JPH0468356B2 - - Google Patents

Info

Publication number
JPH0468356B2
JPH0468356B2 JP58025890A JP2589083A JPH0468356B2 JP H0468356 B2 JPH0468356 B2 JP H0468356B2 JP 58025890 A JP58025890 A JP 58025890A JP 2589083 A JP2589083 A JP 2589083A JP H0468356 B2 JPH0468356 B2 JP H0468356B2
Authority
JP
Japan
Prior art keywords
solution
silicic acid
injection
water glass
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58025890A
Other languages
Japanese (ja)
Other versions
JPS59152985A (en
Inventor
Shunsuke Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2589083A priority Critical patent/JPS59152985A/en
Publication of JPS59152985A publication Critical patent/JPS59152985A/en
Publication of JPH0468356B2 publication Critical patent/JPH0468356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪酸のコロイド溶液を用いた地盤注入
工法に関するものである。 従来、地盤注入のために水ガラスグラウトが用
いられて来た。水ガラスグラウトは液状の珪酸の
アルカリ金属塩であり、これに塩や酸を加えて珪
酸ゲルを析出する事によつて地盤を固結するもの
である。 しかるに、珪酸のアルカリ金属塩は高アルカリ
性を呈しそのゲル化もアルカリ領域で行なわれる
ため地下水が長期にわたつてアルカリ性を呈する
という問題があつた。この問題を解決するために
酸性液中に水ガラスを加えて水ガラス中のアルカ
リを除去して得られる酸性珪酸水溶液とアルカリ
を合流して中性領域でゲル化させる地盤注入工法
が開発されている。 このグラウトは固結物が中性を示し、地下水の
PHも変動せずきわめてすぐれた特性を有する注入
材であるが、強度が弱い事、ゲル化が非常に短い
という欠点があつた。 即ち、通常、水ガラスグラウトにおける注入液
中のSiO2の濃度は10重量部以上である事が強度
の点から(固結砂の一軸圧縮強度で1Kg/cm2
上)必要であるが、SiO2の濃度が10重量%以上
ではゲル化時間が中性領域付近(PHが4〜8)で
1分以内、通常数秒になつてしまう。浸透性がよ
く、かつ地盤中で分散せずに固結するのに適した
ゲル時間は30〜120分である事が経験的に判つて
いるが、もしゲル化時間を中性領域付近で30〜
120分程度を得ようとしたならSiO2の濃度は5重
量%以下にしなくてはならず、この濃度では固結
砂強度は0.5Kg/cm2にも達せず、注入工法には実
用上利用出来ない。また、中性領域の水ガラスグ
ラウトは酸性液中に水ガラスを加えて水ガラス中
のアルカリを中和して注入液を得るものであるか
ら、その注入液中には当然の事ながら中和によつ
て生成した中和生成物、即ち、Naイオンや酸根
等が多く残留するが水質保全の点からこれらの
Naイオンや酸根も残存しない注入工法が確立出
来ればこれにすぐれるものはない。 又、酸性液中に水ガラスを加えてうる酸性水ガ
ラス液を地盤注入工法に用いる方法を知られてい
るが、これは酸の中に水ガラスを加えて単分子か
らなる珪酸からコロイド状の珪酸を経てゲル化に
到る現象を利用したものであり、SiO2を10wt%
以上にしてかつゲル化時間を30分以上の長いゲル
化時間の配合をうるにはPHが3付近の酸性領域に
調整して注入する必要がある。 本発明の目的は以上の問題を解決するために更
に発展した技術を提供するものである。 前述の目的を達成するため、本発明によれば、
水ガラスをイオン交換樹脂を通して水ガラス中の
アルカリ分を殆ど除去して得られるPH9〜10の珪
酸のコロイド液に以下の一群と二群に示す添加物
をそれぞれ併せて添加して得られる注入液を地盤
に注入する事を特徴とし、前記二群に示す添加物
の添加量は全配合液の2重量%以下であることを
特徴とする。 一群:アルカリ金属塩。 二群:多価金属塩。 以下、本発明を具体的に詳述する。 本発明者は珪酸のコロイド溶液(シリカゾル)
に多価金属の電解質物質(多価金属イオンを解離
する物質)を混合すると白濁又は部分的な沈澱が
生ずるが、その混合量が全配合液の二重量%以内
ならば混合によつて流動性を保持する溶液が得ら
れ、これを地盤に注入すると強固な固結体がえら
れ、特に不均質地盤においてきわめてすぐれた注
入効果が得られる事に着目し、更に研究をすすめ
た結果以下の現象を見出し本発明を完成した。 即ち、珪酸のコロイド溶液を主材とする配合液
に全配合液の二重量%以内の多価金属塩とアルカ
リ金属塩を併用する事により 数時間から数秒までのゲル化時間のコントロ
ールが容易に可能になる。 均質なゲルが出来る。 添加物の添加量は微量ですむため地下水の水
質に影響を及ぼさない。 さらに本発明を詳述すれば次のとおりである。 本発明における珪酸コロイドとは水ガラスから
Naイオンを除或は低減したものであつて、例え
ば水ガラスをイオン交換樹脂に通して水ガラス中
のNaイオンを除去するかあるいは水ガラスを硫
酸で中和してのちNaイオンが硫酸イオン除去し
て得られる。 例えばゼオライト系陽イオン交換体、アンモニ
ウム系イオン交換体などのイオン交換樹脂に水ガ
ラスを通過させ、生成したシリカゾルを80℃〜90
℃の温度でさらに水ガラスに加え、再び前記イオ
ン交換樹脂に通過してイオン交換を行なつて得ら
れるものであり、比較的純すいな(稀薄な)シリ
カゾルが得られる。さらに純すいなシリカゾルを
得るには前述の稀薄なシリカゾルを微アルカリ性
に調整し、これにさらに前述のシリカゾルを加え
ながら蒸発し、安定化と濃縮を同時に行なう方
法、あるいは、イオン交換後の活性シリカゾルを
適当なアルカリの下に加熱し、これにさらに活性
シリカゾルを加えて安定化する方法等が用いられ
る。 本発明における珪酸コロイド溶液はNaイオン
が殆んど分離除去されておりモル比が10以上であ
る。 通常、SiO2の含有量は10〜60%(重量)、モル
比(SiO2/Na2O)は50以上、PH値は8〜10に調
整したものが望ましい。 モル比が10以下になると珪酸コロイドは溶けて
しまい、珪酸塩の水溶液になつてしまう。この場
合珪酸コロイド溶液の粒径はほぼ6〜50mμが主
となる。珪酸コロイドの粒径が50mμ以上になる
と沈澱しやすくなる。 このようにして調整された珪酸コロイド溶液は
半永久的に安定しており、これを注入液として用
いる場合、工場から現場への搬入並びに注入操作
の際にゲル化する心配がない。この珪酸のコロイ
ド溶液をそのまま地盤中に注入してもそれ自体実
用時間内にゲル化する事はないので実用上の固結
効果は得られない。 本発明者は地盤注入の素材となるものは注入液
を配合する直前までは半永久的に安定である事が
必要であるが、注入液を注入する際にはむしろ一
部固形分が浮遊している方が不均質な地盤を効果
的に改良するには望ましい事に着眼した。 なぜならば、通常、注入地盤は空隙の異なる土
が複雑に介在しているため、粗い部分には固形分
が填充し、細い部分には溶液状の注入物が填充す
るのが最も望ましい。このようにすれば浸透性の
より溶液状の注入物は逸脱する事なく細い土粒子
間に浸透しうる。 このためには溶液状の注入物と固形分の注入物
は分離しやすく、しかも最終的にはゲル化後は全
体的に一体化した固結が行なわれるのが望まし
い。 本発明者はこのような目的のために珪酸コロイ
ド溶液と多価金属の塩の反応に着目して実験した
結果以下の点が判明した。 (1) 珪酸のコロイド溶液に多価金属の塩を微量加
えると、瞬間的に白濁又は白沈を生じ、その程
度は上記塩の添加量が増大する程いちじるしく
なるが、全体が均質にかたまる事なく、これを
混合していると固形分を含有したままいつまで
も流動しているためゲル化時間は不明確とな
る。 (2) 前記電解質物質の濃度が2%(重量)以内な
らば白濁、白沈或は部分的なゲルを生ずるが、
流動性は失われずそのまま注入可能であり、か
つそれを注入すると地盤中にて溶液と固形分が
適度に分離し土中の粗い部分に固形分が填充
し、細い部分に溶液分が浸透し、固形分の
SiO2を中心として全体としてゲル化を生ずる
ためすぐれた効果をうる。 (3) 前記電解質物質の濃度が2%よりも大きくな
ると直ちに白沈がいちぢるしく、ミキシングに
よつても流動性は得られず、また注入しても脈
状が主体となり溶液分による固結効果が殆んど
得られない。 珪酸コロイドの濃度がうすくなると前記電解質
物質の濃度が2重量%以上になつても流動性はあ
るが珪酸分の殆んどが電解質と反応して多価金属
の珪酸塩からなる固形分となつてしまうため、そ
れを注入しても固形分以外の溶液分の固結性がな
く、強度は極端に低下し、注入効果は得られなく
なる。 一方、本発明者は種々の研究の結果珪酸のコロ
イド溶液と種々の塩との反応には次のような問題
がある事を見出した。 珪酸コロイドと酸の反応は中性〜弱酸性付近
で最も短かくなるがゲル化時間を数時間以内に
短縮せしめるのは困難である。 珪酸コロイドとアルカリ金属塩を混合すると
ゲル化時間を酸の場合よりも短かくする事が出
来るが、それには限度がある。 珪酸コロイドに対して多価金属塩を全配合液
の2重量%以内を混合すると直ちに白濁又は白
沈を生じ、これをミキシングする事によつて流
動性はえられるが、全体的なゲル化が得られ
ず、明白なゲル化時間も不明確であるため、ゲ
ル化時間を効果的にコントロールする事がむず
かしい。 多価金属塩の含有量が全配合量の2重量%以上
の場合は固形分の量が多くなりすぎて流動性が得
られず、また珪酸コロイドの濃度が低ければ流動
性はあるものの、地盤中における浸透固結効果は
殆んど得られない。 表−1に実験に用いた珪酸のコロイド液の特性
を示し、表−2,3に実験を示す。 (配合は重量%)。
The present invention relates to a ground injection method using a colloidal solution of silicic acid. Traditionally, water glass grout has been used for ground injection. Water glass grout is a liquid alkali metal salt of silicic acid, and is used to solidify the ground by adding salt or acid to precipitate a silicic acid gel. However, since the alkali metal salt of silicic acid exhibits high alkalinity and gelation occurs in the alkaline region, there has been a problem that groundwater remains alkaline for a long period of time. To solve this problem, a ground injection method has been developed in which water glass is added to an acidic solution and the alkali in the water glass is removed, and the alkali is combined with the acidic silicic acid solution to form a gel in a neutral region. There is. This grout has neutral solids and is suitable for underground water.
Although it is an injection material with excellent properties without any fluctuation in pH, it has the drawbacks of low strength and extremely short gelation time. In other words, normally, the concentration of SiO 2 in the injection liquid for water glass grout needs to be 10 parts by weight or more from the viewpoint of strength (the unconfined compressive strength of consolidated sand is 1 Kg/cm 2 or more). If the concentration of 2 is 10% by weight or more, the gelation time will be within 1 minute in the neutral region (PH 4 to 8), and usually several seconds. It has been empirically determined that the gel time suitable for good permeability and solidification without dispersing in the ground is 30 to 120 minutes, but if the gel time is 30 to 120 minutes near the neutral region ~
If you want to obtain about 120 minutes, the concentration of SiO 2 must be 5% by weight or less, and at this concentration, the consolidated sand strength will not reach 0.5 Kg/cm 2 , making it practically unusable for the injection method. Can not. In addition, water glass grout in the neutral range is obtained by adding water glass to an acidic solution and neutralizing the alkali in the water glass to obtain the injection solution. Many neutralized products, such as Na ions and acid radicals, remain, but from the viewpoint of water quality conservation, these
If we could establish an injection method that leaves no Na ions or acid roots behind, nothing would be better than this. Also, there is a known method of using acidic water glass liquid, which is obtained by adding water glass to an acidic liquid, in the ground injection method. It takes advantage of the phenomenon of gelation through silicic acid, and contains 10wt% SiO2 .
In order to obtain a formulation with a long gelation time of 30 minutes or more, it is necessary to adjust the pH to an acidic region around 3 before injection. An object of the present invention is to provide a further developed technique to solve the above problems. In order to achieve the aforementioned object, according to the present invention:
An injection solution obtained by adding the additives shown in the following groups 1 and 2 to a colloidal solution of silicic acid with a pH of 9 to 10 obtained by passing water glass through an ion exchange resin to remove most of the alkali content in the water glass. is injected into the ground, and the amount of the additives shown in the second group is 2% by weight or less of the total mixed liquid. Group: alkali metal salts. Group 2: polyvalent metal salts. Hereinafter, the present invention will be specifically explained in detail. The present inventor is a colloidal solution of silicic acid (silica sol)
If a polyvalent metal electrolyte substance (a substance that dissociates polyvalent metal ions) is mixed with the liquid, white turbidity or partial precipitation will occur, but if the mixed amount is within % of the total mixed liquid, fluidity will be improved by mixing. A solution that retains the They found this and completed the present invention. In other words, by using a combination of a polyvalent metal salt and an alkali metal salt within a double weight percentage of the total blended solution in a blended solution based on a colloidal solution of silicic acid, it is possible to easily control the gelation time from several hours to several seconds. It becomes possible. A homogeneous gel is produced. Since the amount of additives added is only a small amount, it does not affect the quality of groundwater. Further details of the present invention are as follows. The silicate colloid in the present invention is derived from water glass.
Na ions are removed or reduced, for example, by passing the water glass through an ion exchange resin to remove the Na ions in the water glass, or by neutralizing the water glass with sulfuric acid and then removing the Na ions from the sulfate ions. It can be obtained by For example, water glass is passed through an ion exchange resin such as a zeolite cation exchanger or an ammonium ion exchanger, and the resulting silica sol is heated at 80℃ to 90℃.
It is obtained by adding the silica sol to water glass at a temperature of .degree. C. and passing it through the ion exchange resin again for ion exchange, yielding a relatively pure (dilute) silica sol. In order to obtain even pure silica sol, the dilute silica sol mentioned above is adjusted to be slightly alkaline, and the above-mentioned silica sol is further added to it while evaporating, thereby simultaneously stabilizing and concentrating it. Alternatively, the activated silica sol after ion exchange can be used. A method is used in which the silica is heated under a suitable alkali, and activated silica sol is further added thereto for stabilization. In the silicic acid colloid solution in the present invention, almost all Na ions have been separated and removed, and the molar ratio is 10 or more. Usually, it is desirable that the content of SiO 2 is adjusted to 10 to 60% (by weight), the molar ratio (SiO 2 /Na 2 O) is adjusted to 50 or more, and the PH value is adjusted to 8 to 10. When the molar ratio is less than 10, the silicate colloid dissolves and becomes an aqueous solution of silicate. In this case, the particle size of the silicic acid colloid solution is mainly about 6 to 50 mμ. When the particle size of the silicic acid colloid is 50 mμ or more, it tends to precipitate. The silicic acid colloid solution prepared in this way is stable semi-permanently, and when used as an injection solution, there is no risk of gelation during transport from the factory to the site and during injection operations. Even if this colloidal solution of silicic acid is directly injected into the ground, it will not gel itself within a practical period of time, so no practical consolidation effect will be obtained. The present inventor believes that the material for ground injection must be semi-permanently stable until just before mixing the injection liquid, but when the injection liquid is injected, some solids may be suspended. We focused on the fact that it is desirable to improve uneven ground effectively. This is because the injection ground usually has a complex structure of soil with different pores, so it is most desirable to fill the coarse parts with solid content and fill the narrow parts with the solution-like injection material. In this way, the permeable, more solution-like injectable material can penetrate between the fine soil particles without becoming deviated. For this purpose, it is desirable that the solution injected material and the solid injected material be easily separated, and that ultimately, after gelation, they are consolidated as a whole. For this purpose, the present inventor conducted experiments focusing on the reaction between a silicate colloid solution and a polyvalent metal salt, and as a result, the following points were found. (1) When a trace amount of a polyvalent metal salt is added to a colloidal solution of silicic acid, cloudiness or white precipitation occurs instantaneously.The degree of this becomes more noticeable as the amount of the salt added increases, but the whole solution becomes homogeneous. If this is mixed, the gelation time will be unclear because the mixture will continue to flow while containing solid content. (2) If the concentration of the electrolyte substance is less than 2% (by weight), white turbidity, white precipitate, or partial gel will occur;
It can be injected as is without losing its fluidity, and when it is injected, the solution and solids will separate appropriately in the soil, solids will fill the coarse parts of the soil, and the solution will penetrate into the narrow parts. solid content
Excellent effects are obtained because gelation occurs as a whole centering on SiO 2 . (3) When the concentration of the electrolyte substance exceeds 2%, white precipitate immediately becomes noticeable, fluidity cannot be obtained even by mixing, and even when injected, veins become the main component and solidification due to the solution content occurs. Almost no effect can be obtained. When the concentration of the silicic acid colloid becomes dilute, even if the concentration of the electrolyte substance exceeds 2% by weight, it remains fluid, but most of the silicic acid content reacts with the electrolyte and becomes a solid content consisting of silicates of polyvalent metals. Therefore, even if it is injected, the solution other than the solid content will not solidify, the strength will be extremely reduced, and the injection effect will not be obtained. On the other hand, as a result of various studies, the present inventors have found that the following problems occur in the reactions between colloidal solutions of silicic acid and various salts. The reaction between silicic acid colloid and acid takes the shortest time in the vicinity of neutral to weak acidity, but it is difficult to shorten the gelation time to within a few hours. Mixing a silicic acid colloid with an alkali metal salt can shorten the gelation time compared to an acid, but there is a limit to this. When polyvalent metal salt is mixed with silicic acid colloid in an amount of less than 2% by weight of the total mixed solution, white turbidity or white precipitate will immediately occur, and fluidity can be obtained by mixing this, but overall gelation will occur. It is difficult to effectively control the gelation time because the gelation time is not clear and the obvious gelation time is unclear. If the content of polyvalent metal salt is 2% by weight or more of the total blending amount, the amount of solid content will be too large and fluidity will not be obtained.If the concentration of silicate colloid is low, fluidity will be obtained, but the soil Almost no penetration solidification effect can be obtained inside. Table 1 shows the characteristics of the silicic acid colloidal liquid used in the experiment, and Tables 2 and 3 show the experiments. (Composition is weight %).

【表】 表−2より珪酸コロイドと多価金属の電解質を
混合しても均質にゲル化せしめてゲル化時間をコ
ントロールする事は困難な事が判る。 表−3より珪酸コロイドとアルカリ金属塩を混
合した場合、均質なゲルを形成し、長いゲル化時
間におけるコントロールは可能であるが短かいゲ
ル化時間迄コントローールする事は困難である事
が判る。 さらに表−3より珪酸コロイドにアルカリ金属
塩とアルカリ土金属の電解質物質を2重量%以内
加えたものは白濁するものの均質なゲルをつく
り、かつ100分前後から数秒までゲル化時間のコ
ントロールが出来る事が判る。
[Table] From Table 2, it can be seen that even if a silicic acid colloid and a polyvalent metal electrolyte are mixed, it is difficult to achieve homogeneous gelation and control the gelation time. From Table 3, it can be seen that when a silicic acid colloid and an alkali metal salt are mixed, a homogeneous gel is formed and it is possible to control a long gelation time, but it is difficult to control a short gelation time. Furthermore, Table 3 shows that when less than 2% by weight of alkali metal salt and alkaline earth metal electrolytes are added to silicic acid colloid, a homogeneous gel is formed although it becomes cloudy, and the gelation time can be controlled from around 100 minutes to several seconds. I understand what happened.

【表】【table】

【表】 以上の実験結果より本発明における多価金属塩
の含有量は全配合液の0.005〜2重量%である事
を必須とする。 本発明における多価金属塩とはアルカリ土金
属、アルミニウム、遷移金属、希土類金属等の塩
化物、硫酸塩、リン酸塩、硝酸塩、さらにその水
酸化物、酸化物、セメント(アルミニウムの水酸
化物を含む)等多価金属のイオンを解離する物質
を云う。これらは珪酸コロイドに作用してコロイ
ドを不安定にし、あるいは多価金属の珪酸塩を形
成するものと考えられる。 又、本発明におけるアルカリ金属塩の例として
はアルカリ金属の塩化物、塩素酸塩、硫酸塩、ア
ルミン酸塩、炭酸塩、重炭酸塩、硝酸塩、重硫酸
塩、重亜硫酸塩、珪弗酸塩、珪酸塩、リン酸塩、
リン酸水素塩、ピロリン酸塩、重クロム酸塩、過
マンガン酸塩等の無機塩、任意の有機塩等をあげ
る事が出来る。 なお、本発明に用いるグラウトは地盤中におい
て、ゲル化が促進され、かつ白濁、白沈による固
形分の存在により逸脱しにくい特性を有している
が、特に地盤の土層の構成が複雑に変化している
場合はこのグラウトを二次注入材として用いるこ
とができ、あらかじめ、一次注入材を注入領域に
注入した後にこれを注入する。 上述した一次注入材としてはセメントや石灰
等、カルシウムイオンを解離する電解質物質を含
む懸濁液が特にすぐれている。 実施例 1 東京都内の細胞と中砂が複雑に介在した地盤中
に表−3の配合No.19の配合液を3000注入して透
水試験を行ない、かつ、掘削して固結状況と固結
体の一軸圧縮強度を調べた。透水試験結果では注
入前にk=3.5×10-3cm/secであつたものが注入
後はk=4.5×10-6cm/secになり充分な止水効果
が得られた。 又掘削調査の結果では注入口を中心として直径
が1.2〜1.3mのほぼ円柱状で10m3程の固結体がえ
られた。掘削断面を調べたところ、粗砂の部分に
は白色粒状の固形分の填充がみられ、細砂部分に
は溶液部分の配合液によつて固結しているのが認
められた。又固結体の一軸圧縮強度試験を行なつ
たところ、細い土の部分では6.8Kg/cm2、粗い土
の部分では7.2Kg/cm2の強度をうる事が出来た。 上述したように本発明は珪酸コロイド溶液と多
価金属塩を混合した場合、直ちに白濁する事に着
目し、多価金属塩の混合量よりグラウト工法にお
ける流動性の関係を見出し、かつ、更に酸やアル
カリ金属塩を併用して均質なゲルをつくると共に
ゲル化時間を任意にコントロールしえ、かつ電解
質の添加量が微量ですむ事により地下水の水質の
変化を殆んど生じない無公害性グラウトを可能な
らしめたものである。
[Table] From the above experimental results, it is essential that the content of the polyvalent metal salt in the present invention is 0.005 to 2% by weight of the total liquid mixture. In the present invention, polyvalent metal salts include chlorides, sulfates, phosphates, nitrates of alkaline earth metals, aluminum, transition metals, rare earth metals, etc., as well as their hydroxides, oxides, and cement (aluminum hydroxide). A substance that dissociates ions of polyvalent metals (including polyvalent metals). It is thought that these act on the silicate colloid to make it unstable or to form a polyvalent metal silicate. In addition, examples of the alkali metal salts in the present invention include alkali metal chlorides, chlorates, sulfates, aluminates, carbonates, bicarbonates, nitrates, bisulfates, bisulfites, and silifluorides. , silicates, phosphates,
Examples include inorganic salts such as hydrogen phosphate, pyrophosphate, dichromate, permanganate, and any organic salts. The grout used in the present invention has the property that gelation is promoted in the ground and is difficult to deviate from due to the presence of solid content due to white turbidity and white precipitation. If so, this grout can be used as a secondary grout and is injected after the primary grout has previously been injected into the injection area. As the above-mentioned primary injection material, a suspension containing an electrolyte substance that dissociates calcium ions, such as cement or lime, is particularly suitable. Example 1 A water permeability test was conducted by injecting 3,000 ml of the mixture No. 19 in Table 3 into the ground in Tokyo, where cells and sand intersect in a complex manner, and the soil was excavated to determine the consolidation status and consolidation. The uniaxial compressive strength of the body was investigated. The water permeability test results showed that k = 3.5 x 10 -3 cm/sec before injection, but k = 4.5 x 10 -6 cm/sec after injection, and a sufficient water stopping effect was obtained. Furthermore, the results of the excavation survey revealed that a solid substance of about 10m3 in diameter was approximately cylindrical and had a diameter of 1.2 to 1.3m centered on the injection port. When the excavated cross section was examined, it was found that the coarse sand part was filled with white granular solids, and the fine sand part was solidified by the mixed liquid in the solution part. In addition, when we conducted a uniaxial compressive strength test on the compact, we were able to obtain a strength of 6.8 Kg/cm 2 in the thin soil area and 7.2 Kg/cm 2 in the coarse soil area. As mentioned above, the present invention focused on the fact that when a silicic acid colloid solution and a polyvalent metal salt are mixed, it immediately becomes cloudy, and discovered the relationship between fluidity in grouting methods based on the amount of polyvalent metal salt mixed, and further developed an acid solution. A non-polluting grout that can create a homogeneous gel using a combination of alkali metal salts and alkali metal salts, and allows the gelation time to be controlled arbitrarily, and because only a small amount of electrolyte is added, there is almost no change in the quality of groundwater. This made it possible.

Claims (1)

【特許請求の範囲】 1 水ガラスをイオン交換樹脂を通して水ガラス
中のアルカリ分を殆ど除去して得られるPH9〜10
の珪酸コロイド液に以下の一群と二群に示す添加
物をそれぞれ併せて添加して得られる注入液を地
盤に注入する事を特徴とし、前記二群に示す添加
物の添加量は全配合液の0.005〜2重量%の範囲
内であることを特徴とする地盤注入工法。 一群:アルカリ金属塩 二群:多価金属塩。
[Claims] 1. PH9 to 10 obtained by passing water glass through an ion exchange resin to remove most of the alkaline content in the water glass.
It is characterized by injecting into the ground an injection liquid obtained by adding additives shown in the following groups 1 and 2 to the silicic acid colloid liquid of A ground injection method characterized in that the amount is within the range of 0.005 to 2% by weight. Group 1: Alkali metal salts Group 2: Polyvalent metal salts.
JP2589083A 1983-02-18 1983-02-18 Impregnation method for ground Granted JPS59152985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2589083A JPS59152985A (en) 1983-02-18 1983-02-18 Impregnation method for ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2589083A JPS59152985A (en) 1983-02-18 1983-02-18 Impregnation method for ground

Publications (2)

Publication Number Publication Date
JPS59152985A JPS59152985A (en) 1984-08-31
JPH0468356B2 true JPH0468356B2 (en) 1992-11-02

Family

ID=12178381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2589083A Granted JPS59152985A (en) 1983-02-18 1983-02-18 Impregnation method for ground

Country Status (1)

Country Link
JP (1) JPS59152985A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159485A (en) * 1984-12-31 1986-07-19 Kyokado Eng Co Ltd Grouting material
JP2005320410A (en) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd Chemical for ground stabilization
JP5017592B2 (en) * 2010-10-26 2012-09-05 強化土株式会社 Ground injection material and ground injection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57164186A (en) * 1981-04-02 1982-10-08 Onoda Cement Co Ltd Grouting
JPS5825440A (en) * 1981-08-05 1983-02-15 Michizo Yamano Method for separating metal from ore in low pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473407A (en) * 1977-11-22 1979-06-12 Central Glass Co Ltd Injection agent for eliminating subsoil pollution
JPS57164186A (en) * 1981-04-02 1982-10-08 Onoda Cement Co Ltd Grouting
JPS5825440A (en) * 1981-08-05 1983-02-15 Michizo Yamano Method for separating metal from ore in low pressure

Also Published As

Publication number Publication date
JPS59152985A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
JPH0428759B2 (en)
JPH0468356B2 (en)
JP2001003047A (en) Grouting consolidation material
JPS5911632B2 (en) Soil stabilization method
JP6712828B1 (en) Ground injection material and ground injection method
JP3205900B2 (en) Grout material for ground injection
JP4018942B2 (en) Silica-based grout and ground improvement method
JPH0222115B2 (en)
JPS59152984A (en) Impregnation method for ground
JPH0362751B2 (en)
JPS648677B2 (en)
JPS6053587A (en) Liquid for ground impregnation
JP7246640B2 (en) Grout material and ground improvement method
JPS59179580A (en) Ground grouting method
JPH0155679B2 (en)
JPH0235796B2 (en)
JPS62290790A (en) Grout for injection into ground
JP4679787B2 (en) Ground injection material
JPH0753960A (en) Liquid inorganic filler for solidifying or sealing soil
JPS636594B2 (en)
JPS59172583A (en) Grout to be poured into ground
JP2987625B1 (en) Ground consolidated material
JPS6279286A (en) Ground injecting agent having improved durability
JPS5966483A (en) Grouting method