JPS5825440A - Method for separating metal from ore in low pressure - Google Patents

Method for separating metal from ore in low pressure

Info

Publication number
JPS5825440A
JPS5825440A JP12277881A JP12277881A JPS5825440A JP S5825440 A JPS5825440 A JP S5825440A JP 12277881 A JP12277881 A JP 12277881A JP 12277881 A JP12277881 A JP 12277881A JP S5825440 A JPS5825440 A JP S5825440A
Authority
JP
Japan
Prior art keywords
metal
ore
temperature
low pressure
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12277881A
Other languages
Japanese (ja)
Inventor
Michizo Yamano
山野 陸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12277881A priority Critical patent/JPS5825440A/en
Publication of JPS5825440A publication Critical patent/JPS5825440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To economically obtain a metal whose purity is high, by heating an ore at low pressure, boiling and evaporating it, and separating each component metal by utilizing a difference of a condensation temperature from this gaseous mixture. CONSTITUTION:When separating a metal from a chrome ore, etc., at first, oxygen is separated from a metallic oxide in an ore. This ore A is put into a furnace 1, and the ore A is melted, boiled and evaporated by setting the inside of the furnace 1 to a low pressure state, and irradiating a laser 3, etc. The evaporated gaseous mixture is made to pass through plural traps 5-11 in order being in a low pressure state. A temperature of these traps 5-11 is set at a temperature which is a little lower than a condensation temperature of each metal to be separated. At first, a metal oxide such as Al2O3, SiO2, etc., is condensed and liquefied by the trap 5, and is taken out to a vessel 20. Gaseous mixture of the residual metal which is not condensed by this temperature is condensed and liquefied at a successively lowered temperature by the traps 6-11, and by the same operation, Fe, Si, Cr, Mn and Al, Ca, Mg, etc. are taken out to vessels 21-26 successively.

Description

【発明の詳細な説明】 本発明は、低圧中で鉱石より金属を分離する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating metals from ores at low pressure.

従来の還元剤を使用する製錬方法では純粋な金属は得に
<<、その上多量の残渣が生じてその廃棄問題を起した
り、またそれは資源の損失でもあった。
In the conventional smelting method using a reducing agent, pure metal is not particularly produced, and in addition, a large amount of residue is generated, which causes problems in its disposal, and also causes a loss of resources.

本発明は係る点に鑑み、各金属元素が各々個有の凝縮湿
度をもっていることに着目し、鉱石を低圧中で熱して沸
騰蒸発させ、凝縮温度の差で各成分金属に分離する方法
を提供しようとするものである。
In view of this, the present invention focuses on the fact that each metal element has its own condensation humidity, and provides a method for heating ore under low pressure to boil and evaporate it, and separating it into component metals based on the difference in condensation temperature. This is what I am trying to do.

以下、本発明の一実施例をクレム鉱を例にとり図面に基
づいて説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the present invention will be described based on the drawings, taking cremite as an example.

図は本発明を実施するのに用いる装置の概略構成を示し
、(1)は炉、(2)は炉(1)が必要以上に加熱する
ことを防ぐ冷却装置、(8)は炉(1)の鉱石(4)を
加熱し溶融、沸騰、蒸発させるためのレーザーで、これ
には1、例えば出力的/ Q KW 程度のガラスレー
ザーを用いる。尚、加熱手段は、レーザーに限らないこ
と勿論である。(4)は炉(1)に接続している誘導管
である。この誘導管(4)には分離する金属の種類に応
じた数、本例においては7つのトラップ(5) (6)
 (7バ8) (9)に)(ロ)を設け、そしてその終
端は水冷却装置に)を経て真空ポンプ(2)に接続して
いる。図中Q:104 (1111(1・α?5Q11
(Iすは、上記トラフ2− (5)−(lυを冷却する
ための冷却都で、冷却は空気により行なう@(ホ)−四
A、4四(至)は、トラツブ(6)・−・(IIJから
流出してくる金属を受けるための容器である。
The figure shows a schematic configuration of the apparatus used to carry out the present invention, in which (1) is a furnace, (2) is a cooling device that prevents the furnace (1) from heating more than necessary, and (8) is a furnace (1). ) is a laser for heating, melting, boiling, and vaporizing the ore (4), for example, a glass laser with an output of about 1/Q KW is used for this purpose. Note that the heating means is, of course, not limited to laser. (4) is a guide pipe connected to the furnace (1). This guide tube (4) has a number of traps (5) (6) depending on the type of metal to be separated, in this example, seven traps (5) (6).
(7 bar 8) (9) is provided with (b), and its terminal end is connected to the vacuum pump (2) via the water cooling device (b). Q in the diagram: 104 (1111(1・α?5Q11
(I is a cooling cap for cooling the above-mentioned trough 2-(5)-(lυ, and cooling is performed by air.・(This is a container to receive the metal flowing out from IIJ.

第2図はトラップ(5)−・・Qη部分の詳細図で、図
中(至)は誘導管(4)に接続された二叉状の導入管で
、その両先端は格子管(至)の−両側端に接続している
。また、図中(至)は格子管(至)の他の両11il端
に接続された二叉状の引出管、(至)はそれと同様に格
子管−に接続された流出管で、その先端は容器ψトー・
に)に接続さnている。格子W■は冷却部(2)・−・
Oe内中央付近に設け、格子管■内で凝縮した金属が流
出し易いよう水平より着千引出管(至)取付部どちらか
一方に傾斜させている。この格子管(至)の側方には格
子管■付近の温度を測定するための温N #F 61 
alを配し、格子管貧の温度を間接的に検知できるよう
にしている。また、冷却部Q3− onの吸気口(ロ)
と排気口(至)にも吸気及び排気温度を測定するための
温度計四(至)を各々設けている。
Figure 2 is a detailed view of the trap (5) - Qη section, where (to) is a forked introduction tube connected to the guide tube (4), and both ends are lattice tubes (to). - Connected to both ends. Also, in the figure (to) is a bifurcated extraction pipe connected to both other 11il ends of the lattice pipe (to), and (to) is an outflow pipe that is similarly connected to the lattice pipe. is the container ψ
) is connected to n. The grid W■ is the cooling part (2)...
It is installed near the center of the lattice pipe, and is tilted from the horizontal to either side of the mounting part of the drawer pipe (to) so that the metal condensed in the lattice pipe can easily flow out. On the side of this grid pipe (to) there is a temperature N #F 61 for measuring the temperature near the grid pipe.
Al is arranged so that the temperature of the grid tube can be indirectly detected. Also, the intake port (b) of the cooling part Q3-on
Four thermometers are also provided at the and exhaust ports to measure the intake and exhaust temperatures.

次に上記の如くなる装置でクロム鉱より金属を分−する
方法を説明する。
Next, a method for separating metals from chromite using the above-mentioned apparatus will be explained.

一般に、クロム鉱はOrc4 、 ’I@ OB 、 
MgO,5iO1。
Generally, chromite is Orc4, 'I@OB,
MgO,5iO1.

ム&’a # M”s ”’t MgOなどの金属酸化
物より成っているので、まずこれらの金属酸化物より酸
素を除失しておく。次に、その鉱石(A)を炉(1)に
入れ、炉(1)を密閉し、真空ポンプを回して装置全体
を10■Kg程度の低圧状態にする。尚、圧力はこれに
限らないこと勿論である。次いでレーf −(8) ヲ
ffi 石(AJ k−tKl 射t、鉱、bmi−a
m、mya。
Since it is made of metal oxides such as MgO, oxygen is first removed from these metal oxides. Next, the ore (A) is put into the furnace (1), the furnace (1) is sealed, and the vacuum pump is turned on to bring the entire apparatus into a low pressure state of about 10 kg. Of course, the pressure is not limited to this. Next, ray f-(8)
M, mya.

蒸発させる。蒸発して2千数百度の混合気体となった金
属は炉(1)内から誘導管(4)へと進入していき順次
各シラツブ(5)・−(ロ)を通過していく。金属の分
離はこの段階で行なわれるOまず、トラップ(5)にお
いては格子管(至)を2050℃に保ち、/θ冒H−圧
力1での凝縮温度が206θ°C以上のム1M3a e
 B 1oJeなどの残存酸化金属を格子管−内で凝縮
液化させ、流出管(至)を経て容器(ホ)に取り出す。
Evaporate. The metal, which has evaporated into a mixed gas at a temperature of over 2,000 degrees Celsius, enters the induction pipe (4) from inside the furnace (1) and sequentially passes through each cylinder (5). Separation of metals is carried out at this stage. First, in the trap (5), the grid tube (to) is kept at 2050°C, and the condensation temperature at pressure 1 is 206°C or higher.
The remaining metal oxides, such as B 1oJe, are condensed and liquefied in the grid tube and taken out into the container (e) through the outflow tube (e).

この温厚で凝縮しない残りの金属の混合気体は格子管端
から引出管(至)を通りめ導管(4)を経て次のトラッ
プ(6)へ行く0酬ラツプ(6)では格子管(至)を/
9.5θ°Cにし凝縮温度が、20j?”O(/)l・
を凝縮液化させ容器(ロ)に取り出す。以下同様にトラ
ップ(7)では/♂60″Cにして凝縮温度/♂♂r℃
の81、トラップ(8)では7750℃にして凝縮温度
/1y6″CのOr1トラップ(9)では/グ、fO℃
にして凝縮温度/、50.:5 ’OのMnと1412
7℃のムlS)ラブ(至)では250℃にして凝縮温度
り03°CのOa。
This warm, non-condensing remaining metal mixture passes from the end of the lattice tube through the extraction pipe (to), passes through the conduit (4), and goes to the next trap (6).At the zero return lap (6), it passes through the lattice tube (to). of/
The condensation temperature is 9.5θ°C and 20j? ”O(/)l・
It is condensed and liquefied and taken out into a container (b). Similarly, in the trap (7), the condensation temperature is /♂60″C /♂♂r℃
81, Trap (8) has a condensation temperature of 7750°C, and Or1 Trap (9) has a condensation temperature of /1y6″C, /g, fO°C.
and condensation temperature/, 50. :5'O Mn and 1412
At 7°C, the temperature is 250°C and the condensation temperature is 03°C.

トラップ0υでは130℃にして′m縮温III 74
13°CのMgを各々各容1か・・(7)に取り出す。
In the trap 0υ, the temperature is reduced to 130°C.
Take out 1 volume of Mg at 13°C (7).

上記はりpム鉱を例にとって述べたものであるが、他の
鉱石であってもその成分金−属の奴に応じたトラップを
用意しそnらの温度を各金属のIi細湿温度適したlj
A度に設定すればよい。
The above explanation is based on the example of aluminum ore, but even for other ores, it is necessary to prepare traps according to the component metals and adjust the temperature to suit the humidity temperature of each metal. lj
Just set it to A degree.

以上の如くなる本発明は還元剤を一切用いな・いので経
済的であり、しかも、各金属元素の一一11度の差を利
用して分離するので純度の高い金属を得ることができる
など優れた効果を奏する・
The present invention as described above is economical because it does not use any reducing agent, and it is also possible to obtain highly pure metals because the separation takes advantage of the 1-11 degree difference between each metal element. Has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明方法に用いる装置の概略構成(9)、第
、2(2)はトラップ部分の詳細図である。 (1)・−炉     (8)−・・し − ザ −(
A)・−鉱   石
FIG. 1 is a schematic configuration (9) of the apparatus used in the uninvented method, and FIG. 2 (2) is a detailed view of the trap portion. (1)・−furnace (8)−・・shi −the −(
A)・-ore

Claims (1)

【特許請求の範囲】[Claims] 1)  !素を除去した磁石を収容した炉内を低圧状態
とし、次に該転石を加熱することにより溶融、沸騰、蒸
発させて金属の混合気体とした後部混合気体を炉内と同
圧の炉外へ窮導し、各金属の該圧における凝縮温度より
若干低い温度に順次冷却して各金属ごとに凝縮液化させ
て金属を分離することを特赦とする低圧中で鉱石より金
属を分離する方法。
1)! The inside of the furnace containing the magnet from which the element has been removed is brought to a low pressure state, and then the rolling stones are heated to melt, boil, and evaporate to form a mixed gas of metal.The rear mixed gas is discharged to the outside of the furnace at the same pressure as inside the furnace. A method for separating metals from ores under low pressure, in which the metals are separated by condensation and liquefaction by sequentially cooling the metals to a temperature slightly lower than the condensation temperature of each metal at the pressure.
JP12277881A 1981-08-05 1981-08-05 Method for separating metal from ore in low pressure Pending JPS5825440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12277881A JPS5825440A (en) 1981-08-05 1981-08-05 Method for separating metal from ore in low pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12277881A JPS5825440A (en) 1981-08-05 1981-08-05 Method for separating metal from ore in low pressure

Publications (1)

Publication Number Publication Date
JPS5825440A true JPS5825440A (en) 1983-02-15

Family

ID=14844372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12277881A Pending JPS5825440A (en) 1981-08-05 1981-08-05 Method for separating metal from ore in low pressure

Country Status (1)

Country Link
JP (1) JPS5825440A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105191A (en) * 1980-12-11 1982-06-30 Hayashibara Biochem Lab Inc Production of human urogastrone
JPS59152985A (en) * 1983-02-18 1984-08-31 Kyokado Eng Co Ltd Impregnation method for ground
JPS59184283A (en) * 1983-04-04 1984-10-19 Kyokado Eng Co Ltd Curable composition
JPS60130358A (en) * 1983-12-19 1985-07-11 Ishino Seisakusho:Kk Nigiri-zushi maker
WO2007061012A1 (en) * 2005-11-24 2007-05-31 National Institute Of Advanced Industrial Science And Technology Metal, process for producing metal, metal producing apparatus and use thereof
WO2010050450A1 (en) * 2008-10-28 2010-05-06 株式会社エレクトラホールディングス Laser refining apparatus and laser refining method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105191A (en) * 1980-12-11 1982-06-30 Hayashibara Biochem Lab Inc Production of human urogastrone
JPS609795B2 (en) * 1980-12-11 1985-03-13 株式会社林原生物化学研究所 Method for producing human epidermal growth factor
JPS59152985A (en) * 1983-02-18 1984-08-31 Kyokado Eng Co Ltd Impregnation method for ground
JPH0468356B2 (en) * 1983-02-18 1992-11-02 Kyokado Eng Co
JPS59184283A (en) * 1983-04-04 1984-10-19 Kyokado Eng Co Ltd Curable composition
JPS60130358A (en) * 1983-12-19 1985-07-11 Ishino Seisakusho:Kk Nigiri-zushi maker
JPS6348504B2 (en) * 1983-12-19 1988-09-29 Ishino Seisakusho Kk
WO2007061012A1 (en) * 2005-11-24 2007-05-31 National Institute Of Advanced Industrial Science And Technology Metal, process for producing metal, metal producing apparatus and use thereof
WO2010050450A1 (en) * 2008-10-28 2010-05-06 株式会社エレクトラホールディングス Laser refining apparatus and laser refining method
AU2009310941B2 (en) * 2008-10-28 2013-08-01 Electra Holdings Co., Ltd. Laser refining apparatus and laser refining method
JP5600254B2 (en) * 2008-10-28 2014-10-01 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド Laser refining apparatus and laser refining method

Similar Documents

Publication Publication Date Title
JPS5825440A (en) Method for separating metal from ore in low pressure
US6533990B2 (en) Apparatus for distilling molten baths
US2258374A (en) Process for the production of magnesium by means of thermic reduction
US1515237A (en) Measuring device
US5330618A (en) Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators
JPH0829064A (en) Zinc removing induction melting system
US2252052A (en) Sublimating apparatus
US838195A (en) Process of distillation.
US2430389A (en) Apparatus for the condensation of metallic vapors
Lee et al. Aluminum deoxidation equilibrium in liquid Fe-16 pct Cr alloy
CN113604667B (en) Multi-metal vapor vacuum step condensation method and system
Chipman Equilibrium in the oxidation of liquid iron by steam and the free energy of ferrous oxide in liquid steel
US3169845A (en) Method of and apparatus for producing high purity inert gases
Sakao et al. Equilibrium between Dissolved Oxygen in Liquid Iron and H2-H2O Gas Mixtures
US2229716A (en) Process for the reduction of zinc, cadmium, and mercury
US1707637A (en) Method of producing metallic cesium
US1433258A (en) Method of and means for exhausting to low pressures
JPH07204402A (en) Vacuum purification apparatus and method of the same
JPH09173047A (en) Simplex distillation equipment using steam ejector
CN115181861A (en) Device for obtaining high-purity magnesium by scanning metal magnesium ingot with electron beam and purification method
JP3242385U (en) Combined Cooling Distillation Equipment
GB562108A (en) Improved method of and apparatus for the condensation of metallic vapours
JPH0672740A (en) Glass for seal bonding, frit glass, their production and method for using them
JPH11246921A (en) Mercury refining apparatus and method therefor
SU1057827A1 (en) Device for determination of hydrogen content in slags and fluxes