JPS62202113A - Ground grouting work - Google Patents

Ground grouting work

Info

Publication number
JPS62202113A
JPS62202113A JP4236386A JP4236386A JPS62202113A JP S62202113 A JPS62202113 A JP S62202113A JP 4236386 A JP4236386 A JP 4236386A JP 4236386 A JP4236386 A JP 4236386A JP S62202113 A JPS62202113 A JP S62202113A
Authority
JP
Japan
Prior art keywords
injected
grout
water glass
cement
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4236386A
Other languages
Japanese (ja)
Other versions
JPH0567730B2 (en
Inventor
Kenji Kashiwara
栢原 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP4236386A priority Critical patent/JPS62202113A/en
Publication of JPS62202113A publication Critical patent/JPS62202113A/en
Publication of JPH0567730B2 publication Critical patent/JPH0567730B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form integrated strong ground by a method in which a grout having a poor permeability is first injected and then a water-glass grout having good permeability is injected. CONSTITUTION:The ground is excavated to a given depth by sending boring water from the lower outlet 4 of an inner tube 2. A grout having a poor permeability is injected from an outer tube 1 and then a non-cement reactant-mixed liquid is injected from the upper outlet 3 into the ground. A water glass grout having good permeability, whose pH value is regulated to 9 or move, is then injected from the lower outlet 4 through the inner tube 2 into the ground. The escape of the water glass grout to the outside of the injection range can be prevented, and therefore, uniform ground having excellent durability can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水ガラスを用いた地盤注入工法に係り、特に一
体化された強固な地盤を形成し得る地盤注入工法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ground injection method using water glass, and particularly to a ground injection method capable of forming an integrated and strong foundation.

〔従来技術とその問題点〕[Prior art and its problems]

水ガラスを用いた地盤注入工法として、従来、セメント
グラウトあるいはセメント−水ガラスグラウトを一次注
入したあと、水ガラスグラウトを二次注入する工法が知
られている。しかし、この工法では一次注入材は地盤中
の粗い部分にのみ浸透して細い部分には浸透し得す、し
たがって、地盤を拘束するための粗詰注入としての効果
しか奏し得す、細粒土部分において二次注入材との化学
反応を期待し得ないものである。
As a ground injection method using water glass, a method is conventionally known in which cement grout or cement-water glass grout is firstly injected, and then water glass grout is secondarily injected. However, in this method, the primary injection material penetrates only into the coarse parts of the ground and can penetrate into the thin parts, so it can only be used as a rough filling injection to restrain the ground, and fine-grained soil A chemical reaction with the secondary injection material cannot be expected in some parts.

また、−次注入材として瞬結性グラウトを注入してから
緩結性グラウトを二次注入する工法もまた知られている
。この−次注入材は地盤の粗い部分に脈状注入されて細
い部分には浸透され得す、したがって両グラウトの地盤
中における化学反応は期待できないものであった。
Also known is a construction method in which instant setting grout is injected as a secondary injection material and then slow setting grout is secondly injected. This secondary injection material could be injected in veins into the coarse parts of the soil and penetrated into the finer parts, so that chemical reactions of both grouts in the soil could not be expected.

さらに、地盤中にあらかじめ反応剤を注入しておき、そ
の後この注入領域に中性水ガラスグラウトを注入する工
法も知られている。しかし、この方法では中性水ガラス
グラウトのゲル化時間が短いためグラウトが土粒子間に
浸透し難く、このため地盤中の細粒土部分で前記グラウ
トと反応剤との反応が起り難り、細粒土地盤の改良が不
充分である。
Furthermore, a method is also known in which a reactive agent is injected into the ground in advance, and then a neutral water glass grout is injected into the injection area. However, in this method, the gelation time of the neutral water glass grout is short, so it is difficult for the grout to penetrate between the soil particles, and therefore, it is difficult for the grout to react with the reactant in the fine-grained soil part of the ground. Improvement of fine-grained soil is insufficient.

さらに、水ガラスの注入に際してストレーナ注入管を打
ち込み、この注入管を通じて塩化カルシウムを注入しな
がら該注入管を引き上げ、地盤中で水ガラスと塩化カル
シウムを反応させる工法もまた、知られている。しかし
、この工法では塩化カルシウムの注入の際に高粘度の水
ガラスが外側に押し出され、注入管まわりの一定範囲で
水ガラスと塩化カルシウムによる固結が不均質になって
しまう。
Furthermore, there is also known a construction method in which a strainer injection pipe is driven in when water glass is injected, and calcium chloride is injected through the injection pipe while the injection pipe is pulled up to cause the water glass and calcium chloride to react in the ground. However, with this method, highly viscous water glass is pushed outward when calcium chloride is injected, resulting in non-uniform solidification of water glass and calcium chloride in a certain area around the injection pipe.

〔発明の目的〕[Purpose of the invention]

しかして、本発明の目的は一体化された強固な地盤を形
成し、前述の公知技術に存する欠点を改良した地盤注入
工法を提供することにある。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a ground injection method that forms an integrated, strong foundation and improves the drawbacks of the above-mentioned known techniques.

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明によれば、地盤中に
浸透性の悪いグラウトをまず、地盤中に注入し、次いで
この注入領域に非セメント系反応剤配合液を注入し、そ
の後さらに注入領域にPHが9以上の浸透性の良い水ガ
ラスグラウトを注入することを特徴、とする。
In order to achieve the above-mentioned object, according to the present invention, a grout with poor permeability is first injected into the ground, and then a non-cementitious reactant mixture is injected into this injection area, followed by further injection. It is characterized by injecting water glass grout with good permeability and pH of 9 or higher into the area.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明を完成するに至った経緯を説明すると以下のとお
りである。
The circumstances that led to the completion of the present invention are as follows.

(1)アルカリ領域の非セメント系水ガラスグラウトで
固結したサンドゲルは養生水中に浸漬しておくと水ガラ
スのシリカ分が時間とともに溶脱して強度が経日的に大
幅に低下する。特にゲル化時間を長くするために反応剤
の量を少なくした場合には数十日収内で崩壊してしまう
。ところがこのようなサンドゲルでも非セメント系反応
剤水溶液からなる養生水中では強度の低下が見られず、
むしろ強度は経口的に増大していく。
(1) If sand gel solidified with non-cement water glass grout in the alkaline region is immersed in curing water, the silica content of the water glass will leach out over time and its strength will decrease significantly over time. In particular, if the amount of reactant is reduced in order to prolong the gelation time, the product will collapse within several tens of days. However, even with this type of sand gel, no decrease in strength was observed in curing water consisting of an aqueous solution of a non-cement based reactant.
Rather, the strength increases orally.

(2)セメント固結物あるいはセメント−水ガラスゲル
化物中に上記サンドゲルを養生しても強度の改善は得ら
れない。
(2) Even if the above-mentioned sand gel is cured in cement cement or cement-water glass gel, no improvement in strength can be obtained.

(3)砂を填充した水槽中にあらかじめ非セメント系反
応剤配合液を浸透させておき、その後非セメント系中性
水ガラスグラウトおよびPH9以上のアルカリ性非セメ
ント系水ガラスグラウト(これらはいずれも同−水ガラ
ス濃度で同一ゲルタイム)をそれぞれ同一注入圧力で注
入したところ、後者の方が21+透範囲が著しく大きか
った。
(3) Infiltrate a water tank filled with sand with a non-cement reaction agent mixture in advance, and then add non-cement neutral water glass grout and alkaline non-cement water glass grout with a pH of 9 or higher (both of these are the same). - water glass concentration and gel time) were respectively injected at the same injection pressure, and the 21+ permeability range was significantly larger in the latter case.

(4)砂を填充した水槽中に非セメント系反応剤配合液
をあらかじめ浸透させておき、その後水ガラス水溶液お
よびPH9以上のアルカリ性非セメント系水ガラスグラ
ウトを前述(3)と同じ条件で注入したところ、後者の
方が均質で充分大きな固結強度の固結体を得た。
(4) A non-cement reaction agent mixture was pre-infiltrated into a water tank filled with sand, and then an aqueous water glass solution and an alkaline non-cement water glass grout with a pH of 9 or higher were injected under the same conditions as in (3) above. However, the latter was more homogeneous and had a sufficiently large solidification strength.

(5)砂を填充した水槽中に水ガラス水溶液およびPH
9以上の非セメント系水ガラスグラウトをそれぞれ浸透
させ、次いでこれらがゲル化しないうちに反応剤水溶液
を注入したところ、注入領域によっては均質な固結体が
得られず、かつ充分な強度も得られなかった。
(5) Water glass solution and PH in a water tank filled with sand
When 9 or more non-cement water glass grouts were infiltrated and then the reactant aqueous solution was injected before they gelled, a homogeneous solid was not obtained depending on the injection area, and sufficient strength was not obtained. I couldn't.

(6)砂を填充した水槽中に非セメント系反応剤配合液
をあらかじめ浸透させておき、その後PH9以上のアル
カリ性を呈する非セメント系水ガラスグラウトを前述と
同じ条件で注入したところ、均質でかつ経日的強度が著
しく改善された固結体を1)だ。
(6) When a non-cement based reactant mixture solution was infiltrated in advance into a water tank filled with sand, and then a non-cement based water glass grout exhibiting alkalinity with a pH of 9 or higher was injected under the same conditions as above, the result was a homogeneous and The solidified material whose strength over time has been significantly improved is 1).

(7)砂を填充した水槽中にあらかじめセメン1グラウ
トあるいはセメント−水ガラスグラウトを注入しておき
、その後PH9以上のアルカリ性を呈する非セメント系
水ガラスグラウトを前述と同様な条件で注入したところ
、固結体の経口的強度改善は達成されなかった。
(7) Cement 1 grout or cement-water glass grout was injected in advance into a water tank filled with sand, and then a non-cement water glass grout exhibiting alkalinity with a pH of 9 or higher was injected under the same conditions as above. No improvement in oral strength of the solids was achieved.

(8)砂を填充した水槽中に非セメント系反応剤水溶液
をあらかじめ浸透させておき、その後セメント系グラウ
トあるいはセメント−水ガラスグラウトを前述と同様な
条件で注入したところ、脈状の固結体しか得られず、サ
ンドゲルはほとんど得られなかった。
(8) When a non-cement based reactant aqueous solution was infiltrated in advance into a water tank filled with sand, and then cement based grout or cement-water glass grout was injected under the same conditions as above, vein-like solids were formed. However, only sand gel was obtained.

(9)実際の施工において透水性の異なる複雑な互層よ
りなる地盤中に非セメント系反応剤水溶液を注入してお
いてから、PH9以」二の水ガラスグラウト注入したと
ころ耐久性の改善は殆ど得られなかった。
(9) In actual construction, a non-cement reaction agent aqueous solution was injected into the ground consisting of complex alternating layers with different water permeability, and then water glass grout with a pH of 9 or higher was injected, but there was almost no improvement in durability. I couldn't get it.

(工0)実際の地盤中に一次注入としてセメントグラウ
ト、セメント−水ガラスグラウトあるいは瞬結性水ガラ
スグラウトを注入しておいてから非セメント系反応剤水
溶液を注入した上で、PH9以上の水ガラスグラウトを
二次注入したところ、耐久性の著しい改善がみられた。
(Work 0) Inject cement grout, cement-water glass grout, or instant setting water glass grout into the actual ground as the primary injection, then inject the non-cement reactant aqueous solution, and then add water with a pH of 9 or higher. After secondary injection of glass grout, a significant improvement in durability was observed.

上述の(1)乃至(10)の経緯により本発明にかかる
前述の目的は次により達成される。
Based on the circumstances described in (1) to (10) above, the above-mentioned objects of the present invention are achieved as follows.

(イ)−次注入として浸透性の悪いグラウトをまず、地
盤中に注入する。このグラウトには懸濁型グラウトも含
む。この注入によって地盤中の粗い部分がまず填充され
、これによりグラウトの逸脱しやすい部分を閉束し、地
盤を均質化する。
(b) - As the next injection, grout with poor permeability is first injected into the ground. This type of grout also includes suspension type grout. This injection first fills the rough areas in the soil, thereby sealing up areas where the grout is likely to deviate and homogenizing the soil.

(ロ)次いで非セメント系反応剤配合液を前記−次注入
された領域に注入し、これを細粒土部分まで土粒子間浸
透させる。非セメント系反応剤配合液は極めて浸透性が
よいが、すでに−次注入によって逸脱しやすい部分が閉
束されているため、注入された前記反応剤配合液は逸脱
せずに保持される。
(b) Next, a non-cement based reactant mixture is injected into the above-mentioned injected area, and is allowed to permeate between the soil particles up to the fine-grained soil portion. Although the non-cement-based reactant mixture has extremely good permeability, the parts that are likely to escape are already confined by the next injection, so the injected reactant mixture is retained without escaping.

(ハ)二次注入としてP Hが9以上の浸透性のよい水
ガラスグラウトを前記反応剤配合液の注入された領域に
重ね合わせて注入する。このとき前記水ガラスグラウト
は注入圧力によって上記反応剤配合液を周辺に押し出し
、これに置き換わって土粒子間に浸透する。この際、水
ガラスグラウト浸透領域の周辺部がまず、前記反応剤配
合液によって急速にゲル化し、次いで内部がゲル化し、
この結果、二次注入による固結部は反応剤配合液中に浸
透された状態となる。その後、前記反応剤配合液が経時
的に徐々に固結部中に浸透して固結部中の未反応水ガラ
スと反応し、水ガラス中の全てのシリカ分が析出して反
応が進行し、強度増加が達成される。
(c) As secondary injection, water glass grout with good permeability and a pH of 9 or more is injected overlapping the area into which the reactant mixture has been injected. At this time, the water glass grout pushes out the reactant mixture liquid to the periphery by the injection pressure, replaces it, and permeates between the soil particles. At this time, the periphery of the water glass grout infiltration area is first rapidly gelled by the reactant mixture, then the inside is gelled,
As a result, the solidified portion resulting from the secondary injection is in a state of being penetrated into the reactant mixture. Thereafter, the reactant mixture gradually permeates into the solidified part over time and reacts with unreacted water glass in the solidified part, and all the silica in the water glass precipitates and the reaction progresses. , an increase in strength is achieved.

さらに、前記反応剤配合液は一次注入材にも作用して一
次注入材の強度増強あるいは耐久性の向上も達成し、全
体として一体化された強固な地盤が形成される。
Further, the reactant mixture also acts on the primary injection material, thereby increasing the strength or improving the durability of the primary injection material, thereby forming a solid foundation that is integrated as a whole.

以下、本発明を実験により具体的に詳述する。Hereinafter, the present invention will be specifically explained in detail through experiments.

実 験−1 3号水ガラスと反応剤との混合液についてPHとゲル化
時間を測定し、結果を表−1に示す。
Experiment-1 The pH and gelation time of the mixed solution of No. 3 water glass and the reactant were measured, and the results are shown in Table-1.

表−1 (−′yj() 実験−2 表−1中の配合漱6、io、13.16および23の試
料を用いて標準砂を固結し、得られた供試体く直径5c
m、長さl Ocm )を水環水lp中で養生して養生
水中のSiO□含有量を測定し、これにより固結薬液中
のS+OZ&8量に対する溶脱S iOx量の累計を測
定し、溶脱率の経口的変化を調べた。(表−2)表−2
中の数字は溶脱率(%)/−軸圧縮強度(kg / c
ta )である。また表−2中、「−」は崩壊を表す。
Table-1 (-'yj() Experiment-2 Standard sand was consolidated using the samples of mixed soot 6, io, 13.16, and 23 in Table-1, and the resulting specimen had a diameter of 5 cm.
m, length lOcm) was cured in water ring water lp to measure the SiO□ content in the curing water, thereby measuring the cumulative amount of leached SiOx relative to the amount of S+OZ&8 in the solidification chemical solution, and calculating the leaching rate. Oral changes were investigated. (Table-2) Table-2
The numbers inside are leaching rate (%)/-axial compressive strength (kg/c
ta). Moreover, in Table-2, "-" represents collapse.

表−2 実 験−3 実験−2における養生水として塩化アルミニウムの20
重景%液を用いて同様の実験を行い、結果を表−3に示
した。
Table-2 Experiment-3 20% of aluminum chloride was used as curing water in Experiment-2.
A similar experiment was carried out using the Jukei % solution, and the results are shown in Table 3.

表−3 実験−4 実験−2と同様な方法で配合N1110を用いて固結し
たサンドゲル(固結標準砂)を種々の反応剤の20重量
%液で養生して、28日後のSiO□の溶脱率と強度を
測定し、結果を表−4に示した。
Table 3 Experiment 4 Sand gel (consolidated standard sand) consolidated using formulation N1110 in the same manner as Experiment 2 was cured with 20% by weight solution of various reactants, and after 28 days, SiO□ The leaching rate and strength were measured and the results are shown in Table 4.

表−4 実験−5 実験−2と同様な方法で養生水中にポルトランドセメン
ト100gを混入してのち配合1IkllOのサンドゲ
ルを養生し、28日後の一軸圧縮強度を測定したところ
1.6kir/cfflを示した。このことから耐久性
に関する改良効果は得られないことがわかる。
Table 4 Experiment 5 100g of Portland cement was mixed into the curing water in the same manner as in Experiment 2, and then the sand gel of composition 1IkllO was cured, and when the unconfined compressive strength was measured after 28 days, it was found to be 1.6 kir/cffl. Ta. This shows that no improvement effect regarding durability can be obtained.

実 験−6 実験−5と同し方法を用いて配合患11のゲル化物10
0cl11を砕いて養生水中に混入した。また、セメン
ト−水ガラスゲル化物100dを砕いて養生水中に混入
した。セメント−水ガラスのゲル化物10〇−当たりの
配合は、 3号水ガラス      25  ccセ  メ  ン
  ト              50    g水
     残り である。
Experiment-6 Using the same method as Experiment-5, gelatinized product 10 of patient 11 was prepared.
0cl11 was crushed and mixed into the curing water. In addition, 100 d of cement-water glass gel was crushed and mixed into the curing water. The composition per 100 ml of gelled cement-water glass is: 25 cc of No. 3 water glass, 50 g of water, and the remainder.

これらについて28日後の一軸圧縮強度を測定したとこ
ろ、配合N11llは1.5kg/cdを示し、セメン
ト−水ガラスのゲル化物は1.6kg/ca+!を示し
た。
When the unconfined compressive strength of these was measured after 28 days, the blend N11ll showed 1.5 kg/cd, and the cement-water glass gel showed 1.6 kg/ca+! showed that.

これらはいずれも耐久性に関する改良効果を奏し得なか
った。
None of these had any improvement in durability.

実験−7 水槽の砂を20%塩化カルシウム溶液で飽和させてから
配合階15.16のグラウトを30cmの水頭差で?−
2透しなくなるまで注入し、1週間後に固結体の大きさ
を調べたところ、配合陽15では直径約20cm、配合
階16では直径約45cmの固結径が得られ、配合隘1
6の方が著しい浸透効果を示している。
Experiment-7 After saturating the sand in the aquarium with a 20% calcium chloride solution, apply grout of mix level 15.16 with a water head difference of 30 cm? −
2. Injected until it became opaque, and examined the size of the solids one week later. The diameter of the solids was about 20 cm in the case of the mixture No. 15, and about 45 cm in diameter for the case of the combination No. 16.
No. 6 shows a more significant penetration effect.

同様な実験を配合N1119.20を用いて行ったとこ
ろ、配合m19の直径は約15cm、配合隘20の直径
は約23cmであった。
When a similar experiment was conducted using formulation N1119.20, the diameter of formulation m19 was approximately 15 cm, and the diameter of formulation nozzle 20 was approximately 23 cm.

以上より、同一条件でありながら、PHが中性では浸透
範囲が狭いのに対し、PHが9以上のアルカリ性では浸
透範囲が極めて広くなることがわかった。これは注入液
がゲル化用反応剤の含まれた水ガラス配合液でかつPH
がアルカリ性である場合には注入液中のアルカリの存在
のために地盤中の反応剤と注入液との反応がゆるやかに
なるためと思われる。
From the above, it was found that under the same conditions, the permeation range is narrow when the pH is neutral, but the permeation range is extremely wide when the pH is alkaline (9 or higher). This is because the injection liquid is a water glass mixture containing a gelling reactant and has a pH
This is thought to be because when the soil is alkaline, the presence of alkali in the injection liquid slows down the reaction between the reactant in the ground and the injection liquid.

実 験−8 実験−7と同様にして、20容世%の3号水ガラス水溶
液と、配合11h21のグラウトを注入した。前者では
直径10〜25cI11の不均質な固結体が得られたの
に対し、後者では直径30cmのほぼ球状の固結体が得
られた。また、前者の一軸圧縮強度は5kg/ctであ
ったのに対し、後者のそれは9.5kg/cjであった
Experiment 8 In the same manner as Experiment 7, a 20% No. 3 water glass solution and a grout with a composition of 11h21 were injected. In the former case, a heterogeneous solid body with a diameter of 10 to 25 cI11 was obtained, whereas in the latter case, a substantially spherical solid body with a diameter of 30 cm was obtained. Further, the unconfined compressive strength of the former was 5 kg/ct, while that of the latter was 9.5 kg/cj.

以上より、注入1夜はPHが9以上であ・つゲル化用反
応剤の含まれた配合液であることが均質でかつ強固に固
結するために必要であることがわかる。
From the above, it can be seen that it is necessary for the mixed solution to have a pH of 9 or higher during the first night of injection and to contain a gelling reactant in order to achieve homogeneous and firm solidification.

実験−9 水槽中の砂を20容量%の3号水ガラス水溶液で飽和し
て30clIの水頭差で20%塩化カルシウム溶液を注
入してのち、−週間後の注入孔まわりの固結体強度を測
定したところ、2kg/cnlの一軸圧縮強度を示した
。また、同様にして水槽中の砂を配合隘21の配合液で
飽和してのち、配合液がゲル化しないうちに20%塩化
カルシウム溶液を注入し、−週間後の注入孔まわりの固
結体強度を測定したところ、2.6kg/c11の一軸
圧縮強度を示した。
Experiment-9 After saturating the sand in the aquarium with a 20 volume % No. 3 water glass aqueous solution and injecting a 20% calcium chloride solution with a water head difference of 30 clI, the strength of the solids around the injection hole was measured after - weeks. When measured, it showed an unconfined compressive strength of 2 kg/cnl. In the same way, after saturating the sand in the aquarium with the mixed solution in mixing hole 21, a 20% calcium chloride solution was injected before the mixed solution gelled. When the strength was measured, it showed an unconfined compressive strength of 2.6 kg/c11.

これより水ガラス配合液を注入しておいてから反応剤を
注入すると、反応剤によって水ガラス配合液が外側に押
し出されて注入管まわりの水ガラス濃度がうずくなり強
度が低くなるのに対し、実験−8のように逆の場合は注
入管まわりの水ガラス配合液による固結体の内部に周辺
部に位置する反応剤が経口的に徐々に浸透して反応が進
行することがわかる。
If you inject the water glass mixture and then inject the reactant, the reactant will push the water glass mixture outward, causing the water glass concentration around the injection tube to swell and reduce its strength. In the opposite case as in Experiment 8, it can be seen that the reaction agent located around the injection tube gradually permeates into the solidified body formed by the water glass mixture around the injection tube orally, and the reaction progresses.

実 験−10 砂を填充した水槽中にセメントグラウト(100CC当
たりセメント50g1残り水)あるいはセメント−水ガ
ラスグラウト(実験−6と同じ)を500cc注入して
のち、同一個所に配合隘10のグラウトを1β注入し、
その後−週間後に掘削し、注入してから28日後の一軸
圧縮強度を測定し、結果を表−5に示した。
Experiment 10 Inject 500 cc of cement grout (50 g of cement, 1 remaining water per 100 cc) or cement-water glass grout (same as Experiment 6) into a water tank filled with sand, then add grout with a mixing ratio of 10 to the same area. Inject 1β,
After one week, excavation was carried out, and the unconfined compressive strength was measured 28 days after injection, and the results are shown in Table 5.

表−5 表−5からセメントグラウトやセメント−水ガラスグラ
ウトを一次注入材として用いても二次注入材の経口強度
の改良はなされないことがわかる。
Table 5 Table 5 shows that the use of cement grout or cement-water glass grout as the primary injection material does not improve the oral strength of the secondary injection material.

実験−11 水槽中の砂を20%塩化カルシウム溶液で飽和させてか
ら実験−1Oのセメントグラウトならびにセメント−水
ガラスグラウトを500cc注入し、−週間後に掘削し
たが、脈状に固結しているだけで土粒子間浸透による全
体的な固結体は得られなかった。すなわち、このような
方法では土粒子間浸透による固結効果の改善はなされな
いことがわかった。
Experiment-11 After saturating the sand in the water tank with a 20% calcium chloride solution, 500 cc of the cement grout and cement-water glass grout from Experiment-1O were injected, and excavation was carried out after - weeks, but the sand had solidified into veins. Only by inter-particle infiltration of the soil, no overall consolidation was obtained. In other words, it was found that such a method does not improve the consolidation effect due to infiltration between soil particles.

実 験−12 水槽中の砂に20%塩化アルミニウム溶液を51注入し
てから配合Nlll0の水ガラスグラウトを5p注入し
た場合(実験−A)、および配合阻10の水ガラスグラ
ウトを51注入してのち、ゲル化してから20%塩化ア
ルミニウム溶液を5ρ注入した場合(実験−B)の比較
実験を行った。
Experiment-12 When 51 grams of 20% aluminum chloride solution was injected into the sand in the aquarium, and then 5 grams of water glass grout with a composition of 10 was injected (Experiment-A), and when 51 grams of water glass grout with a composition of 10 was injected into the sand in the aquarium. Afterwards, a comparative experiment was conducted in which 5 ρ of 20% aluminum chloride solution was injected after gelation (Experiment-B).

また、20%塩化アルミニウム溶液を5p注入してから
配合NcL21の水ガラスグラウトを52注入した場合
(実験−C)、および配合陽21の水ガラスグラウトを
512注入してのちゲル化しないうちに20%塩化アル
ミニウム溶液を54注入した場合(実験−D)の試験も
行った。
In addition, when 5p of 20% aluminum chloride solution was injected and then 52p of water glass grout with a formulation of NcL21 was injected (Experiment-C), and after 512p of waterglass grout with a formulation of NcL21 was injected, 20p of water glass grout with a formulation of NcL21 was injected and then 20p was injected before it gelled. A test was also conducted in which 54% aluminum chloride solution was injected (Experiment-D).

注入後7日、28目および3ケ月後に注入管まわりを掘
削し、試料を採取して一軸圧縮強度とP Hを測定し、
結果を表−6に示した。
7 days, 28 days, and 3 months after injection, we excavated around the injection pipe, collected samples, and measured the unconfined compressive strength and PH.
The results are shown in Table-6.

表−6 注: m=qu (kg/cal) 表−6より経時的強度の増加、すなわち耐久性は注入順
序、固結物のP H1雰囲気等に大きな関係があること
がわかる。すなわち、あらかじめ反応剤を注入してから
水ガラスグラウトを注入する場合には反応剤のPHが酸
性の場合でもアルカリ性の雰囲気下で水ガラスの重合が
促進され、これが耐久性の改善、強度増加に大きな影響
を与える。
Table 6 Note: m=qu (kg/cal) From Table 6, it can be seen that the increase in strength over time, that is, durability, has a large relationship with the injection order, the PH1 atmosphere of the solidified material, etc. In other words, when injecting the reactant in advance and then injecting the water glass grout, the polymerization of water glass is promoted in an alkaline atmosphere even if the pH of the reactant is acidic, which improves durability and increases strength. make a big impact.

これに対して水ガラスグラウトを注入してのち酸性反応
剤を注入する場合には、固結物のPH値は酸性乃至中性
になり、強度の大幅な増加は生じない。比較のために実
験−Bにおいて、反応剤をあとから注入しないで7日強
度を測定したところ26日、1゜5を示した。このこと
より実験−Bでは水ガラスグラウトを注入してゲル化後
反応剤を注入すると固結物は中性雰囲気になるが、固結
物が破壊され、その後破壊部分が修復されにくく、この
ため強度が低くなるものと思われる。
On the other hand, when water glass grout is injected and then an acidic reactant is injected, the PH value of the solidified material becomes acidic or neutral, and the strength does not increase significantly. For comparison, in Experiment B, the strength was measured for 7 days without injecting the reactant afterwards, and it showed 1°5 on the 26th day. From this, in Experiment B, when water glass grout was injected and the reactant was injected after gelling, the solidified material became a neutral atmosphere, but the solidified material was destroyed, and the broken part was difficult to repair after that. It seems that the strength will be lower.

また、実験−〇では水ガラスグラウトがゲル化する前に
酸性反応剤を注入すると、水ガラスグラウトが外側に押
し出されて注入管まわりは水ガラスグラウトよりも反応
剤が主体となって酸性乃至中性雰囲気になり、注入管ま
わりに強固な固結物が形成されにくくなることが示され
る。
In addition, in Experiment ○, when the acidic reactant was injected before the water glass grout gelled, the water glass grout was pushed outward and the area around the injection tube was made up mainly of the reactant rather than the water glass grout, making it acidic to medium. This indicates that the atmosphere becomes more stable, making it difficult for hard caking to form around the injection tube.

実 験−13 砂を填充した水槽中に一次注入材としてセメントグラウ
ト(実験−10と同し)、セメント−水ガラスグラウト
(実験−6と同じ)、表−1の配合階2.11.22を
500cc注入した上で、表−4の反応剤20重量%液
を500cc注入し、次いで二次注入材として表−1の
配合隘6.10.13.16.21のグラウトを1!注
入し、−週間後、28日後、3ケ月後の一軸圧縮強度Q
 u (kg/cJ)を測定し、結果を表−7に示した
Experiment-13 Cement grout (same as Experiment-10), cement-water glass grout (same as Experiment-6) as the primary injection material in a water tank filled with sand, mix level 2.11.22 of Table-1. Then, 500 cc of the 20% by weight solution of the reactant shown in Table 4 was injected, and then 1! of the grout of formulation 6.10.13.16.21 in Table 1 was added as a secondary injection material. Unconfined compressive strength Q after -week, 28 days, and 3 months after injection
u (kg/cJ) was measured and the results are shown in Table-7.

表−7 (7′jく) 表−7から、セメント懸濁液、セメント−水ガラスグラ
ウト、瞬結性グラウトを注入してから水ガラスグラウト
を注入する工程に比べて、その間に反応剤配合液を注入
する工程を併用すると大幅に耐久性が増大し、強度増加
が得られることがわかる。
Table 7 (7'j) From Table 7, compared to the process of injecting cement suspension, cement-water glass grout, and instant setting grout and then injecting water glass grout, it is clear that the process of injecting water glass grout during It can be seen that when the process of injecting liquid is used in combination, durability is significantly increased and strength is increased.

本発明にかかるPHが9以上の非セメント系水ガラスグ
ラウトは水ガラスのモル比が1〜5までの任意の液状水
ガラスであり、かつ酸、塩、有機反応剤等、任意の反応
剤が含有されたものであり、あるいはアルカリや酸によ
り反応時間やPHの調整されたものである。
The non-cement water glass grout with a pH of 9 or more according to the present invention is any liquid water glass with a molar ratio of water glass of 1 to 5, and contains any reactive agent such as an acid, a salt, or an organic reactive agent. The reaction time and pH may be adjusted using alkali or acid.

また、非セメント系反応剤配合液は酸、酸性塩、有機反
応剤、アルカリ性を呈する塩(重炭酸ソーダ等)等であ
るが、特に多価金属塩が好ましい。
Further, the non-cement reactant mixture includes acids, acidic salts, organic reactants, salts exhibiting alkalinity (sodium bicarbonate, etc.), and polyvalent metal salts are particularly preferred.

これらは具体的にはCard!z 、Mg(1!2等の
アルカリ土金属塩、塩化アルミニウム、ポリ塩化アルミ
ニウム等のアルミニウム塩、その他鉄塩等である。
These are specifically Card! z, Mg (1!2, etc.), aluminum salts such as aluminum chloride, polyaluminum chloride, and other iron salts.

本発明工法は具体的には第1図および第2図に示される
注入管を用いて施工される。
Specifically, the construction method of the present invention is carried out using the injection pipe shown in FIGS. 1 and 2.

まず、第1図(a)に示されるように内管2の下部吐出
口4よりポーリング水を送って所定深度まで地盤を削孔
する。
First, as shown in FIG. 1(a), poling water is sent from the lower outlet 4 of the inner pipe 2 to drill a hole in the ground to a predetermined depth.

次いで、第1図(b)に示されるように外管Iより一次
注入材ならびに反応剤配合液を送液して上部吐出口3よ
り地盤中に注入し、一方、二次注入材を内管2を通して
送液して下部吐出口4より地盤中に注入しながら注入ス
テージを下から上に移向することにより一次注入材を注
入した領域に反応剤配合液および二次注入材を重ねて注
入する。
Next, as shown in Fig. 1(b), the primary injection material and the reactant mixture are sent from the outer pipe I and injected into the ground from the upper discharge port 3, while the secondary injection material is transferred from the inner pipe. 2 and injecting into the ground from the lower discharge port 4, by moving the injection stage from bottom to top, the reactant mixture and secondary injection material are superimposed and injected into the area where the primary injection material was injected. do.

5はメタルクラウンである。5 is a metal crown.

第2図は他の注入管の例であって、まず、第2図(a)
に示されるように内管2から反応剤配合液を、外管lか
ら水ガラスを送液すると、バルブ7が内管2の流圧によ
り下方に変位して上部吐出口3を開口すると同時に下部
吐出口4を閉塞し、上部吐出口3から一次注入材が地盤
中に注入される。次いで、第2図(b)に示されるよう
に内管2からの反応剤配合液の送液を中止し、かつ外管
1から反応剤配合液、つづいてP H9以上の非セメン
ト系水ガラスグラウト(二次注入材)を送液すると、バ
ルブ7はバネ4の弾発力によって上方に移動し、このと
き上部吐出口3はバルブ7によって閉塞されるとともに
下部吐出口4が開口され、反応剤配合液および二次注入
材が下部吐出04から地1cこ注入される。次いで、注
入ステージを下から−にに移動することにより一次注入
材の注入された領域に反応剤配合液および二次注入材が
重ねて注入される。6は逆止弁である。
Fig. 2 shows another example of an injection pipe, and first, Fig. 2(a)
As shown in , when the reactant mixture is fed from the inner tube 2 and the water glass is fed from the outer tube 1, the valve 7 is displaced downward by the flow pressure of the inner tube 2, opens the upper discharge port 3, and at the same time The discharge port 4 is closed, and the primary injection material is injected into the ground from the upper discharge port 3. Next, as shown in FIG. 2(b), the feeding of the reactant mixture from the inner tube 2 is stopped, and the reactant mixture is fed from the outer tube 1, followed by non-cement water glass with a pH of 9 or more. When the grout (secondary injection material) is fed, the valve 7 is moved upward by the elastic force of the spring 4, and at this time, the upper outlet 3 is closed by the valve 7, and the lower outlet 4 is opened, causing a reaction. The agent combination liquid and the secondary injection material are injected into the ground 1c from the lower discharge 04. Next, by moving the injection stage from the bottom to the - side, the reactant mixture and the secondary injection material are superimposed and injected into the area where the primary injection material has been injected. 6 is a check valve.

実施例 東京部内の細砂府と粗砂層が互層になっている地盤にお
いて第1図の装置を用い、実験−6に示したセメント−
水ガラスグラウトをまず20β注入してのち、CaCL
’zの20%(重量))8液を801/主人し、次いで
配合隘10の水ガラスグラウトを下部吐出口から100
1注入し、注入管を50cmづづ引き上げながら、この
工程を繰り返した。
Example: Using the apparatus shown in Figure 1 on the ground in the Tokyo area where fine sand and coarse sand layers are alternately layered, the cement shown in Experiment 6 was applied.
After first injecting 20β of water glass grout, CaCL
'z 20% (weight)) 8 liquid as 801/main, then water glass grout with a mixing ratio of 10/100% from the lower discharge port.
1 injection, and this process was repeated while raising the injection tube 50 cm at a time.

掘削結果では一軸圧縮強度が粗い層では7.4に+r/
 ctA、細い層では3.4kg/calを示し、均質
でかつ掻めて耐久例の優れた固結体が得られた。
The excavation results show that the unconfined compressive strength in the coarse layer is 7.4+r/
The ctA of the thin layer was 3.4 kg/cal, and a homogeneous and scrapable solidified body with excellent durability was obtained.

〔発明の効果9 上述の本発明は次の効果を臭し得る。[Effects of the invention 9 The present invention described above may provide the following effects.

(1)ゲル化時間の長い゛アルカリ領域の水ガラスグラ
ウトの経日的強度が大幅に改善され、固結体の耐久性が
向上する。
(1) The aging strength of alkaline water glass grout with a long gelation time is greatly improved, and the durability of the solid body is improved.

(2)充分に範囲の広い浸透固結効果を得る。(2) Obtain a sufficiently wide range of penetration and consolidation effects.

(3)二次注入材の注入範囲外への逸脱を防止し、所定
範囲で均質な固結体を得る。
(3) Preventing the secondary injection material from deviating outside the injection range and obtaining a homogeneous solidified body within a predetermined range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいずれも本発明工法を実施するた
めの注入管の一具体例を示す。 1・・・外管、   2・・・内管、   3・・・上
部吐出口、4・・・下部吐出口、 7・・・バルブ、 
 3・・・ハネ特許出願人 強化土エンジニャリング株
式会社代 理 人 弁理士  染  谷     仁−
二のイル書(内容に変死なし) 算1面 (α)(e) メゲルンフンン 手続補正書 昭和61年4月9日 昭和61年特許願第42363号 2、発明の名称 地盤注入工法 3、補正をする者 事件との関係  特許出願人 住所  東京都文京区本郷3−15−1美エビル名称 
 強化土エンジニャリング株式会社4、代理人 6、補正により増加する発明の数  な  し7゜補正
の対象  明細書および図面。
FIG. 1 and FIG. 2 both show a specific example of an injection pipe for carrying out the construction method of the present invention. 1...Outer pipe, 2...Inner pipe, 3...Upper outlet, 4...Lower outlet, 7...Valve,
3... Hane Patent Applicant Reinforced Soil Engineering Co., Ltd. Representative Patent Attorney Hitoshi Sometani
No. 2 Ile book (no change in content) Arithmetic page 1 (α) (e) Megelunfunun procedural amendment April 9, 1988 Patent application No. 42363 2, title of invention Ground injection method 3, amendment Relationship with the case of the person who filed the patent application Address of the patent applicant: 3-15-1 Hongo, Bunkyo-ku, Tokyo Name of MiEvil Building
Reinforced Earth Engineering Co., Ltd. 4, Agent 6, Number of inventions increased by amendment None 7゜Subject of amendment Description and drawings.

Claims (1)

【特許請求の範囲】[Claims] 浸透性の悪いグラウトをまず、地盤中に注入し、次いで
この注入領域に非セメント系反応剤配合液を注入し、そ
の後さらにこの注入領域にPHが9以上の浸透性の良い
水ガラスグラウトを注入することを特徴とする地盤注入
工法。
First, a grout with poor permeability is injected into the ground, then a non-cement reaction agent mixture is injected into this injection area, and then a water glass grout with good permeability with a pH of 9 or higher is injected into this injection area. A ground injection method that is characterized by:
JP4236386A 1986-02-27 1986-02-27 Ground grouting work Granted JPS62202113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236386A JPS62202113A (en) 1986-02-27 1986-02-27 Ground grouting work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236386A JPS62202113A (en) 1986-02-27 1986-02-27 Ground grouting work

Publications (2)

Publication Number Publication Date
JPS62202113A true JPS62202113A (en) 1987-09-05
JPH0567730B2 JPH0567730B2 (en) 1993-09-27

Family

ID=12633952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236386A Granted JPS62202113A (en) 1986-02-27 1986-02-27 Ground grouting work

Country Status (1)

Country Link
JP (1) JPS62202113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034530B1 (en) * 2016-07-01 2016-11-30 東曹産業株式会社 Method for producing adhesive grout and grout injection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034530B1 (en) * 2016-07-01 2016-11-30 東曹産業株式会社 Method for producing adhesive grout and grout injection method

Also Published As

Publication number Publication date
JPH0567730B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
US5026215A (en) Method of grouting formations and composition useful therefor
US6897186B2 (en) Composition and method for dual function soil grouting excavating or boring fluid
JPH083091B2 (en) Ground injection chemical
KR102367111B1 (en) Manufacturing method of grout using low-concentration acidic substance impregnated with co2 gas and grouting method using the same
CN103193454A (en) Grouting material applicable to reinforcement of sand layer and grouting method
JPS62202113A (en) Ground grouting work
JPH0953071A (en) Treatment of surplus excavated soil
JPS62172088A (en) Ground grouting process
JPH04221116A (en) Grouting engineering method
JP3461635B2 (en) Injection method
JPH024634B2 (en)
US3626699A (en) Grouting of soils
Guyer et al. An Introduction to Soil Grouting
JPS5993788A (en) Grauting method into ground
JPS62253815A (en) Ground grouting work
US3176471A (en) Method of sealing or consolidating earthen formations
JPH0940950A (en) Method for stabilizing soft ground
JP2004196922A (en) Alkaline silica for ground hardening, apparatus for producing the same and ground hardening material
JPH11293245A (en) Suspension-type grout
JPH0525272B2 (en)
JPS59152986A (en) Impregnation method for ground
JPS5949284A (en) Slag-lime liquid impregnation method
JPH0471956B2 (en)
JPH08269449A (en) Grout for the ground and method for grouting the ground
JP2024037096A (en) Ground consolidation material and ground injection method using it

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term