JPS59152986A - Impregnation method for ground - Google Patents

Impregnation method for ground

Info

Publication number
JPS59152986A
JPS59152986A JP2819983A JP2819983A JPS59152986A JP S59152986 A JPS59152986 A JP S59152986A JP 2819983 A JP2819983 A JP 2819983A JP 2819983 A JP2819983 A JP 2819983A JP S59152986 A JPS59152986 A JP S59152986A
Authority
JP
Japan
Prior art keywords
injection
ground
silicic acid
injected
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2819983A
Other languages
Japanese (ja)
Other versions
JPH0362751B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2819983A priority Critical patent/JPS59152986A/en
Publication of JPS59152986A publication Critical patent/JPS59152986A/en
Publication of JPH0362751B2 publication Critical patent/JPH0362751B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To solidify the ground firmly and completely by easy operations without causing pollution, by injecting a primary grout material consisting of suspension containing an electrolyte substance of polyvalent metal to the ground, impregnating a secondary grout material containing colloidal solution of silicic acid to it. CONSTITUTION:The casing 2 is inserted through the injection hole 1 into the ground, the injection pipe 5 having the part of the extrusion hole 3 covered with the rubber 4 is then inserted into it, the space between the casing 2 and the injection pipe 5 is sealed with the sleeve grout 6, and casing 2 is pulled out. The strainer pipe 8 equipped with the packer 7 is inserted into the injection pipe 5, a primary grout solution consisting of suspension containing an electrolyte of polyvalent metal is injected into the ground, after which a secondary grout solution consisting of a colloidal solution of silicic acid is injected.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕一 本発明は珪酸のコロイド溶液を用いた地盤注入工法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a ground injection method using a colloidal solution of silicic acid.

〔従来技術とその問題点〕[Prior art and its problems]

従来、地盤注入のために水ガラスグラウトが用いられて
来た。水ガラスグラウトは液状の珪酸のアルカリ金属塩
であシ、これに塩や酸を加えて珪酸ゲルを析出する事に
よって地盤を固結するものである。
Traditionally, water glass grout has been used for ground injection. Water glass grout is a liquid alkali metal salt of silicic acid, and is used to solidify the ground by adding salt or acid to precipitate a silicic acid gel.

しかるに、珪酸のアルカリ金属塩は高アルカリ性を呈し
、そのゲル化もアルカリ領域で行なわれるため地下水が
長期にわたってアルカリ性を呈するという問題があった
。この問題を解決するために酸性液中に水ガラスを加え
て水ガラス中のアルカリを除去して得られる酸性珪酸水
溶液とアルカリを合流して中性領域でゲル化させる地盤
注入工法が開発されている。
However, the alkali metal salt of silicic acid exhibits high alkalinity, and its gelation also occurs in the alkaline region, so there is a problem in that groundwater remains alkaline for a long period of time. To solve this problem, a ground injection method has been developed in which water glass is added to an acidic solution and the alkali in the water glass is removed, and the alkali is combined with the acidic silicic acid solution to form a gel in a neutral region. There is.

このグラウトは固結物が中性を示し、地下水のPHも変
動せずきわめてすぐれた特性を有する注入材であるが、
強度が弱い事、ゲル化が非常に短いという欠点があった
This grout is a grouting material with extremely excellent properties, as the solids are neutral and the pH of groundwater does not change.
It had the disadvantages of low strength and very short gelation time.

即ち、通常、水ガラスグラウトにおける注入液中の81
02 の濃度は10重量%以上である事が強度の点から
(固結砂の一軸圧弊強度で1 # / ta以上)必要
であるが、SiO2の濃度が10重量%以上ではゲル化
時間が中性領域付近(PHが4〜8)で1分以内、通常
数秒になってしまう。浸透性がよく、かつ地盤中で分散
せずに固結するのに適したゲル化時間は30〜120分
である事が経験的に判っているが、もしゲル化時間を中
性領域付近で30〜120分程度得ようとしたなら51
02の濃度は5重量%以下にしなくてはならず、この濃
度では固結砂強度は0.5 k’i/cr/lにも達せ
ず、注入工法には実用上利用出来ない。また、中性領域
の水ガラスグラウトけ酸性液中に水ガラスを加えて水ガ
ラス中のアルカリを中和して注入液を得るものであるか
ら、その注入液中には当然の事ながら中和によって生成
した中和生成物、即ち、Naイオンや酸根等が多く残留
するが水質保全の点からこれらのNaイオンや酸根も残
存しない注入工法が確立出来ればこれにすぐれるものは
ない。
That is, typically 81 in the injection liquid in water glass grout.
The concentration of SiO2 must be 10% by weight or more from the viewpoint of strength (uniaxial crushing strength of consolidated sand of 1 #/ta or more), but if the concentration of SiO2 is 10% by weight or more, the gelation time will be shortened. It takes less than 1 minute near the neutral range (PH 4 to 8), but usually takes a few seconds. It has been empirically found that the gelation time suitable for good permeability and solidification without dispersing in the ground is 30 to 120 minutes, but if the gelation time is near the neutral region, 51 if you are trying to get about 30 to 120 minutes.
The concentration of 02 must be 5% by weight or less, and at this concentration, the consolidated sand strength does not even reach 0.5 k'i/cr/l, making it practically unusable for the injection method. In addition, water glass is added to the water glass grouting acidic solution in the neutral range to neutralize the alkali in the water glass to obtain the injection solution, so it is natural that the injection solution contains neutralized water. Many neutralized products, such as Na ions and acid radicals, remain, but from the standpoint of water quality conservation, nothing would be better if an injection method could be established that does not leave these Na ions or acid radicals.

又、酸性液中に水ガラスを加えてうる酸性水ガラス液を
地盤注入工法に用いる方法も知られているが、これは酸
の中に水ガラスを加えて単分子からなる珪酸からコロイ
ド状の珪酸を経てゲル化に到る現象を利用したものであ
I) 、 S i 02 il、0wt%以上にして、
かつゲル化時間ヲ30分以上の長いゲル化時間の配合を
うるにはPHが3付近の酸性領域に調整して注入する必
要がある。
Another known method is to add water glass to an acidic solution and use it in the ground injection method. This method takes advantage of the phenomenon of gelation through silicic acid.
In addition, in order to obtain a formulation with a long gelation time of 30 minutes or more, it is necessary to adjust the pH to an acidic region around 3 before injection.

〔発明の目的〕[Purpose of the invention]

本発明の目的は以上の問題を解決するために更に発展し
た技術を提供するものである。
An object of the present invention is to provide a further developed technique to solve the above problems.

〔発明の要点〕[Key points of the invention]

前記目的を達成するだめ、本発明によれば、あらかじめ
多価金属の電解質物質(多価金属イオンを解離する物質
)を含む注入材を一次注入材として注入した後、珪酸の
コロイド溶液を含む二次注入材を前記地盤に注入するこ
とを特徴とする。
In order to achieve the above object, according to the present invention, an injection material containing a polyvalent metal electrolyte substance (a substance that dissociates polyvalent metal ions) is injected as a primary injection material, and then a secondary injection material containing a colloidal solution of silicic acid is injected. The method is characterized in that a next injection material is injected into the ground.

〔発明の実施例〕[Embodiments of the invention]

本発明における珪酸のコロイド溶液(シリカゾル)とは
水ガラスからNaイオンを除去或は低減したものであっ
て、例えば、水ガラスをイオン交換樹脂に通して水ガラ
ス中のNaイオンを除去するかあるいは水ガラスを硫酸
で中和してのちNaイオンや硫酸イオン除去して得られ
る。
The colloidal solution of silicic acid (silica sol) in the present invention is one obtained by removing or reducing Na ions from water glass, for example, by passing the water glass through an ion exchange resin to remove Na ions in the water glass, or It is obtained by neutralizing water glass with sulfuric acid and then removing Na ions and sulfate ions.

例えばゼオライト系陽イオン交換体、アンモニウム系イ
オン交換体などのイオン交換樹脂に水ガラスを通過させ
、生成したシリカゾルヲ80℃〜90℃の温度でさらに
水ガラスに加え、再び前記イオン交換樹脂に通過してイ
オン交換を行なって得られるものであわ、比較的綿すい
な(稀薄な)シリカゾルが得られる。さらに純すいなシ
リカゾルを得るには前述の稀薄なシリカゾルを微アルカ
リ性に調整し、これにさらに前述のシリカゾルを加えな
がら蒸発し、安定化と濃縮を同時に行なう方法、あるい
は、イオン交換後の活性シリカゾルを適当なアルカリの
下に加熱し、これにさらに活性シリカゾルを加えて安定
化する方法も用いられる。
For example, water glass is passed through an ion exchange resin such as a zeolite-based cation exchanger or an ammonium-based ion exchanger, and the resulting silica sol is further added to the water glass at a temperature of 80°C to 90°C, and then passed through the ion exchange resin again. A relatively fluffy (dilute) silica sol is obtained by ion exchange. In order to obtain even pure silica sol, the dilute silica sol mentioned above is adjusted to be slightly alkaline, and the above-mentioned silica sol is further added to it while evaporating, thereby simultaneously stabilizing and concentrating it. Alternatively, the activated silica sol after ion exchange can be used. A method is also used in which the mixture is heated under a suitable alkali and activated silica sol is further added thereto for stabilization.

本発明における珪酸コロイド溶液は例えばNaイオンが
殆んど分離除去されてお、!Ill、モル比が10以上
であるの好ましくは通常、PHが8〜10の弱アルカリ
性に調整され、かつ5i02の含有量がIO〜60(X
(重量)、モル比(S + 02/Na2O)が50以
上に調整されたものが望ましい。モル比が10より低く
なると珪酸コロイドは溶けてしまい、珪酸塩の水溶液に
なってしまう。
In the silicic acid colloidal solution of the present invention, for example, most of the Na ions are separated and removed. Ill, the molar ratio is preferably 10 or more, the pH is usually adjusted to weak alkalinity of 8 to 10, and the content of 5i02 is IO to 60 (X
(weight) and molar ratio (S + 02/Na2O) adjusted to 50 or more is desirable. If the molar ratio is lower than 10, the silicate colloid will dissolve and become an aqueous solution of silicate.

もちろん、酸やアルミニウムやアンモニウムなどで安定
化して得た酸性〜中性の珪酸コロイドを用いることもで
きる。
Of course, acidic to neutral silicic acid colloids obtained by stabilizing with acids, aluminum, ammonium, etc. can also be used.

また、珪酸コロイドの粒径はほぼ6〜50mμが主体と
なり、との粒径が50mμ以上になると沈澱しやすくな
る。
Further, the particle size of the silicic acid colloid is mainly about 6 to 50 mμ, and when the particle size of the colloid is 50 mμ or more, precipitation tends to occur.

通常、珪酸コロイドはモル比(S io2/Na2O)
では’; 1000〜10とし、PHは8〜10がコロ
イドの安定上望ましい。
Usually, silicic acid colloid has a molar ratio (S io2/Na2O)
1000 to 10, and the pH is preferably 8 to 10 in terms of colloid stability.

このようにして調整された珪酸コロイド溶液は半永久的
に安定しておシ、これを注入液として用いる場合、工場
から現場への搬入並びに注入操作の際にゲル化する心配
がない。この珪酸のコロイド溶液をそのまま地盤中に注
入してもそれ自体実用時間内にゲル化する事はないので
実用上の固結効果は得られない。
The silicic acid colloid solution prepared in this way is stable semi-permanently, and when used as an injection solution, there is no need to worry about gelation during transport from the factory to the site or during injection operations. Even if this colloidal solution of silicic acid is directly injected into the ground, it will not gel itself within a practical period of time, so no practical consolidation effect will be obtained.

珪酸コロイド溶液が電解質物質によってゲル化する理由
はこれが電解質物質の解離イオンによって電気的に中和
されてコロイド同志の結合が生じるためである。具体的
には珪酸のコロイドは通常水中において負に荷電してい
るが、この場合に前記珪酸のコロイドは例えば金属イオ
ンによって電気的に中和されてコロイド同志が結合する
ためである。あるいはまた珪酸のコロイド溶液は通常、
PH8以上、好ましくはPH9〜10において安定であ
り、PI(5付近において最も不安定になり、従って電
解質として酸を用いた場合は解離される水素イオンによ
り MJ記珪酸のコロイド溶液がPH5付近の酸性側に
整向され、不安定化され、ゲル化しやすくなるためであ
ると思われる。
The reason why a silicic acid colloid solution is gelled by an electrolyte substance is that it is electrically neutralized by dissociated ions of the electrolyte substance and colloids bond together. Specifically, silicic acid colloids are normally negatively charged in water, but in this case, the silicic acid colloids are electrically neutralized by, for example, metal ions, and the colloids bond together. Alternatively, colloidal solutions of silicic acid are usually
It is stable at a pH of 8 or above, preferably between 9 and 10, and is most unstable at around PI (5). Therefore, when an acid is used as an electrolyte, the dissociated hydrogen ions cause a colloidal solution of silicic acid to become acidic at a pH around 5. This seems to be because it is oriented to the side, becomes unstable, and becomes easier to gel.

本発明者の研究によれば珪酸コロイドと種々の電解質の
反応性は以下の通りである0 (1)珪酸コロイドと酸の反応は中性〜弱酸性付近で最
も短かくなるが、ゲル化時間を数時間以内に短縮せしめ
るのは困難である。
According to the research of the present inventor, the reactivity of silicic acid colloid and various electrolytes is as follows. It is difficult to reduce this to within a few hours.

(2)珪酸コロイドとアルカリ金属塩を混合するとゲル
化時間を酸の場合よりも短くする事が出来るが、それに
は限度がある。
(2) When silicic acid colloid and alkali metal salt are mixed, the gelation time can be made shorter than when using an acid, but there is a limit to this.

(3)珪酸コロイドに対して多価金属の電解質を全配合
液の2重量%以内混合すると直ちに白濁又は自沈を生じ
、とれをミキシングする事によって流動性はえられるが
、全体的なゲル化が得られず、明白なゲル化時間も不明
確であるため、ゲル化時間を効果的にコントロールする
事がむすかしい。
(3) When a polyvalent metal electrolyte is mixed with silicic acid colloid within 2% by weight of the total mixed solution, it immediately becomes cloudy or scuttling, and fluidity can be obtained by mixing the mixture, but overall gelation is It is difficult to effectively control the gelation time because the gelation time is not clear and the obvious gelation time is unclear.

本発明者は上記反応のうち珪酸コロイドと多価金属の電
解質との反応に着目し、研究した結果次の事が判った。
Among the above reactions, the present inventor focused on the reaction between silicate colloid and polyvalent metal electrolyte, and as a result of research, found the following.

■ 多価金属の電解質は珪酸コロイドと最も反応しやす
い。
■ Polyvalent metal electrolytes react most easily with silicate colloids.

■ 反応の結果、直ちに自沈を生じて流動性を失うが、
それによって生ずるゲルそのものの強度は他の電解質に
よるゲルに比べてきわたって高いO ■ 反応の結果中ずる自沈の存在は注入液の流動性を阻
害し、細粒土への浸透を阻害する。
■ As a result of the reaction, scuttling occurs immediately and fluidity is lost, but
The strength of the resulting gel itself is significantly higher than that of other electrolyte-based gels. The presence of scuttling as a result of the O.sub.2 reaction inhibits the fluidity of the injection solution and inhibits its penetration into fine-grained soil.

■ 多価金属の電解質は非常に微量の場合は珪酸コロイ
ドに自沈を生じせしめないが、珪酸コロイドのゲル化を
促進するのに著しい効果がある。
■ Polyvalent metal electrolytes do not cause silicic acid colloids to scuttle in very small amounts, but they have a significant effect on promoting gelation of silicic acid colloids.

本発明者は以上の特性を注入工法の目的と手段に効果的
に生かすために次の方法によった○(1)多価金属の電
解質を含む懸濁液を一次注入材として用いると、地盤中
の粗い部分を中心にして上記懸濁液が填充される一方、
粗い部分にはその懸濁液の上澄液に相当する液が浸透す
る。又−次グラウドは懸濁液であるため粗い部分を中心
にして填充されるため逸脱しにくい。
In order to effectively utilize the above-mentioned characteristics for the purpose and means of the injection method, the present inventor has proposed the following method: (1) When a suspension containing a polyvalent metal electrolyte is used as the primary injection material, While the above suspension is filled mainly in the rough part,
A liquid corresponding to the supernatant liquid of the suspension permeates into the rough areas. Furthermore, since the secondary cloud is a suspension, it is filled mainly in rough areas, so it is difficult to escape.

珪酸コロイドを二次注入材として注入すると、地盤の粗
い部分では珪酸コロイドと上記−次注入材による多価金
属の電解質の反応が直ちに生じて強固なゲルが形成され
て、地盤に強固な骨組を形成すると共に珪酸コロイドの
逸脱を防止し、珪酸コロイドを細い部分の方向へと浸透
せしめる。細い部分における多価の電解質物質の含有量
は微量であるが、それにも拘わらず珪酸コロイドのゲル
化を促進する効果があるため、充分長いゲル化時間の珪
酸コロイド或は単独ではゲル化しえない珪酸コロイドを
二次グラウトとして用いても、所定領域を強固に固結せ
しめる事が出来る。
When silicic acid colloid is injected as a secondary injection material, a reaction between the silicic acid colloid and the polyvalent metal electrolyte caused by the secondary injection material immediately occurs in the rough areas of the ground, forming a strong gel, which creates a strong framework in the ground. At the same time, it prevents the silicic acid colloid from escaping and allows the silicic acid colloid to penetrate in the direction of the thin portion. Although the content of polyvalent electrolyte substance in the thin part is small, it nevertheless has the effect of promoting gelation of silicate colloid, so it cannot be gelled by silicate colloid with a sufficiently long gelation time or alone. Even if silicic acid colloid is used as a secondary grout, it is possible to firmly consolidate a predetermined area.

と 本発明における多価金属の電解質物−丘アルカリ土金属
、アルミニウム、遷移金属あるいは希土類金属の塩化物
、硫酸塩、リン酸塩、硝酸塩、あるいはこれらの水酸化
物、酸化物質等を云う。セメントもまた水酸化カルシウ
ムを含むためこれに含まれる。
and polyvalent metal electrolytes in the present invention - chlorides, sulfates, phosphates, nitrates of alkaline earth metals, aluminum, transition metals, or rare earth metals, or their hydroxides, oxidized substances, etc. Cement is also included because it contains calcium hydroxide.

本発明における懸濁液とはセメント、生石灰、?I’1
石灰、石膏、カルシウムシリケート、炭酸カルシウム、
スラグ、ベントナイト、フライアッシュ、石粉等をいう
What is the suspension in the present invention, such as cement, quicklime, etc.? I'1
lime, gypsum, calcium silicate, calcium carbonate,
Slag, bentonite, fly ash, stone powder, etc.

前記電解質物質(金属イオン)が珪酸コロイドと反応性
が高く、かつ大きなゲル強度を生じる理由はこれが珪酸
コロイドと化学的に結合して不水溶性の珪酸の金属塩を
形成するためと思われる0即ち、この珪酸のコロイド液
に例えばセメントやCa(OH)を作用させた場合、コ
ロイド同志がCaを介してつながシ高分子の不溶性の珪
酸カルシウム化合物を形成してゲル化するものと思われ
る0以下、珪酸コロイド(表1に示す)と多価金属の電
解質物質との反応に関する実験結果を表−2、表−3、
表−4および表−5に示し、ゲル強度ならびに固結砂強
度の測定結果を表−6に示す0表−6 注18i02: Z3X  H2804: 0.3% 
セメント:25N注2 8i0z :23X  Hz8
04: 0.3% Ca(OH)z: 35%注38i
02:23% H2SO,: 0.3% Ca C70
: 2.5%スラグ:20% 注48i0a : 23% H2SO: 0.3% A
k (804)3 : 2.5%フライアッシュ:30
% ff58i0z : 23X H2804: 0.3%
 Ca (OH)2 : 20Xスラグ:20% 表1〜6、特に表6よ9次の事が判るっ酸やアルカリ金
属塩を反応剤とする場合、ゲルの強度は小さい0(■、
■)0これに対し、多価金属の電解質物質を用いる場合
、混合液の流動性がなくなるほどに濃い場合にはゲルの
強度は大きな値を示し、(■、■;@l@)%  特に
セメント、石灰のように懸濁型の場合の強度は大きい。
The reason why the electrolyte substance (metal ion) is highly reactive with the silicic acid colloid and produces a large gel strength is thought to be that it chemically combines with the silicic acid colloid to form a water-insoluble metal salt of silicic acid. That is, when this colloidal solution of silicic acid is treated with, for example, cement or Ca(OH), it is thought that the colloids are linked together via Ca to form a polymeric insoluble calcium silicate compound and gel. Table 2, Table 3,
Table 4 and Table 5 show the gel strength and compacted sand strength measurement results shown in Table 6. Note 18i02: Z3X H2804: 0.3%
Cement: 25N Note 2 8i0z: 23X Hz8
04: 0.3% Ca(OH)z: 35% Note 38i
02:23% H2SO,: 0.3% Ca C70
: 2.5% slag: 20% Note 48i0a: 23% H2SO: 0.3% A
k (804)3: 2.5% fly ash: 30
%ff58i0z: 23X H2804: 0.3%
Ca (OH)2: 20X slag: 20% Tables 1 to 6, especially Table 6, show the following.When using hydrochloric acid or alkali metal salt as a reactant, the strength of the gel is small 0 (■,
■)0 On the other hand, when using a polyvalent metal electrolyte and the mixture is so thick that it loses its fluidity, the gel strength shows a large value, (■, ■; @l@)% Especially Suspension type materials such as cement and lime have great strength.

(■。(■.

■、■、■)。■,■,■).

又、水溶性の多価金属塩の場合でも、スラグ、フライア
ッシュ等、他の懸濁物と併用した場合は強度が大きくな
る。l+@+[相])Qこれよシあらかじめ多価金属の
電解質を含む懸濁液を一次グラウドとし、二次グラウト
として珪酸コロイドを含む配合液を注入すれば、地盤中
で反応して強固に固結する事が判る。
Furthermore, even in the case of water-soluble polyvalent metal salts, the strength increases when used in combination with other suspensions such as slag and fly ash. l + @ + [phase]) Q If you use a suspension containing a polyvalent metal electrolyte as the primary grout and inject a mixed solution containing silicate colloid as the secondary grout, it will react in the ground and become solid. It can be seen that it solidifies.

前述の本発明工法は施工に際して、第1図あるいは第2
図に示す注入管を用いて行なう。すなわち、注入管の所
定深度に再注入可能な吐出口を有する注入管(第1図)
を通して地盤中に一次注入材を注入しておいてから二次
注入材を重ね合せて注入するか、或は多重管ロッドを用
い、−次注入材が所定外に散逸してしまわないうちに二
次注入材を重ね合せて注入する方法をとる事が出来る。
The above-mentioned construction method of the present invention requires the construction method shown in Fig. 1 or 2 during construction.
This is done using the injection tube shown in the figure. In other words, the injection tube has a discharge port that allows re-injection at a predetermined depth of the injection tube (Fig. 1).
Either the primary injection material is injected into the ground through the holes, and then the secondary injection material is injected in a layered manner, or a multi-pipe rod is used to prevent the secondary injection material from escaping outside the designated area. Next, it is possible to use a method in which the injection materials are overlapped and injected.

(第2図)。(Figure 2).

第1図を説明すると、まず所定地盤に注入孔1を通して
ケーシング2を挿入する。次いで吐出口30部分をラバ
ー4で包囲した注入管5を挿入した後、ケーシング2と
注入管5との間をスリーブグラウト6でシールし、ケー
シング2を引キ抜く0そしてパッカー7を設けたストレ
ーナ−パイプ8を注入管5内に挿入し、注入ポンプ(図
示せず)から−次グラウド注入剤を注入する。次いで、
この注入が終了した後、二次グラウト注入剤を注入する
To explain FIG. 1, first, a casing 2 is inserted into a predetermined ground through an injection hole 1. Next, after inserting the injection pipe 5 whose discharge port 30 is surrounded by rubber 4, the space between the casing 2 and the injection pipe 5 is sealed with sleeve grout 6, and the casing 2 is pulled out. - Insert the pipe 8 into the injection tube 5 and inject the next ground injection agent from the injection pump (not shown). Then,
After this injection is completed, a secondary grouting agent is injected.

第2図を説明すると第2図(a)は二重管を用いて内管
】Oの下方吐出口12よりポーリング水を送って所定深
度迄削孔した状況を示す。
To explain Fig. 2, Fig. 2(a) shows a situation in which a double pipe is used to send poling water from the lower discharge port 12 of the inner pipe [O] to drill a hole to a predetermined depth.

13はメタルクラウンである。その後第2図(b)に示
すように外管9より一次注入材を送シ上部吐出口11よ
り地盤中に注入し、一方二次注入材を内管10を通して
送シ、下部吐出口12より地盤中に注入しながら注入ス
テージ下から上に移行する事によって一次注入材を注入
した領域に二次注入材を重ねて注入する。
13 is a metal crown. Thereafter, as shown in FIG. 2(b), the primary injection material is sent through the outer pipe 9 and injected into the ground through the upper discharge port 11, while the secondary injection material is sent through the inner pipe 10 and is injected into the ground through the lower discharge port 12. By moving from the bottom of the injection stage to the top while injecting it into the ground, the secondary injection material is superimposed on the area where the primary injection material was injected.

実施例 東京部内の砂レキ地盤にて以下の比較注入試験を行なっ
た。
Example The following comparative injection test was conducted on sandy ground in the Tokyo area.

一次グラウ)CG−1)はI−当り以下の配合を用いた
For primary grau) CG-1), the following formulation was used per I-.

G−10消石灰 100館、残り 水。G-10 slaked lime 100 units, remaining water.

G−1■ 消石灰 50#、セメント50却、残り水。G-1■ Slaked lime 50#, cement 50%, remaining water.

Cr−1■ セメント100kg、残り 水。Cr-1 ■ 100 kg of cement, remaining water.

G−1■ 塩化カルシウム50汚、残シ 水。G-1■ Calcium chloride 50 stain, residual water.

G−1■ 塩化カルシウム25#、セメント 25kg
、残シ 水。
G-1■ Calcium chloride 25#, cement 25kg
, residual water.

G−1■ 消石灰 50kg、石膏 50#、残シ 水
G-1■ Slaked lime 50kg, plaster 50#, residual water.

G−10消石灰 50kg、スラグ 50蛇、残り水。G-10 slaked lime 50kg, slag 50kg, remaining water.

二次グラウ)(G−2)は以下の配合を用いた。The following formulation was used for the secondary glau (G-2).

G〜2■ 表−1に示す珪酸のコロイド溶液。G~2■ Colloidal solution of silicic acid shown in Table-1.

G−20表−4の配合No、 4に示す珪酸のコロイド
溶液。
A colloidal solution of silicic acid shown in Formulation No. 4 in Table G-20.

G−2■ 表−4の配合No、 8に示す珪酸のコロイ
ド溶液。
G-2 ■ A colloidal solution of silicic acid shown in Formulation No. 8 in Table 4.

G−2■ 表−5の配合No、 5に示す珪酸のコロイ
ド溶液。
G-2■ A colloidal solution of silicic acid shown in Formulation No. 5 in Table-5.

注入量は注入深長1m当シー次注入を50t、二次注入
250tであp、2m区間25cmピッチで注入し、か
つ注入方法(H)としては以下の方法によった〇 一次注入を行なわない場合は1m当りの二次注入は30
0tとした。
The injection amount was 50t for the sequential injection per 1m depth, 250t for the secondary injection, and 2m intervals with a pitch of 25cm, and the injection method (H) was as follows.〇Primary injection is not performed. In this case, the secondary injection per meter is 30
It was set to 0t.

H−■ 第1図の注入管を用いる方法。H-■ Method using the injection tube shown in Figure 1.

H−■ 第2図の注入管を用いる方法。H-■ Method using the injection tube shown in Figure 2.

H−■ ロッド注入。H-■ Rod injection.

一次注入してのち1日経過後二次注入を行ない、翌日中
心部にて透水試験を行なった。その結果を表−7、表−
8に示す。
One day after the first injection, a second injection was performed, and a water permeability test was conducted at the center the next day. The results are shown in Table-7.
8.

注入しない場合の地盤の透水係数は に=2.5XIo  cm/秒を示した。The permeability coefficient of the ground without injection is = 2.5XIo cm/sec.

表−7 G−2(b)を用いた場合の透水試験結果(k:cn1
/臓) 表−8 G−]■を用いた場合の透水試験結果(k : cm 
/sea )注入後の試験の結果から次の事が判った。
Table-7 Water permeability test results when using G-2(b) (k:cn1
/ viscera) Table 8 Results of water permeability test using G-]■ (k: cm
/sea) The following was found from the results of the post-injection test.

注入方法別の注入効果はH−■、H−■、H−■の順に
なる。
The injection effects by injection method are in the order of H-■, H-■, and H-■.

又、二次注入材としてG−2■、G−2■、G−2■、
G−2■を比較すると、G−2■に比して他は透水係数
がほぼ100分の1〜5分の1の小さい値を示しており
、珪酸のコロイド液を不安定化して注入すると更に注入
効果が改善される事が判った。
In addition, as secondary injection materials, G-2■, G-2■, G-2■,
Comparing G-2■, it is found that the hydraulic permeability coefficients of the others are approximately 1/100 to 1/5 smaller than G-2■, and when the silicic acid colloid is destabilized and injected Furthermore, it was found that the injection effect was improved.

さらに−次注入を行なわず二次注入のみを注入深度30
0tづつ注入した場合G−2■による固結効果は殆んど
得られなかった。又G−2■、G−2■、G−2■によ
る固結効果はみられたが、透水係数は一次注入を行なっ
た場合に比べ10倍から100倍程鹿の大きさの透水係
数を示した。
Furthermore, only the secondary injection is performed without performing the next injection at an injection depth of 30
When 0 t was injected at a time, almost no consolidation effect was obtained by G-2■. Although the consolidation effect of G-2■, G-2■, and G-2■ was observed, the hydraulic conductivity was 10 to 100 times the size of a deer compared to the case of primary injection. Indicated.

又掘削調整したところ一次注入を行なった場合、H−■
、H−■ではほぼ直径1mの範囲で円柱形の固化物が得
られたが、−次注入を行なわない場合並びにロッド注入
では直径が0.3m〜2.Om迄注入深度の変化に応じ
て不規則な形状を得た0〔発明の効果〕 以上のとおり、本発明は前述の一次注入材を注入した後
に珪酸コロイド溶液を含む二次注入材を重ねて注入した
から、地盤を強固に、かつ完全に、さらには容易な操作
で無公害に固結することができ、実用上極めて有用であ
る0
Also, after adjusting the excavation and performing the primary injection, H-■
In , H-■, a cylindrical solidified material with a diameter of approximately 1 m was obtained, but in the case where the second injection was not performed and the rod injection, the diameter was 0.3 m to 2.0 m. [Effects of the Invention] As described above, the present invention is based on the following method: after injecting the above-mentioned primary injection material, a secondary injection material containing a silicate colloid solution is layered. Since it is injected into the ground, it is possible to solidify the ground firmly and completely, and furthermore, it is easy to operate and non-polluting, making it extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいずれも本発明工法を実施するだ
めの注入管の一具体例を示し、第2図(a)。 (b)は本発明工法の工程図を示す0 1・・・注入孔、3・・・吐出口、5・・・注入管、9
・・・外管、10・・・内管、11・・・上部吐出口、
12・・・下部吐出口。 特許出願人  強化土エンジニャリング株式会社浮2國
Both FIGS. 1 and 2 show a specific example of an injection pipe for carrying out the construction method of the present invention, and FIG. 2(a) shows a concrete example of the injection pipe. (b) shows a process diagram of the method of the present invention 0 1...Injection hole, 3...Discharge port, 5...Injection pipe, 9
...outer pipe, 10...inner pipe, 11...upper discharge port,
12...Lower discharge port. Patent applicant: Uki2Koku Reinforced Soil Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 多価金属の電解質物質を含む懸濁液からなる一次グラウ
ド材を地盤に注入した後、珪酸のコロイド溶液を含む二
次グラウト材を前記地盤に注入する事を特徴とする地盤
注入工法。
A ground injection method characterized by injecting a primary grout material made of a suspension containing a polyvalent metal electrolyte into the ground, and then injecting a secondary grout material containing a colloidal solution of silicic acid into the ground.
JP2819983A 1983-02-21 1983-02-21 Impregnation method for ground Granted JPS59152986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2819983A JPS59152986A (en) 1983-02-21 1983-02-21 Impregnation method for ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2819983A JPS59152986A (en) 1983-02-21 1983-02-21 Impregnation method for ground

Publications (2)

Publication Number Publication Date
JPS59152986A true JPS59152986A (en) 1984-08-31
JPH0362751B2 JPH0362751B2 (en) 1991-09-26

Family

ID=12241998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2819983A Granted JPS59152986A (en) 1983-02-21 1983-02-21 Impregnation method for ground

Country Status (1)

Country Link
JP (1) JPS59152986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159484A (en) * 1984-12-31 1986-07-19 Kyokado Eng Co Ltd Grouting method
FR2746122A1 (en) * 1996-03-15 1997-09-19 Electricite De France Electro-injection electrode masking sleeve
JP2014092020A (en) * 2012-11-07 2014-05-19 Shimizu Corp Grout injection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131116A (en) * 1975-05-08 1976-11-15 Raito Kougiyou Kk Method of improving subsoil
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57176769A (en) * 1981-04-21 1982-10-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131116A (en) * 1975-05-08 1976-11-15 Raito Kougiyou Kk Method of improving subsoil
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57176769A (en) * 1981-04-21 1982-10-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159484A (en) * 1984-12-31 1986-07-19 Kyokado Eng Co Ltd Grouting method
JPH0471956B2 (en) * 1984-12-31 1992-11-17 Kyokado Eng Co
FR2746122A1 (en) * 1996-03-15 1997-09-19 Electricite De France Electro-injection electrode masking sleeve
JP2014092020A (en) * 2012-11-07 2014-05-19 Shimizu Corp Grout injection method

Also Published As

Publication number Publication date
JPH0362751B2 (en) 1991-09-26

Similar Documents

Publication Publication Date Title
JPH0428759B2 (en)
JP5578642B2 (en) Ground injection agent and ground injection method
JP4679811B2 (en) Silica solution for ground injection and ground injection method
JP2001003047A (en) Grouting consolidation material
JP2006226014A (en) Grouting construction method
JPS59152986A (en) Impregnation method for ground
JP6712828B1 (en) Ground injection material and ground injection method
JPH0860153A (en) Method for grouting
JP4018942B2 (en) Silica-based grout and ground improvement method
JPS59179580A (en) Ground grouting method
JPS5993787A (en) Solidification of ground
JP4757428B2 (en) Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material
JPS60144382A (en) Grouting method and grouting apparatus
JP2008057191A (en) Soil improving method
JPS648677B2 (en)
JP2004196922A (en) Alkaline silica for ground hardening, apparatus for producing the same and ground hardening material
JP2000239661A (en) Grouting material for grouting ground and method for grouting ground using same
JP4679787B2 (en) Ground injection material
JP2001031968A (en) Injection material for ground
JPH0753960A (en) Liquid inorganic filler for solidifying or sealing soil
JPS59152985A (en) Impregnation method for ground
JPH0471956B2 (en)
JPH0232307B2 (en)
JPS59131690A (en) Process for injecting into ground
JPS62172088A (en) Ground grouting process