Solidification of ground | |
JPS62253815A (en) | Ground grouting work | |
JPH0471956B2 (en) | ||
US3176471A (en) | Method of sealing or consolidating earthen formations | |
JPS594471B2 (en) | Cement Tomizu glass saw blade | |
JPH08269449A (en) | Grout for the ground and method for grouting the ground | |
JPH0525272B2 (en) | ||
JP3269687B2 (en) | Backfill injection method | |
JPH0243790B2 (en) | ||
JPS629154B2 (en) | ||
JPH0143797B2 (en) | ||
JPH07259073A (en) | Ground injecting material | |
JPH0457804B2 (en) | ||
JPH0232307B2 (en) | ||
JPS6247915B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |