JPS5993787A - Solidification of ground - Google Patents

Solidification of ground

Info

Publication number
JPS5993787A
JPS5993787A JP20391282A JP20391282A JPS5993787A JP S5993787 A JPS5993787 A JP S5993787A JP 20391282 A JP20391282 A JP 20391282A JP 20391282 A JP20391282 A JP 20391282A JP S5993787 A JPS5993787 A JP S5993787A
Authority
JP
Japan
Prior art keywords
injection
ground
silicic acid
gelation time
gelation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20391282A
Other languages
Japanese (ja)
Other versions
JPH0222115B2 (en
Inventor
Shunsuke Shimada
俊介 島田
「かや」原 健二
Kenji Kayahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP20391282A priority Critical patent/JPS5993787A/en
Publication of JPS5993787A publication Critical patent/JPS5993787A/en
Publication of JPH0222115B2 publication Critical patent/JPH0222115B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To solidify the ground in a short gelling time and to strength it permanently without causing dispersion and scattering, by blending a colloidal solution of silicic acid with an alkali metal salt, etc. CONSTITUTION:(A) A colloidal solution of silicic acid is blended with (B) an alkaline(earth) metal salt or aluminum salt, and the blend whose gelling time is adjusted to <=20hr in impregnated into the ground. While it is impregnated, it becomes unstable, the gelling is accelerated, and it is solidified. The component A, from which Na ion is almost separated and removed, whose pH is usually adjusted to 8-10, SiO2 concentration to 10-60wt%, and Na2O to 0.01- 4wt%, is used.

Description

【発明の詳細な説明】 本発明は珪酸のコロイド溶液を用いた地盤注入工法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground injection method using a colloidal solution of silicic acid.

従来、地盤注入のために水ガラスグラウトが用いられて
来た。水ガラスグラウトは液状の珪酸のアルカリ金属塩
であり、これに塩や酸を加えて珪酸ゲルを析出する事に
よつて地盤を固結するものである。
Traditionally, water glass grout has been used for ground injection. Water glass grout is a liquid alkali metal salt of silicic acid, and is used to solidify the ground by adding salt or acid to precipitate a silicic acid gel.

しかるに、珪酸のアルカリ金属塩は高アルカリ性を呈し
そのゲル化もアリカリ領域で行なわれるため地下水が長
期にわたつてアルカリ性を呈するという問題があつた。
However, since the alkali metal salt of silicic acid exhibits high alkalinity and gelation occurs in the alkali region, there has been a problem that groundwater remains alkaline for a long period of time.

この問題を解決するために酸性液中に水ガラスを加えて
水ガラス中のアルカリを除去して得られる酸性珪酸水溶
液とアルカリを合流して中性領域でゲル化させる地盤注
入工法が開発されている。
To solve this problem, a ground injection method has been developed in which water glass is added to an acidic solution and the alkali in the water glass is removed, and the alkali is combined with the acidic silicic acid solution to form a gel in a neutral region. There is.

このグラウトは固結物が中性を示し、地下水のPHも変
動せずきわめてすぐれた特性を有する注入材であるが、
強度が弱い事、ゲル化が非常に短いという欠点があつた
This grout is a grouting material with extremely excellent properties, as the solids are neutral and the pH of groundwater does not change.
It had the disadvantages of low strength and very short gelation time.

即ち、通常水ガラスグラウトにおける注入液中にSiO
2の濃度は10重量%以上である事が強度の点から(固
結砂の一軸圧縮強度で1kg/cm2以上)必要である
が、SiO2の濃度が10重量%以上ではゲル化時間が
中性領域付近(PHが4〜8)で1分以内、通常数秒は
なつてしまう。浸透性がよく、かつ地盤中で分散せずに
固結するのに適したゲル化時間は30〜120分である
事が経験的に判つているが、もしゲル化時間を中性領域
付近で30〜120分程度を得ようとしたならSiO2
の濃度は5重量%以下にしなくてはならずこの濃度では
固結砂強度は0.5kg/cm2にも達せず、注入工法
には実用上利用出来ない。また、中性領域の水ガラスグ
ラウトは酸性液中に水ガラスを加えて水ガラス中のアル
カリを中和して注入液を得るものであるから、その注入
液中には当然の事ながら中和によつて生成した中和生成
物、即ち、Naイオンや酸根等が多く残留するが水質保
全の点からこれらのNaイオンや酸根も残存しない注入
工法が確立出来れば これにすぐれるものはない。
That is, SiO is usually present in the injection liquid in water glass grout.
The concentration of SiO2 must be at least 10% by weight from the viewpoint of strength (uniaxial compressive strength of consolidated sand of 1kg/cm2 or more), but if the concentration of SiO2 is at least 10% by weight, the gelation time becomes neutral. In the vicinity of the area (PH 4 to 8), it fades within 1 minute, usually several seconds. It has been empirically determined that the gelation time is 30 to 120 minutes, which is suitable for good permeability and solidification without dispersing in the ground. If you want to get about 30 to 120 minutes, use SiO2
The concentration of sand must be 5% by weight or less, and at this concentration, the consolidated sand strength does not even reach 0.5 kg/cm2, making it practically unusable for the injection method. In addition, water glass grout in the neutral range is obtained by adding water glass to an acidic solution and neutralizing the alkali in the water glass to obtain the injection solution. A large amount of neutralized products such as Na ions and acid radicals remain, but from the viewpoint of water quality conservation, it would be better if an injection method could be established that does not leave any Na ions or acid radicals.

又、酸性液中に水ガラスを加えてうる酸性水ガラス液を
地盤注入工法に用いる方法も知られているが、これは酸
の中に水ガラスを加えて単分子からなる珪酸からコロイ
ド状の珪酸を経てゲル化に到る現象を利用したものであ
り、SiO2を10wt%以上にしてかつゲル化時間を
30分以上の長いゲル化時間の配合をうるにはPHが3
付近の酸性領域に調整して注入する必要がある。
Another known method is to add water glass to an acidic solution and use it in the ground injection method. This method utilizes the phenomenon of gelation through silicic acid, and in order to obtain a formulation with SiO2 of 10 wt% or more and a long gelation time of 30 minutes or more, the pH must be 3.
It is necessary to adjust the injection to the nearby acidic area.

本発明は以上の問題を解決するために更に発展した技術
を提供するものである。
The present invention provides a further developed technique to solve the above problems.

即ち、本発明は珪酸のコロイド溶液と、アルカリ金属塩
、アルカリ金属塩およびアルミニウム塩から選定した塩
とを混合してゲル化時間を20時間以内に調整した注入
液を地盤に注入する事によつて前記問題を解決したもの
である。
That is, the present invention mixes a colloidal solution of silicic acid and a salt selected from alkali metal salts, alkali metal salts, and aluminum salts, and injects into the ground an injection solution prepared by adjusting the gelation time to within 20 hours. This solves the above problem.

本発明における珪酸のコロイド溶液(シリカゾル)とは
液状のアルカリ金属珪酸塩水溶液 (水ガラス)からアルカリ金属イオンの殆んどを除去し
て得られるものであつて、例えばゼオライト系陽イオン
交換体、アンモニウム系イオン交換体などのイオン交換
樹脂に水ガラスを通過させ、生成したシリカゾルを80
℃〜90℃の温度でさらに水ガラスに加え、再び前記イ
オン交換樹脂に通過してイオン交換を行なつて得られる
ものであり、比較的純すいな(稀薄な)シリカゾルが得
られる。さらに純すいなシリカゾルを得るには前述の稀
薄なシリカゾルを微アルカリ性に調整し、これにさらに
前述のシリカゾルを加えながら蒸発し、安定化と濃縮を
同時に行なう方法、あるいは、イオン交換後の活性シリ
カゾルを適当なアルカリの下に加熱し、これにさらに活
性シリカゾルを加えて安定化する方法のが用いられる。
The colloidal solution of silicic acid (silica sol) in the present invention is obtained by removing most of the alkali metal ions from a liquid aqueous alkali metal silicate solution (water glass), and includes, for example, a zeolite cation exchanger, Water glass is passed through an ion exchange resin such as an ammonium-based ion exchanger, and the generated silica sol is
The silica sol is further added to water glass at a temperature of .degree. C. to 90.degree. C. and passed through the ion exchange resin again for ion exchange, yielding a relatively pure (dilute) silica sol. In order to obtain even pure silica sol, the dilute silica sol mentioned above is adjusted to be slightly alkaline, and the above-mentioned silica sol is further added to it while evaporating, thereby simultaneously stabilizing and concentrating it. Alternatively, the activated silica sol after ion exchange can be used. A method is used in which the mixture is heated under a suitable alkali and activated silica sol is further added thereto for stabilization.

本発明における珪酸コロイド溶液はNaイオンが殆んど
分離除去して通常PHが8〜10以下の弱アルカリ性に
調達し、SiO2は10〜60wt%、Na2Oは4w
t%〜0.01wt%の範囲に調整したものを用いる。
The silicic acid colloidal solution used in the present invention is procured to have a slightly alkaline pH of 8 to 10 or less, with most of the Na ions being separated and removed, with SiO2 being 10 to 60 wt% and Na2O being 4 wt%.
The amount adjusted to a range of t% to 0.01wt% is used.

Na2Oが4%以上になると珪酸コロイドは溶けてしま
い珪酸塩の水溶液となつてしまう。一方Na2Oが0.
01%以下になると珪酸コロイドは安定して存在しえず
凝集してしまう。即ちNa2Oが4wt%〜0.01w
t%の範囲でNaイオンが珪酸コロイドの表面に分布し
て安定したコロイド状に保ちうる。この場合珪酸コロイ
ドの粒経はほぼ6〜50μmが主となる。珪酸コロイド
の粒経が50μm以上になると沈殿してしまう。又、以
上の珪酸コロイドはモル比(SiO2/Na2O)でほ
ぼ1000〜10とし、PHは8〜10がコロイドの安
定上望ましい。
When the Na2O content exceeds 4%, the silicate colloid dissolves and becomes an aqueous solution of silicate. On the other hand, Na2O is 0.
If it is less than 0.01%, the silicic acid colloid cannot exist stably and will aggregate. That is, Na2O is 4wt% to 0.01w
Na ions are distributed on the surface of the silicic acid colloid within a range of t% and can maintain a stable colloidal state. In this case, the grain size of the silicic acid colloid is mainly about 6 to 50 μm. If the particle size of the silicic acid colloid is 50 μm or more, it will precipitate. Further, the above silicic acid colloid has a molar ratio (SiO2/Na2O) of about 1000 to 10, and a pH of 8 to 10, which is desirable for stability of the colloid.

又、SiO2の濃度は60〜10重量%である事が注入
液として固結強度の点から望ましい。
Further, it is desirable that the concentration of SiO2 is 60 to 10% by weight from the viewpoint of solidification strength as an injection liquid.

このようにして調整された珪酸コロイドは半永久的に安
定しており、これを注入液として用いる場合、工場から
現場への搬入並びに注入操作の際にゲル化する心配 性がない。この珪酸のコロイド溶液をそのまま地盤中に
注入してもそれ自体実用時間内にゲル化する事はないの
で実用上の固結効果は得られない。
The silicic acid colloid prepared in this way is stable semi-permanently, and when used as an injection solution, there is no risk of gelation during transportation from the factory to the site or during injection operations. Even if this colloidal solution of silicic acid is directly injected into the ground, it will not gel itself within a practical period of time, so no practical consolidation effect will be obtained.

第1図は本発明者の実験によるPHとゲル化時間の関係
を示したものである。
FIG. 1 shows the relationship between PH and gelation time according to experiments conducted by the present inventor.

曲線1は表−2に示す30wt%を含有する珪酸コロイ
ドの場合を示し、曲線2はモル比が3.4の水ガラスを
硫酸水溶液に添加混合してSiO2濃度を30wt%に
なるようにして得たものである。
Curve 1 shows the case of silicic acid colloid containing 30 wt% as shown in Table 2, and curve 2 shows the case of silicic acid colloid containing 30 wt% shown in Table 2, and curve 2 shows the case of adding and mixing water glass with a molar ratio of 3.4 to a sulfuric acid aqueous solution to make the SiO2 concentration 30 wt%. That's what I got.

これから判るように、通常の液状水ガラスのPH値を調
整する場合、PHとゲル化時間の関係はPHが8付近で
最も短いため中性付近では固結強度をうるに充分なSi
O2濃度を保持したまゝ土粒子への浸透に充分な長いゲ
ル化時間を得る事が出来ないのに対し、珪酸コロイドの
PH値を調整する場合はPHが5〜6付近でゲル化時間
が最も短かくなり、しかも中性領域でSiO2濃度を充
分に保持しながら、長いゲル化時間を得る事が判る。
As can be seen from this, when adjusting the pH value of ordinary liquid water glass, the relationship between pH and gelation time is the shortest when the pH is around 8.
While it is not possible to obtain a gelation time long enough for penetration into soil particles while maintaining the O2 concentration, when adjusting the pH value of silicate colloid, the gelation time is shortened when the pH is around 5 to 6. It can be seen that the gelation time is the shortest, and that a long gelation time can be obtained while maintaining a sufficient SiO2 concentration in the neutral region.

しかるに、前記珪酸のコロイド液と前記塩を加えて、ゲ
ル化時間を20時間 以内に調整したものを地盤中に注入すると珪酸コロイド
は地盤中に浸透している過程において不安定化し、ゲル
化が促進して、分散、散逸する事なく固結する。
However, when the silicic acid colloid and the salt are added and the gelation time is adjusted to within 20 hours and then injected into the ground, the silicic acid colloid becomes unstable during the process of penetrating into the ground, and gelation occurs. promotes solidification without dispersion or dissipation.

しかも、充分な固結強度をうるSiO2の濃度を保持し
て殆んど中性領域でゲル化時間を数秒〜20時間迄容易
に調整する事が出来る。
Moreover, the gelation time can be easily adjusted from several seconds to 20 hours in an almost neutral range while maintaining a SiO2 concentration that provides sufficient consolidation strength.

以下、本発明による実験結果を表−1に示す。The experimental results according to the present invention are shown in Table 1 below.

なお、使用した珪酸コロイドを表−2に示す。The silicic acid colloids used are shown in Table 2.

表−1 表−2 実験に用いた珪酸のコロイド液 表−2より珪酸コロイド液とアルカリ金属塩、アルカリ
土金属塩およびアルミニウム塩から選定された塩とを混
合して弱アルカリ性が弱酸性の領域(PH 4〜8)で
ゲル化せしめる事が出来る事が判る。
Table-1 Table-2 Silicic acid colloidal solution used in the experiment From Table-2, a silicic acid colloidal solution and a salt selected from alkali metal salts, alkaline earth metal salts, and aluminum salts were mixed to form a weakly alkaline to weakly acidic region. It can be seen that gelation can be achieved at pH 4 to 8.

これらの塩のうちアルカリ金属塩を用いた場合そのうち
でも特にアルカリ金属中性塩を用いた場合非常にスムー
スにゲル化時間を調整出来かつ、均質なゲル化をうる事
が出来る。
Among these salts, when an alkali metal salt is used, especially when a neutral alkali metal salt is used, the gelation time can be adjusted very smoothly and homogeneous gelation can be obtained.

アルカリ土金属の場合は一部沈殿或いは部分ゲルを生じ
やすいが全体的にゲル化する。アルミニウム塩は沈殿し
て均質なゲルをつくる事が困難であるが酸と微量のアル
ミニウム塩を併用すると非常に効果的にゲル化時間の調
整が可能でかつ均質なゲル化をうる事が出来る。
In the case of alkaline earth metals, partial precipitation or partial gelation tends to occur, but gelation occurs as a whole. Aluminum salt precipitates and it is difficult to form a homogeneous gel, but when an acid and a small amount of aluminum salt are used in combination, the gelation time can be very effectively adjusted and homogeneous gelation can be obtained.

また酸と塩を併用する事によつて弱酸 性〜中性領域(PHが4〜8付近)でゲル化時間を数十
分〜数秒に到る迄自由に調整出来る事が判る。酸だけを
用いてゲル化時間を調整しようとしてもゲル化時間は4
時間以内に短縮する事は困難である。
It is also understood that by using an acid and a salt in combination, the gelation time can be freely adjusted from several tens of minutes to several seconds in a weakly acidic to neutral range (pH around 4 to 8). Even if you try to adjust the gelation time using only acid, the gelation time will be 4.
It is difficult to shorten the time within that time.

なお、本発明に用いるグラウトは地盤中において、上述
したようにゲル化が促進され、逸脱しにくい特性を有し
ているが、特に地盤の土層の構成が複雑に変化している
場合はこのグラウトを二次注入材として用いることがで
き、あらかじめ、一次注入材を注入領域に注入した後に
これを注入する。
The grout used in the present invention promotes gelation in the ground as described above, and has the property of being difficult to deviate from. Grout can be used as a secondary grout and is injected after the primary grout has previously been injected into the injection area.

上述した一次注入材としてはカルシウムイオンを解離す
る電解質物質を含むものが特にすぐれており、これに石
灰、セメント、炭酸カルシウム、石膏、塩化カルシウム
等を一種又は複数を併用して用いられる。このうちセメ
ントを除いたものはそれ自体で単独で固結する能力はな
い。したがつて注入対象領域に確実に固定しておく事が
重要である。勿論、セメントを用いても各注入ステージ
に確実にセメントが固定されている事が必要である。
As the above-mentioned primary injection material, one containing an electrolyte substance that dissociates calcium ions is particularly good, and one or more of lime, cement, calcium carbonate, gypsum, calcium chloride, etc. can be used in combination with this. Of these, except for cement, they do not have the ability to solidify by themselves. Therefore, it is important to securely fix the injection target area. Of course, even if cement is used, it is necessary to securely fix the cement to each injection stage.

以上の問題を解決するには一つには一次注入材をセメン
ト注入と併用するかそれ自体に固化性を付与する方法を
とる事が望ましい。
In order to solve the above problems, it is desirable to use the primary injection material in combination with cement injection, or to give it solidification properties.

例えば石灰を一次注入するに当つて、石灰や炭酸カルシ
ウムや塩化カルシウムにセメントをまぜて注入したり或
はあらかじめセメント注入したあと石灰や炭酸カルシウ
ムや塩化カルシウムを注入したり、或は石灰に石膏やス
ラグやフライアツシユ等を混入してそれ自体に固結能力
を与える等の方法をとる事が出来る。或はこれらの成分
を含んだ水ガラスグラウトを用いる事も出来る。
For example, when initially injecting lime, lime, calcium carbonate, or calcium chloride may be mixed with cement, or cement may be injected in advance and then lime, calcium carbonate, or calcium chloride may be injected, or lime may be mixed with gypsum or calcium chloride. It is possible to use methods such as adding slag, fly ash, etc. to give it solidification ability. Alternatively, water glass grout containing these components can also be used.

又各注入ステージ各々に確実にこれらの一次注入材をあ
らかじめ分布せしめておくためには注入管の所定深度に
再注入可能な吐出口を有する注入管(第2図)を通して
地盤中に一次注入材を注入しておいてから二次注入材を
重ね合せて注入するか或は多重管ロツドを用いて注入し
た一次注入材が所定外に散逸してしまわないうちに二次
注入材を重ね合せて注入する方法をとる事が出来る。(
第3図)。
In addition, in order to reliably distribute these primary injection materials in each injection stage in advance, the primary injection materials must be poured into the ground through an injection pipe (Figure 2) that has a discharge port that can be re-injected to a predetermined depth of the injection pipe. Either inject the secondary injection material in a layered manner after injecting the material, or use a multi-pipe rod to overlap the secondary injection material before the primary injection material injected dissipates outside the designated area. You can take the injection method. (
Figure 3).

第2図を説明するとまず所定地盤に注入孔1を穿孔して
ケーシング2を挿入する。次いで吐出孔3の部分をラバ
ー4で包囲した注入管5を挿入した後、ケーシング2と
注入管5との間をスリープグラウト6でシールし、ケー
シング2を引き抜く。
Referring to FIG. 2, first, an injection hole 1 is drilled in a predetermined ground and a casing 2 is inserted. Next, after inserting the injection pipe 5 surrounded by the rubber 4 into the discharge hole 3, the space between the casing 2 and the injection pipe 5 is sealed with the sleep grout 6, and the casing 2 is pulled out.

そしてパツカー7を設けたストレーナーパイプ8を注入
管5内に挿入し、注入ポンプ(図示せず)から一次グラ
ウト注入剤を注入する。次いで、この注入が終了した後
、二次グラウト注入剤を注入する。
Then, a strainer pipe 8 provided with a packer 7 is inserted into the injection pipe 5, and a primary grout injection agent is injected from an injection pump (not shown). Then, after this injection is completed, a secondary grouting agent is injected.

第3図を説明すると第3図(a)は二重管を用いて内管
10の下方吐出口12よりポーリング水を送つて所定深
度迄削孔した状況を示す。
To explain FIG. 3, FIG. 3(a) shows a situation in which a double pipe is used to send polling water from the lower discharge port 12 of the inner pipe 10 to drill a hole to a predetermined depth.

13はメタルクラウンである。その後第3図(b)に示
すように外管9より一次注入材を送り上部吐出口11よ
り地盤中に注入し、一方二次注入材を内管10を通して
送り下部吐出口12より地盤中に注入しながら注入ステ
ージ下から上に移行する事によつて一次注入材を注入し
た領域に二次注入材を重ねて注入する。
13 is a metal crown. Thereafter, as shown in FIG. 3(b), the primary injection material is sent through the outer pipe 9 and injected into the ground through the upper outlet 11, while the secondary injection material is sent through the inner pipe 10 and into the ground through the lower outlet 12. By moving from the bottom to the top of the injection stage while injecting, the secondary injection material is injected overlappingly into the area where the primary injection material has been injected.

なお、本発明はPHが8〜10を呈する珪酸コロイドを
用いるのが普通であるがPHが4よりも酸性側の珪酸コ
ロイドを用いてそれに上記塩を加えてもよい。
In the present invention, a silicic acid colloid having a pH of 8 to 10 is normally used, but a silicic acid colloid having a pH of more than 4 may be used and the above-mentioned salt may be added thereto.

以下の記述において、地盤中に注入した注入液のゲル化
時間が通常2時間以内が望ましいという根拠は以下の通
りである。
In the following description, the reason why it is desirable that the gelation time of the injection liquid injected into the ground is usually within 2 hours is as follows.

注入管先端部から地盤中に注入し、注入孔より直径1m
の範囲を固結すると、固結土量は4/3×π×1≒4m
3である。
Inject into the ground from the tip of the injection pipe, 1m in diameter from the injection hole.
When the area is consolidated, the amount of consolidated soil is 4/3×π×1≒4m
It is 3.

1m3の砂の間隙率を0.4とし、経験的に間隙の80
%が注入液で填充されて砂が固結するとすれば4m3当
りに必要な注入量は 4×0.4×0.8=1.28m3=1280lとなり
、毎分注入量を10lとすると半径1mの球状に注入液
を浸透させるための注入時間は1280÷10=128
分となる。
Assuming that the porosity of 1 m3 of sand is 0.4, empirically the porosity of 80
% is filled with the injection liquid and the sand solidifies, the amount of injection required per 4 m3 is 4 x 0.4 x 0.8 = 1.28 m3 = 1280 liters, and if the injection amount per minute is 10 liters, the radius is 1 m. The injection time to infiltrate the injection liquid into the spherical shape is 1280÷10=128
It will be a minute.

従つて、最初に注入された注入液がほぼ2時間以内に流
動性を失えば注入液が分散、逸散する事なく直径ほぼ2
mの一定範囲を均質に固結する事になる。
Therefore, if the initially injected injection liquid loses its fluidity within approximately 2 hours, the injection liquid will not disperse or escape and the diameter will be approximately 2 hours.
This results in homogeneous solidification over a certain range of m.

以上は、通常の注入対象となる地盤における例であつて
そこで直径2mが固結出来れば充分満足しうる効果を上
げる事が出来るから以上の条件は注入工事一般において
注入効果をみたす充分な条件とみてよい。
The above is an example of the ground that is the target of normal injection, and if a diameter of 2 m can be solidified there, a sufficiently satisfactory effect can be achieved. Therefore, the above conditions are sufficient conditions to achieve the injection effect in general injection work. You can take a look.

このような考え方に基づいて以下の実験を行つた。Based on this idea, we conducted the following experiment.

実験−1 断面積が10cm2のビニール管の最下端を栓でつめ下
部1m長に千葉県内の砂を填充した。砂の間隙率を40
%注入液の間隙填充率を80%として320cc (10×100×0.4×0.8=320cm3間隙率
=0.4、間隙填充率0.8) の配合液を注ぎ込んだ。
Experiment 1 The bottom end of a vinyl pipe with a cross-sectional area of 10 cm2 was closed with a stopper, and the bottom 1 m length was filled with sand from Chiba Prefecture. Increase the porosity of sand to 40
320 cc (10 x 100 x 0.4 x 0.8 = 320 cm3 porosity = 0.4, gap filling rate 0.8) of the blended liquid was poured into the tube, with the gap filling rate of the injection liquid being 80%.

配合液は表−1に基づき以下のゲル化時間の配合液を調
整した。
The blended solution was prepared with the following gelation time based on Table 1.

表−3 上述したビニール管に砂をつめた試料を10本用意し、
上記配合液を流し込み120分後にビニール管最下端の
栓をはずし、注入液が流下するか否かを調べた。
Table 3 Ten samples of the above-mentioned vinyl tubes filled with sand were prepared.
After 120 minutes after pouring the above-mentioned liquid mixture, the stopper at the bottom end of the vinyl tube was removed, and it was examined whether the injection liquid would flow down or not.

No.32,5,6,および10の配合液を用いたもの
は流下せず上部はゲル化していないものの最下部はゲル
化している事が判明した。また、No.1、4、24、
18の配合液を用いたものは流下せず又上部もゲル化し
ていた。又No.30、31の配合液を用いたものは砂
と共にゲル化しないまま配合液は流下してしまつた。
No. It was found that the solutions using formulations Nos. 32, 5, 6, and 10 did not flow down and did not gel at the top, but did gel at the bottom. Also, No. 1, 4, 24,
The mixture using No. 18 did not flow down and the upper part was also gelled. Also No. In the cases where the mixed solutions No. 30 and 31 were used, the mixed solution flowed down without gelling together with the sand.

この結果、ゲル化時間を20時間以内に調整したものを
地盤中に注入した場合、注入過程中にゲル化が促進し、
ほぼ20時間以内に流動性が失われる事が判つた。
As a result, when a material whose gelation time was adjusted to within 20 hours was injected into the ground, gelation was accelerated during the injection process,
It was found that fluidity was lost within approximately 20 hours.

本発明においてアルカリ土金属塩はセメントは含まない
、なぜならばセメントはCaイオンを含有するが大きな
粒径を有しており、珪酸コロイドとセメント粒子が混合
と結合してフロツク状になつてしまい浸透しにくい豆腐
をくずしたような状態になつて注入に適さないからであ
る。また石灰のようなアルカリや石膏薬は難溶性ではあ
るが量の調整によつて均質なゲルを形成出来る。そこで
本発明ではアルカリ土金属の水酸化物もアルカリ土金属
に含ますものとする。同様にアルミニウムの水酸化物も
アルミニウム塩に含ますものとする。
In the present invention, the alkaline earth metal salt does not contain cement, because although cement contains Ca ions, it has a large particle size, and the silicate colloid and cement particles combine to form a floc and penetrate. This is because the tofu becomes difficult to cook and becomes crumbled, making it unsuitable for injection. Although alkalis such as lime and gypsum agents are poorly soluble, they can form a homogeneous gel by adjusting the amount. Therefore, in the present invention, hydroxides of alkaline earth metals are also included in alkaline earth metals. Similarly, aluminum hydroxide is also included in aluminum salt.

又、本発明は珪酸コロイドに対してアルカリ金属塩、ア
ルカリ土金属塩、アルミウム塩のいずれか一種或いは複
数種を有効成分とする反応剤を加える事を必須条件とす
るが、更に任意の塩や酸やその他の化合物を加えてもよ
いのは勿論である。酸としては無機酸、有機酸、或いは
グリオキザールやエステルのように加水分解して酸とし
て作用するものも含むものとする。
Furthermore, the present invention requires that a reactant containing one or more of alkali metal salts, alkaline earth metal salts, and aluminum salts as an active ingredient be added to the silicate colloid, but any salts or Of course, acids and other compounds may be added. The acids include inorganic acids, organic acids, and those that act as acids when hydrolyzed, such as glyoxal and esters.

前述した固結砂のつまつたビニール管をそのまま10c
m長に切断して、ビニール袋中に養生し、一週間後にビ
ニール管内から固結体を引き出して水中に養生し、経時
的強度を測定した結果を表−4に示す。
The vinyl pipe filled with compacted sand mentioned above is 10c as it is.
It was cut into m lengths, cured in a plastic bag, and one week later, the solidified body was pulled out from the vinyl tube and cured in water. The strength over time was measured. Table 4 shows the results.

以上よりゲル化時間が20時間以内のものは殆んど強度
増大し、かつPHが7〜4の領域のものは強度の増加が
著しい。又、ゲル化時間が20時間以上のものは強度に
経日的にやや低下する傾向がある事が判つた。これより
ゲル化時間が20時間以内のものは恒久性に優れている
事が判つた。
As can be seen from the above, most of the gelling times within 20 hours showed an increase in strength, and those with a pH of 7 to 4 showed a remarkable increase in strength. In addition, it was found that the strength of those with a gelation time of 20 hours or more tends to decrease slightly over time. From this, it was found that those with a gelation time of less than 20 hours had excellent permanence.

表−4 水中養生後の固結砂の強度 以下、本発明の実施例を示す。Table-4 Strength of consolidated sand after curing in water Examples of the present invention will be shown below.

〔実施例〕〔Example〕

東京都内の砂地盤に珪酸コロイドを用いた配合液を12
00l注入して、透水試験を行なつての方掘削して固結
状況と供試体の一軸圧縮強度を調べた。
A mixed solution using silicate colloid was applied to sandy ground in Tokyo.
00L was injected, a water permeability test was conducted, and the first direction was excavated to examine the consolidation status and the unconfined compressive strength of the specimen.

その結果を表−5に示す。The results are shown in Table-5.

表−5 以上よりゲル化時間が20時間以内の配合液の場合比較
的球状の固結体が得られかつ強度も高く透水係数も大巾
に改善される事が判る。
Table 5 From the above, it can be seen that when the gelation time is within 20 hours, relatively spherical solids can be obtained, and the strength and permeability coefficient are greatly improved.

それに対しゲル化時間が20時間よりも長くなると注入
液が分散、散逸して所定の領域に注入液がとどまつてい
なかつたり或いは逸出しながら固結したりして土粒子間
に充分填充しないため強度が低かつたり或いは透水性の
改善が不充分であつたりして充分な注入効果が得られに
くい事が判る。
On the other hand, if the gelation time is longer than 20 hours, the injected liquid will disperse and dissipate, and the injected liquid will not stay in the designated area, or it will solidify while escaping, and it will not be sufficiently filled between the soil particles. It can be seen that it is difficult to obtain a sufficient injection effect due to low strength or insufficient improvement in water permeability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPHとゲル化時間の関係のグラフを示し第2図
および第3図はいずれも本発明工法を実施するための注
入管の一具体例を示し、第3図(a),(b)は本発明
工法の工程図を示す。 1…注入孔、3…吐出口、5…注入管、9…外管、10
…内管、11…上部吐出口、12…下部吐出口。 特許出願人 強化土エンジニヤリング株式会社代理人 
弁理士 染谷 仁
Fig. 1 shows a graph of the relationship between pH and gelation time, Figs. 2 and 3 both show a specific example of an injection pipe for carrying out the method of the present invention, and Figs. b) shows a process diagram of the construction method of the present invention. 1... Injection hole, 3... Discharge port, 5... Injection pipe, 9... Outer pipe, 10
...inner pipe, 11...upper discharge port, 12...lower discharge port. Patent applicant Reinforced Soil Engineering Co., Ltd. Agent
Patent Attorney Hitoshi Someya

Claims (1)

【特許請求の範囲】[Claims] 珪酸のコロイド溶液とアルカリ金属塩、アルカリ土金属
塩およびアルミニウム塩から選ばれた塩とを混合してゲ
ル化時間を20時間以内に調整した注入液を地盤に注入
する事を特徴とする地盤固結方法。
A soil solidification method characterized by injecting into the ground an injection solution prepared by mixing a colloidal solution of silicic acid and a salt selected from alkali metal salts, alkaline earth metal salts, and aluminum salts and adjusting the gelation time to within 20 hours. How to tie.
JP20391282A 1982-11-20 1982-11-20 Solidification of ground Granted JPS5993787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391282A JPS5993787A (en) 1982-11-20 1982-11-20 Solidification of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391282A JPS5993787A (en) 1982-11-20 1982-11-20 Solidification of ground

Publications (2)

Publication Number Publication Date
JPS5993787A true JPS5993787A (en) 1984-05-30
JPH0222115B2 JPH0222115B2 (en) 1990-05-17

Family

ID=16481746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391282A Granted JPS5993787A (en) 1982-11-20 1982-11-20 Solidification of ground

Country Status (1)

Country Link
JP (1) JPS5993787A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179579A (en) * 1983-03-29 1984-10-12 Onoda Cement Co Ltd Chemical grouting method
JPS6279286A (en) * 1985-10-02 1987-04-11 Kyokado Eng Co Ltd Ground injecting agent having improved durability
US4904304A (en) * 1986-12-29 1990-02-27 Nissan Chemical Industries Ltd. Chemical grout for ground injection and method for accretion
JPH0489912A (en) * 1990-07-31 1992-03-24 Kyokado Eng Co Ltd Grouting construction method
JPH0493409A (en) * 1990-08-09 1992-03-26 Kyokado Eng Co Ltd Subsoil injection construction method
JP2012092186A (en) * 2010-10-26 2012-05-17 Kyokado Kk Grouting material and grouting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57203911A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Signal processing system
JPS57203913A (en) * 1981-06-10 1982-12-14 Fujitsu Ltd Rotation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57203911A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Signal processing system
JPS57203913A (en) * 1981-06-10 1982-12-14 Fujitsu Ltd Rotation detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179579A (en) * 1983-03-29 1984-10-12 Onoda Cement Co Ltd Chemical grouting method
JPH0236156B2 (en) * 1983-03-29 1990-08-15 Onoda Cement Co Ltd
JPS6279286A (en) * 1985-10-02 1987-04-11 Kyokado Eng Co Ltd Ground injecting agent having improved durability
US4904304A (en) * 1986-12-29 1990-02-27 Nissan Chemical Industries Ltd. Chemical grout for ground injection and method for accretion
JPH0489912A (en) * 1990-07-31 1992-03-24 Kyokado Eng Co Ltd Grouting construction method
JPH0493409A (en) * 1990-08-09 1992-03-26 Kyokado Eng Co Ltd Subsoil injection construction method
JP2012092186A (en) * 2010-10-26 2012-05-17 Kyokado Kk Grouting material and grouting method

Also Published As

Publication number Publication date
JPH0222115B2 (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US4904304A (en) Chemical grout for ground injection and method for accretion
JPH0428759B2 (en)
JPS5993787A (en) Solidification of ground
JPS5993788A (en) Grauting method into ground
JPH02397B2 (en)
JPH0860153A (en) Method for grouting
JPH0554520B2 (en)
JP2001098271A (en) Ground solidification material
JPS5993786A (en) Grauting method into ground
JPH0362751B2 (en)
JPH0753960A (en) Liquid inorganic filler for solidifying or sealing soil
JP3166960B2 (en) Ground injection method
JPS59179580A (en) Ground grouting method
JP3216878B2 (en) Grout material for ground injection
JP7246640B2 (en) Grout material and ground improvement method
JPH0525272B2 (en)
JPS5966482A (en) Grouting method
JPS59152984A (en) Impregnation method for ground
JPS62172088A (en) Ground grouting process
JPH0468356B2 (en)
JP2004035584A (en) Silica-based grout and ground improvement method
JP4449001B2 (en) Grout injection method
JPS6247915B2 (en)
JPS59172583A (en) Grout to be poured into ground
JPS5966484A (en) Grouting method