JPH02397B2 - - Google Patents

Info

Publication number
JPH02397B2
JPH02397B2 JP56125115A JP12511581A JPH02397B2 JP H02397 B2 JPH02397 B2 JP H02397B2 JP 56125115 A JP56125115 A JP 56125115A JP 12511581 A JP12511581 A JP 12511581A JP H02397 B2 JPH02397 B2 JP H02397B2
Authority
JP
Japan
Prior art keywords
water glass
acidic
aqueous solution
liquid
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125115A
Other languages
Japanese (ja)
Other versions
JPS5827779A (en
Inventor
Shunsuke Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP56125115A priority Critical patent/JPS5827779A/en
Priority to KR1019810003590A priority patent/KR830007968A/en
Priority to GB08211442A priority patent/GB2103682B/en
Publication of JPS5827779A publication Critical patent/JPS5827779A/en
Publication of JPH02397B2 publication Critical patent/JPH02397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/12Water-soluble silicates, e.g. waterglass
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は軟弱あるいは漏水地盤に固結液を注入
して該地盤を固結あるいは止水(以下単に固結と
いう)する地盤注入工法に係り、特に固結液とし
て非アルカリ性珪酸水溶液を用いた注入工法に係
る。 近年、止水工事等においては薬液注入工法が広
く用いられている。この薬液注入工法に用いられ
る薬液配合液として水ガラスグラウトを主成分と
して配合液が知られているが、この水ガラスグラ
ウトは水ガラスに硫酸等の酸剤やアルカリ金属塩
を混合させてなるものであるが、この方法では第
1図からもわかるように混合液のPHが中性領域
に入る前にゲル化してしまい、注入不可能とな
る。また、一般に地盤注入の目的である固結効果
を得るためには水ガラスグラウト中の水ガラス濃
度は10重量%以上であることが必要であるとされ
ているが、このような濃度ではPHが8〜9付近
で瞬結してしまうため一般に水ガラスグラウトは
PHが9以上の領域で用いられ、したがつて水ガ
ラスの当量が完全に反応することは困難で地盤中
には未反応の水ガラスが生ずることをさけられな
い。(第1図に水ガラスのゲル化時間とPHの関
係を示す) このような問題を解決するには、水ガラスを酸
性乃至中性のPH領域でゲル化させれば配合液中
の水ガラスを完全に反応せしめることが可能とな
るが、水ガラスに酸を加えていくとき、中性ある
いは酸性に至るまでにゲル化したり塊状シリカ分
を配合液中に生成してしまうため注入に適した配
合液をつくることはできない。 また、酸水溶液の満たされた混合容器中に水ガ
ラス水溶液を上から投入して水ガラスグラウトを
調製する方法も考えられるが、この方法では水ガ
ラス濃度が10%以上になつた時点で、中性領域に
なる以前に塊状のシリカ分が析出してしまい、注
入用配合液としては不適なものとなる。これは水
ガラスと酸性液が部分的に反応してシリカ分が析
出されやすい状態になるからと思われる。正常の
注入目的を達するためには固結砂の一軸圧縮強度
は1Kg/cm2以上を必要とするが、そのためには配
合液中の水ガラス濃度は10重量%以上が必要であ
る。 本発明の目的は濃い水ガラス濃度を用いても塊
状シリカ分を形成せず、前述の公知技術に存する
欠点を改良した地盤注入工法を提供するものであ
る。 前述の目的を達成するため、本発明によれば、
地盤中に二重注入管を挿入してのち、該注入管の
一つの管路から酸性水ガラス水溶液を送液し、他
方の管路からアルカリ剤または水ガラスのいずれ
か一方を必須成分とするアルカリ性配合液を送液
し、これら酸性水ガラス水溶液およびアルカリ性
配合液を合流させて地盤中に注入し、前記酸性水
ガラス水溶液は下端部の開放されたほぼロト型の
混合容器中に水ガラス水溶液と酸性液を、これら
の合流液のPH値が3以下を呈するように合流速
度の比率を保ちながら吐出し、合流混合しながら
下端開放部より連続的に貯溜容器中に流出せしめ
ることにより製造されたPH値が3以下の酸性水
ガラス水溶液であり、これにより塊状シリカ分を
析出することなく注入することを特徴とする。 上述の酸性水ガラス水溶液の製造にあたり、混
合容器内に単位時間あたりに供給される水ガラス
水溶液に対して、その水ガラス中のNa2Oをちよ
うど中和するに要する酸性液(酸性反応剤)の量
と中和後PHを3以下に保持するに必要な遊離の
形の酸性反応剤の量との合計量に相当する酸性液
が単位時間あたりに供給され、合流混合されるよ
うに両液の吐出速度の比率を定めなくてはならな
い。 このようにして、上述した条件を保つように酸
性反応剤水溶液と水ガラス水溶液を同時に吐出し
て比例混合を完全に行うことによりPHが3以下
の酸性珪酸水溶液を製造できるが、酸性反応剤水
溶液を水ガラス水溶液より一瞬先行させて混合容
器中に圧送し、混合することにより確実に塊状の
シリカ分を析出することなく酸性珪酸水溶液を製
しうる。 この方法による実験例を表−1に示す。 すなわち、表−1に示す配合内容で水ガラス水
溶液と酸性液を調整し、両液の吐出速度の比率を
同一に保つて混合容器内に別々の吐出口より吐出
しながら一方の開放部より貯溜容器に流出せしめ
れば表中に示す酸性珪酸水溶液を製造できる。 なお、この場合、両液を吐出口から噴射して吐
出させてもかまわない。
The present invention relates to a ground injection method in which a consolidation liquid is injected into soft or leaking ground to consolidate or stop the ground (hereinafter simply referred to as consolidation). Concerning construction methods. In recent years, chemical injection methods have been widely used in water stoppage construction, etc. As a chemical compounded liquid used in this chemical injection method, a compounded liquid containing water glass grout as the main component is known, but this water glass grout is made by mixing water glass with an acid agent such as sulfuric acid or an alkali metal salt. However, with this method, as can be seen from Figure 1, the mixture gels before the pH of the mixture reaches the neutral range, making it impossible to inject. In addition, it is generally said that the water glass concentration in water glass grout needs to be 10% by weight or more in order to obtain the consolidation effect that is the purpose of ground injection, but at such a concentration, the PH Generally, water glass grout is
It is used in an area where the pH is 9 or higher, so it is difficult for the equivalent amount of water glass to react completely, and unreacted water glass inevitably forms in the ground. (Figure 1 shows the relationship between water glass gelation time and PH.) To solve this problem, if water glass is gelled in an acidic to neutral pH range, the water glass in the blended solution can be reduced. However, when acid is added to water glass, it gels and lumps of silica are generated in the mixed liquid until it becomes neutral or acidic, making it unsuitable for injection. It is not possible to create a mixed solution. Another possibility is to prepare water glass grout by pouring a water glass solution from above into a mixing container filled with an acid solution, but in this method, once the water glass concentration reaches 10% or more, Massive silica components precipitate out before the liquid reaches the sterile range, making it unsuitable for use as an injection formulation. This is thought to be because the water glass and the acidic liquid partially react, creating a state in which silica is likely to be precipitated. In order to achieve the purpose of normal injection, the unconfined compressive strength of the consolidated sand needs to be 1 Kg/cm 2 or more, and for this purpose, the water glass concentration in the mixed solution needs to be 10% by weight or more. It is an object of the present invention to provide a ground injection method which does not form bulk silica even when using a high water glass concentration and which improves the drawbacks of the above-mentioned known techniques. In order to achieve the aforementioned object, according to the present invention:
After inserting a double injection pipe into the ground, an acidic water glass aqueous solution is delivered from one pipe of the injection pipe, and either an alkaline agent or water glass is an essential component from the other pipe. An alkaline mixed solution is sent, and these acidic water glass aqueous solution and alkaline mixed solution are combined and injected into the ground, and the acidic water glass aqueous solution is poured into a nearly rotary-shaped mixing container with an open bottom end. and acidic liquid are discharged while maintaining the ratio of merging speeds so that the PH value of these combined liquids is 3 or less, and they are manufactured by continuously flowing out from the open part at the lower end into the storage container while combining and mixing. It is an acidic water glass aqueous solution with a pH value of 3 or less, and is characterized by being injected without precipitating bulk silica. In producing the above-mentioned acidic water glass aqueous solution, the acidic liquid (acidic reaction An acidic liquid corresponding to the total amount of the acidic reactant in free form necessary to maintain the PH of 3 or less after neutralization is supplied per unit time and mixed together. The ratio of the discharge speeds of both liquids must be determined. In this way, by simultaneously discharging the acidic reactant aqueous solution and the water glass aqueous solution while maintaining the above-mentioned conditions and performing proportional mixing completely, an acidic silicic acid aqueous solution with a pH of 3 or less can be produced. By force-feeding the mixture into a mixing container momentarily ahead of the water glass aqueous solution and mixing, an acidic silicic acid aqueous solution can be reliably produced without precipitating lump-like silica components. Experimental examples using this method are shown in Table 1. In other words, a water glass aqueous solution and an acidic liquid were prepared with the formulation shown in Table 1, and while maintaining the same discharge rate ratio, the two solutions were discharged from separate discharge ports into a mixing container and stored from one opening. By draining it into a container, the acidic silicic acid aqueous solution shown in the table can be produced. In this case, both liquids may be injected and discharged from the discharge port.

【表】 このようにして調整された酸性珪酸水溶液(酸
性水ガラス水溶液)は安定で数時間から数10時間
という長いゲル化時間を維持するため注入作業中
液状を保つことができる。注入に至るまでの注入
準備作業中この酸性珪酸水溶液が塊状のシリカ分
を析出することなく安定を保つていなくてはなら
ない時間は少なくとも3時間、好ましくは8時間
以上であるが、上記の製造方法によればそれは可
能である。 上述の製造に際し、塊状シリカ分を析出するこ
となく安定した液状の酸性水ガラス水溶液が得ら
れる理由は以下の(イ)、(ロ)および(ハ)の三段階による
連続混合に基因するためである。 (イ) 別々の流路を経て送液された水ガラス水溶液
と酸性液がそれぞれ混合容器中に吐出し、互い
にぶつかり合つて効果的に合流混合する。この
場合、両液はそれぞれ噴射して吐出されれば、
より一層効果的に合流混合する。 (ロ) 前述(イ)によつて得られた混合液はひきつづい
て、混合容器のテーパー状に細められた下方に
流下し、ここで渦流を起こして一層完全に混合
される。 (ハ) さらにひきつづいて混合液は混合容器の下端
開放部から貯溜容器中に流出し、このとき流出
の衝撃により一層激しく混合され、この結果、
シリカ分の析出のない、安定した液状の酸性水
ガラス水溶液を得る。 なお、中性領域でゲル化する注入液で地盤を固
結するにはこの酸性領域の珪酸水溶液のPHを増
大させてゲル化時間を短縮しなくてはならない
が、PHが3以上になると珪酸水溶液はゲル化す
る前に塊状のシリカ分を析出しやすくなる。特に
この傾向は配合液中の水ガラスの含有量が10%
上、特に20%上になると増大する。そこで、本発
明ではこのような現象を防ぐために、上述したよ
うにまず、PHが3以下の水ガラスを20重量%以
上含む酸性珪酸水溶液を上述した方法であらかじ
めつくつておき、これをA液として、一方希釈水
ガラス水溶液またはアルカリ剤の少なくともいず
れか一つを有効成分とするアルカリ性配合液をB
液とし、地盤中に挿入した二重管を用いてそれぞ
れを二重管内に形成された二つの管路を通して送
液してPHが5〜9を呈するほぼ中性の合流液を
地盤中に注入する。 このようにすれば、合流液は注入管内で塊状シ
リカ分が析出する心配なく地盤中に浸透して固結
する。単管の注入管を用い単管ロツドの上端部の
Y字管で両液を合流した場合は、注入管中を送液
している間に塊状のシリカ分が析出して土粒子間
への浸透が阻害される傾向を生ずるが、二重注入
管を用いれば両液が合流すると同時に合流液は土
粒子間へ浸透するため塊状シリカ分を析出する前
に所定領域に合流液は浸透してゲル化し、その流
動は停止し所定領域の土が中性領域ゲル化物で固
結する。 表−2に実験例を示す。
[Table] The acidic silicic acid aqueous solution (acidic waterglass aqueous solution) prepared in this way is stable and can maintain a long gelation time of several hours to several tens of hours, so it can remain liquid during the injection process. During the injection preparation work leading up to injection, the time period during which this acidic silicic acid aqueous solution must remain stable without precipitating lumpy silica components is at least 3 hours, preferably 8 hours or more, but the manufacturing method described above According to it, it is possible. The reason why a stable liquid acidic water glass aqueous solution can be obtained during the above production without precipitation of bulk silica is due to the continuous mixing in the following three steps (a), (b) and (c). be. (a) The water glass aqueous solution and the acidic liquid sent through separate channels are discharged into a mixing container, and collide with each other to effectively merge and mix. In this case, if both liquids are injected and discharged,
Confluence and mix more effectively. (b) The mixed liquid obtained in the above (a) continues to flow down into the tapered lower part of the mixing container, where it generates a vortex and is mixed more completely. (c) Further, the mixed liquid flows out from the lower end opening of the mixing container into the storage container, and at this time, the impact of the outflow causes it to mix even more vigorously, and as a result,
To obtain a stable liquid acidic water glass aqueous solution without precipitation of silica components. In addition, in order to solidify the ground with an injection solution that gels in a neutral region, it is necessary to increase the pH of the silicic acid aqueous solution in this acidic region and shorten the gelation time. Aqueous solutions tend to precipitate lumpy silica before gelling. This tendency is especially noticeable when the water glass content in the compounded liquid is 10%.
It increases when you move up, especially 20% above. Therefore, in the present invention, in order to prevent such a phenomenon, first, as described above, an acidic silicic acid aqueous solution containing 20% by weight or more of water glass with a pH of 3 or less is prepared in advance by the method described above, and this is used as liquid A. On the other hand, B
A nearly neutral combined liquid with a pH of 5 to 9 is injected into the ground by using a double pipe inserted into the ground to send the liquid through two pipes formed inside the double pipe. do. In this way, the combined liquid will penetrate into the ground and solidify without worrying that bulk silica will precipitate inside the injection pipe. If a single injection pipe is used and the two liquids are combined at the Y-shaped pipe at the upper end of the single pipe rod, lumps of silica will precipitate while the liquid is being sent through the injection pipe and will be trapped between the soil particles. This tends to impede penetration, but if a double injection pipe is used, the two liquids join together and at the same time the combined liquid penetrates between the soil particles, so the combined liquid permeates into the specified area before the bulk silica is precipitated. It gels, its flow stops, and the soil in a predetermined area is solidified with the neutral area gelled material. Table 2 shows experimental examples.

【表】【table】

【表】 実施例 20の容積を有し、上部が密閉され、水ガラス
液と酸性液の吐出口が別々に開口しているほぼロ
ト型の混合容器を用い、表−1の実験No.1の配合
を用いて、水ガラス水溶液と酸性液をそれぞれ10
/分の吐出速度で混合容器内に吐出して合流混
合し、連続的に下端部より流出せしめてPHが
1.3、ゲル化時間がほぼ35時間の酸性珪酸水溶液
をつくつた。表−2実験No.16に示すようにこの酸
性配合液をA液とし、4号水ガラス水溶液をB液
として、これらを東京都内の地下水面下の砂レキ
地盤中に二重注入管を通じて合流して2000注入
した。その後、地盤を掘削したところ、直径ほぼ
100cmの固結体が得られた。 また、表−2においてPH5〜8に調製された
混合液を標準砂に混和して固結し、得られたサン
ドゲルを水中養生し、その一軸圧縮強度および養
生水のPHの経時変化をそれぞれ表−3、表−4
に示した。対照物としてほぼ同一濃度の3号水ガ
ラス水溶液に硫酸水溶液を加えて得たPH10.3の
グラウトのサンドゲルについて平行して試験し
た。
[Table] Experiment No. 1 in Table 1 was conducted using a nearly roto-shaped mixing container having a volume of Example 20, the top of which was sealed, and discharge ports for the water glass liquid and the acidic liquid opened separately. 10% each of water glass aqueous solution and acidic solution using the formulation of
The mixture is discharged into a mixing container at a discharge speed of 1/2 min, mixed together, and then continuously flowed out from the bottom to reduce the pH.
1.3. An acidic silicic acid aqueous solution with a gelation time of approximately 35 hours was prepared. As shown in Table 2 Experiment No. 16, this acidic mixed solution was used as liquid A, and the No. 4 water glass aqueous solution was used as liquid B, and these were combined through a double injection pipe into the sandy ground below the groundwater table in Tokyo. and injected 2000. After that, when we excavated the ground, we found that the diameter was approximately
A solid of 100 cm was obtained. In addition, in Table 2, the mixed solution prepared to have a pH of 5 to 8 was mixed with standard sand and solidified, and the resulting sand gel was cured in water, and the unconfined compressive strength and the change in pH of the curing water over time are shown, respectively. -3, Table-4
It was shown to. As a control, a sand gel of grout with a pH of 10.3 obtained by adding a sulfuric acid aqueous solution to a No. 3 water glass aqueous solution of approximately the same concentration was tested in parallel.

【表】【table】

【表】 表−3、表−4に示した結果から明らかなよう
に、従来工法によつてアルカリ領域でゲル化させ
て得たサンドゲル(対照物)は水中で養生すると
何時までもアルカリが溶離し、一軸圧縮強度が低
下するとともに、周辺の水がアルカリ性になる。
これに対して本発明により得られたサンドゲルは
非常に安定であり、日時の経過による強度の低下
が認められないばかりでなく、酸またはアルカリ
を溶出することもないことがわかつた。 本発明における酸性液として用いる酸は硫酸、
塩酸、リン酸等の酸や、水溶液が酸性を呈する酸
性塩(硫酸塩、重硫酸塩等)等をあげることがで
きるが、硫酸が最も適している。また、アルカリ
剤とは、水酸化アルカリ金属、水酸化アルカリ土
金属、炭酸塩や重炭酸塩、リン酸塩、アルミン酸
塩等のアルカリ性塩、酸化マグネシウム、酸化カ
ルシウム等の金属酸化物ならびに普通ポルトラン
ドセメント、高炉セメント、セルミトセメント等
があげることができ、さらにこれらを併用するこ
とができるが、特に重炭酸アルカリ金属塩、炭酸
のアルカリ金属塩が適している。 なお、セメントとともにスラグを併用してもよ
い。水ガラスとしてはモル比が2〜5.5の任意の
液状水ガラスを用いることができる。 また、本発明における水ガラスが20重量%以上
含む酸性珪酸水溶液とは水ガラスの固形分(純
分)ではなく、市販されている液状水ガラスが配
合液中に重量%で20%以上含むということを意味
している。
[Table] As is clear from the results shown in Tables 3 and 4, when the sand gel (control material) obtained by gelation in the alkaline region using the conventional method is cured in water, alkali continues to elute. However, the unconfined compressive strength decreases and the surrounding water becomes alkaline.
On the other hand, it was found that the sand gel obtained according to the present invention is very stable, and not only does it show no decrease in strength over time, but also does not elute acid or alkali. The acid used as the acidic liquid in the present invention is sulfuric acid,
Examples include acids such as hydrochloric acid and phosphoric acid, and acid salts (sulfates, bisulfates, etc.) whose aqueous solutions are acidic, but sulfuric acid is most suitable. In addition, alkaline agents include alkali metal hydroxides, alkaline earth metal hydroxides, alkaline salts such as carbonates, bicarbonates, phosphates, and aluminates, metal oxides such as magnesium oxide and calcium oxide, and ordinary Portland cement. Examples include cement, blast furnace cement, celmite cement, etc., and these can be used in combination, but alkali metal bicarbonates and alkali metal salts of carbonate are particularly suitable. Note that slag may be used in combination with cement. As the water glass, any liquid water glass having a molar ratio of 2 to 5.5 can be used. In addition, the acidic silicic acid aqueous solution containing 20% by weight or more of water glass in the present invention is not the solid content (pure content) of water glass, but the commercially available liquid water glass that contains 20% or more by weight in the blended liquid. It means that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水ガラスのPHとゲル化時間の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between pH of water glass and gelation time.

Claims (1)

【特許請求の範囲】[Claims] 1 地盤中に二重注入管を挿入してのち、該注入
管の一つの管路から酸性水ガラス水溶液を送液
し、他方の管路からアルカリ剤または水ガラスの
いずれか一方を必須成分とするアルカリ性配合液
を送液し、これら酸性水ガラス水溶液およびアル
カリ性配合液を合流させて地盤中に注入し、前記
酸性水ガラス水溶液は下端部の開放されたほぼロ
ト型の混合容器中に水ガラス水溶液と酸性液を、
これらの合流液のPH値が3以下を呈するように
合流速度の比率を保ちながら吐出し、合流混合し
ながら下端開放部より連続的に貯溜容器中に流出
せしめることにより製造されたPH値が3以下の
酸性水ガラス水溶液であり、これにより塊状シリ
カ分を析出することなく注入することを特徴とす
る地盤注入工法。
1. After inserting a double injection pipe into the ground, an acid water glass aqueous solution is delivered from one pipe of the injection pipe, and either an alkaline agent or water glass is added as an essential component from the other pipe. The acidic water glass solution and the alkaline compound solution are combined and injected into the ground, and the acidic water glass solution is poured into a nearly rotary-shaped mixing container with an open bottom end. Aqueous solution and acidic liquid,
The PH value of these combined liquids is 3 or less by maintaining the ratio of the merging speed and continuously flowing out into the storage container from the opening at the lower end while merging and mixing. A ground injection method characterized by the following acidic water glass aqueous solution being injected without precipitating bulk silica.
JP56125115A 1981-08-10 1981-08-10 Injection method of stratum Granted JPS5827779A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56125115A JPS5827779A (en) 1981-08-10 1981-08-10 Injection method of stratum
KR1019810003590A KR830007968A (en) 1981-08-10 1981-09-25 Ground injection method
GB08211442A GB2103682B (en) 1981-08-10 1982-04-20 Injection process for solidifying a soft ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125115A JPS5827779A (en) 1981-08-10 1981-08-10 Injection method of stratum

Publications (2)

Publication Number Publication Date
JPS5827779A JPS5827779A (en) 1983-02-18
JPH02397B2 true JPH02397B2 (en) 1990-01-08

Family

ID=14902211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125115A Granted JPS5827779A (en) 1981-08-10 1981-08-10 Injection method of stratum

Country Status (3)

Country Link
JP (1) JPS5827779A (en)
KR (1) KR830007968A (en)
GB (1) GB2103682B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604586A (en) * 1983-06-23 1985-01-11 Kyokado Eng Co Ltd Ground impregnation method
JPS6021811A (en) * 1983-07-15 1985-02-04 Nippon Kensetsu Kikai Shoji Kk Preparation of silica sol
JPS6053587A (en) * 1983-09-02 1985-03-27 Kyokado Eng Co Ltd Liquid for ground impregnation
JPS6053588A (en) * 1983-09-02 1985-03-27 Kyokado Eng Co Ltd Liquid for ground impregnation
JPS60231786A (en) * 1984-05-01 1985-11-18 Kyokado Eng Co Ltd Pouring grout into ground
JPS60231785A (en) * 1984-05-01 1985-11-18 Kyokado Eng Co Ltd Pouring grout into ground
JP2005194463A (en) * 2004-01-09 2005-07-21 Tokuyama Corp Method for preparing aqueous non-alkaline silicic acid solution for grouting chemical
SE532581C2 (en) * 2007-07-11 2010-02-23 Agneta Sunden Bylehn Production of acidic polysilicate products and their use to strengthen wood structures
JP5640198B2 (en) * 2008-11-21 2014-12-17 富士化学株式会社 Method for producing consolidated material for ground injection

Also Published As

Publication number Publication date
GB2103682A (en) 1983-02-23
KR830007968A (en) 1983-11-09
GB2103682B (en) 1985-09-25
JPS5827779A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
JPH02397B2 (en)
JPS6117970B2 (en)
JPS5993787A (en) Solidification of ground
JPS60233192A (en) Grouting method
JPS5993788A (en) Grauting method into ground
JPH0598257A (en) Chemical for grouting soil
JPH0146442B2 (en)
JPS61162623A (en) Ground impregnation method
JPH0525272B2 (en)
JPS60197789A (en) Pouring of grout into ground
JPS62172088A (en) Ground grouting process
JPH0471956B2 (en)
JPH09165576A (en) Slag-based high-strength grouting agent
JPS5966484A (en) Grouting method
JPS59152986A (en) Impregnation method for ground
JPH0554519B2 (en)
JPS5980487A (en) Chemical solution for injection into ground
JP2000087035A (en) Ground solidifying material
JP2554953B2 (en) Ground injection method
JPH0468356B2 (en)
JPH09165574A (en) High-strength grouting agent composed mainly of slag
JP3370254B2 (en) Ground injection method
JP2024037096A (en) Ground consolidation material and ground injection method using it
JPS6338390B2 (en)
JPH09165577A (en) Slag-based high-strength grouting agent