JPS60231786A - Pouring grout into ground - Google Patents

Pouring grout into ground

Info

Publication number
JPS60231786A
JPS60231786A JP59086089A JP8608984A JPS60231786A JP S60231786 A JPS60231786 A JP S60231786A JP 59086089 A JP59086089 A JP 59086089A JP 8608984 A JP8608984 A JP 8608984A JP S60231786 A JPS60231786 A JP S60231786A
Authority
JP
Japan
Prior art keywords
liquid
water glass
ground
aqueous solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59086089A
Other languages
Japanese (ja)
Other versions
JPH0354153B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Kenji Kashiwara
栢原 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP59086089A priority Critical patent/JPS60231786A/en
Publication of JPS60231786A publication Critical patent/JPS60231786A/en
Publication of JPH0354153B2 publication Critical patent/JPH0354153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To increase the strength of solidified grout without need of adjusting gel time with a pH adjustor, by mixing an aqueous soln. of water glass with an acidic soln. in such a way that the resulting mixt. may be maintained under an excess acid condition before it reaches a pouring pipe and immediately pouring the grout into ground. CONSTITUTION:An aqueous soln. of water glass having an SiO2/M2O molar ratio of 1.5-5.0 and an acidic soln. (e.g. aqueous soln. of sulfuric acid) are fed to a pipe 2 before it reaches a pouring pipe 1 and the mixt. is immediately poured via the pouring pipe 1 into ground for solidification.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は軟弱あるいは漏水地盤に固結薬液を注入して前
記地盤を固結あるいは止水(以下単に固結という)する
地盤注入工法に係シ、特に固結薬液として非アルカリ性
珪酸水溶液を用い、注入工程が簡素化されるとともにp
H調整剤(アルカリ剤)によるゲル化時間の調整を必要
とせず、しかも固結後の強度が大である地盤注入工法に
関する。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention relates to a ground injection method of injecting a consolidating chemical into soft or leaky ground to consolidate or stop water (hereinafter simply referred to as consolidation). In particular, by using a non-alkaline silicic acid aqueous solution as the solidifying chemical solution, the injection process is simplified and
This invention relates to a ground injection method that does not require adjustment of gelation time using an H adjuster (alkaline agent) and has high strength after consolidation.

〔従来技術とその問題点〕[Prior art and its problems]

近年、止水工事等においては薬液注入工法が広く用いら
れており、この工法に用いられる固結薬液として水ガラ
スグラウトを主成分とした配合液が知られている。前記
水ガラスグラウトは水ガラスに硫酸等の酸性液、あるい
はアルカリ金属塩を混合させてなるものであるが、この
ような水ガラスグラウトを用いた注入工法では第1図か
らもわかるように混合液のpHが中性領域に入る前にゲ
ル化してしまい、注入不可能となる。
In recent years, a chemical injection method has been widely used in water stoppage construction, etc., and a compound liquid containing water glass grout as a main component is known as a solidifying chemical solution used in this method. The water glass grout is made by mixing water glass with an acidic liquid such as sulfuric acid or an alkali metal salt, but as can be seen from Figure 1, in the injection method using such water glass grout, the mixed liquid The solution gels before the pH reaches the neutral range, making it impossible to inject.

一般に地盤注入の目的である固結効果を得るためには水
ガラスグラウト中の水ガラス濃度は1o重量%以上であ
る事が必要であるとされているが、このような濃度では
pHが8〜9付近で瞬結してしまうため一般に水ガラス
グラウトはpHが9以上の領域で用いられ、従って水ガ
ラスの当量が完全に反応する事は困難で地盤中には未反
応の水ガラスが生ずる事をさけられない。(第1図に水
ガラスのゲル化時間とpHの関係を示す)また、近年、
非アルカリ性珪酸水溶液を固結薬液として用いる地盤注
入工法が開発されている。
Generally, in order to obtain the consolidation effect that is the purpose of ground injection, it is said that the water glass concentration in water glass grout needs to be at least 10% by weight; Generally, water glass grout is used in a pH range of 9 or higher because it sets instantly at a pH of around 9. Therefore, it is difficult for the equivalent amount of water glass to completely react, resulting in unreacted water glass in the ground. I can't avoid it. (Figure 1 shows the relationship between gelation time and pH of water glass) In recent years,
A ground injection method using a non-alkaline silicic acid aqueous solution as a solidification chemical has been developed.

この工法はまず酸性液中に水ガラスを添加混合し、ある
いは酸性液と水ガラスを合流混合して、pH値が1〜2
付近の強酸性珪酸水溶液を調製する第一工程と、次いで
この強酸性珪酸水溶液に水ガラス、炭酸塩等のアルカリ
剤をpH調整剤として添加混合し、あるいは合流してゲ
ル化時間を調整する第二工程とを経て、所望の配合液を
調製した上で注入を行う工法で1ある。
In this method, water glass is first added and mixed into an acidic liquid, or the acidic liquid and water glass are mixed together until the pH value is 1 to 2.
The first step is to prepare a strongly acidic silicic acid aqueous solution, and then the second step is to add and mix an alkaline agent such as water glass or carbonate as a pH adjuster to this strongly acidic silicic acid aqueous solution, or to adjust the gelation time by combining them. Method 1 involves preparing a desired liquid mixture through two steps and then injecting it.

しかし、上述の工法には次の(A) 、 (B)および
(c)の欠点が内在する。
However, the above construction method has the following disadvantages (A), (B), and (c).

(A)強酸性珪酸水溶液を調製する第一工程と、この水
溶液にアルカリ剤を添加する第二工程とを必要とするた
め、工程が複雑である。
(A) The process is complicated because it requires a first step of preparing a strongly acidic silicic acid aqueous solution and a second step of adding an alkaline agent to this aqueous solution.

(B)強酸性珪酸水溶液にアルカリ剤を添加する第二工
程では、微量の配合のちがいによりゲル化時間が大幅に
変動してしまい、容易に瞬結状態になって地盤中への浸
透が阻害される等の問題が生じる。
(B) In the second step of adding an alkaline agent to the strongly acidic silicic acid aqueous solution, the gelation time varies greatly due to slight differences in the mixture, easily resulting in instant solidification and inhibiting penetration into the ground. This may cause problems such as being exposed.

(C) 前記強酸性珪酸水溶液は第二工程においてアル
カリ剤水@液によってうすめられることになシ、このた
め、配合液濃度は最終的には相当に低くなシ、高強度の
固結体を得ることができない。
(C) The strongly acidic silicic acid aqueous solution will be diluted with alkaline solution in the second step, so the final concentration of the mixed solution will be quite low and a high strength solidified body will be formed. can't get it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は非アルカリ性珪酸水溶液を注入するにあ
たシ、注入工程が簡素化されるとともにPH調整剤によ
るゲル化時間の調整を必要とせず、しかも固結後の強度
が向上される、前述の公知技術に存する欠点を改良した
地盤注入工法を提供することにある。
The purpose of the present invention is to simplify the injection process when injecting a non-alkaline silicic acid aqueous solution, eliminate the need to adjust the gelation time with a pH adjuster, and improve the strength after solidification. The object of the present invention is to provide a ground injection method that improves the drawbacks of the above-mentioned known techniques.

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明によれば、水ガラス
水容液および酸性液を注入管を通して地盤中に合流注入
する地盤注入工法において、前記水ガラス水溶液および
酸性液は前記注入管に至るまでの管路で酸過剰に保持さ
れるような合流比率で合流され、次いでそのまま直ちに
注入管を通して地盤中に注入されることを特徴とする。
In order to achieve the above object, the present invention provides a ground injection method in which a water glass aqueous solution and an acidic liquid are jointly injected into the ground through an injection pipe, in which the water glass aqueous solution and the acidic liquid reach the injection pipe. It is characterized in that it is merged at a merging ratio that maintains an excess of acid in the pipes leading up to it, and then immediately injected into the ground through the injection pipe.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明は非アルカリ性珪酸水溶液の配合を従来のように
二工程に分けて行なうのではなく一度に行なう。したが
って、配合された前記非アルカリ性珪酸水溶液は注入ポ
ンプ等を用いて注入したのでは途中でゲル化してしまう
から、そのまま直ちに地盤中に注入されることが必要で
ある。このためには水ガラス水溶液および酸性液はそれ
ぞれ注入管に通じる管路に別々に導入され、ここで両者
は酸過剰を保持するような合流比率で合流され−ること
か必要であり、この結果得られる注入液はそのまま直ち
に注入管を通して地盤中に容易に注入される。しかも注
入液は一度地盤中に注入されてしまうと土壌自体が有す
る緩衝作用によシ塊状シリカ分を析出しにくくなる。
In the present invention, the non-alkaline silicic acid aqueous solution is blended in one step rather than in two separate steps as in the conventional method. Therefore, if the blended non-alkaline silicic acid aqueous solution is injected using an injection pump or the like, it will gel on the way, so it is necessary to immediately inject it into the ground as it is. For this purpose, it is necessary that the water glass aqueous solution and the acidic liquid are each introduced separately into a conduit leading to the injection tube, where they are combined at a confluence ratio that maintains an acidic excess. The obtained injection liquid is immediately and easily injected into the ground through the injection pipe. Moreover, once the injection liquid is injected into the ground, the bulky silica becomes difficult to precipitate due to the buffering effect of the soil itself.

このだめ、本発明は次の(1) 、 (2)ならびに(
3)の利点を奏しうる。
In this case, the present invention provides the following (1), (2) and (
3) can be achieved.

(1)非アルカリ性珪酸水溶液を一工程で調製するので
工程が簡素化される3゜ (2)非アルカリ性珪酸水溶液が注入管に至るまでの管
路で調製され、かつこの管路は注入管のすぐ上部に注入
管と連結して存在し、地盤に相当に接近した位置である
ので、前記水溶液の管路から地盤中への送液時間は非常
に短くてすみこのため、前記水溶液は管路から注入管を
通してそのまま直ちに地盤中に注入される。したがって
、従来のように強酸性珪酸水溶液を調製の後、アルカリ
剤によシゲル化時間を調製するという工程は必要とせず
、この困難性が除去される。
(1) The non-alkaline silicic acid aqueous solution is prepared in one step, which simplifies the process. (2) The non-alkaline silicic acid aqueous solution is prepared in a pipe leading to the injection pipe, and this pipe is connected to the injection pipe. Since the aqueous solution is connected to the injection pipe immediately above the ground and is located quite close to the ground, the time required to send the aqueous solution from the pipe into the ground is very short. It is immediately injected directly into the ground through the injection pipe. Therefore, there is no need for the conventional step of preparing a strongly acidic silicic acid aqueous solution and then adjusting the gelation time using an alkaline agent, thereby eliminating this difficulty.

(3)従来の第二工程を省略することができるので、水
ガラス水溶液はアルカリ剤水溶液によってうすめられる
ようなことはなく、シたがって、固結後の強度が向上さ
れる。
(3) Since the conventional second step can be omitted, the water glass aqueous solution is not diluted by the alkaline agent aqueous solution, and therefore the strength after consolidation is improved.

なお、本発明において、水力ラス水溶液および酸性液の
管路での合流はいずれか一方が他方よりも高い圧力で吐
出合流させるのが好ましく、特に水ガラス水溶液が酸性
液よシも高い吐d圧で合流混合されることが水ガラス濃
度の濃い非アルカリ性珪酸水溶液を調製する際に一層好
ましい。
In addition, in the present invention, it is preferable that the water glass aqueous solution and the acidic liquid are discharged together at a higher pressure than the other in the convergence of the hydroglass aqueous solution and the acidic liquid in the pipe, and in particular, the waterglass aqueous solution has a higher discharge pressure than the acidic liquid. When preparing a non-alkaline silicic acid aqueous solution with a high concentration of water glass, it is more preferable to combine and mix the two.

さらに、本発明における酸過剰を保持するような合流比
率とは合流液が不安定になってゲル化時間が短くなる電
気化学的中和点、すなわちpH8,5付近、好ましくは
pH7付近よシも酸性側の非アルカリ性領域を常に保持
するような合流比率をいう。
Furthermore, in the present invention, the merging ratio that maintains excess acid means the electrochemical neutralization point where the merging liquid becomes unstable and the gelation time becomes short, that is, around pH 8.5, preferably around pH 7. This is the merging ratio that always maintains the non-alkaline region on the acidic side.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

実験I A液として水ガラス水溶液、B液として硫酸水溶液を用
意し、これらをそれぞれ攪拌翼の備えられたろうと状容
器に導入して混合し、この混合液を前容器下端からと9
だし、pH値とゲル化時間を測定した。結果を表−1に
示す。
Experiment I Prepare a water glass aqueous solution as liquid A and a sulfuric acid aqueous solution as liquid B, introduce these into a funnel-shaped container equipped with a stirring blade and mix them.
However, the pH value and gelation time were measured. The results are shown in Table-1.

表−1 表−1の各配合例において、いずれも均質なゲルを形成
した。
Table 1 In each formulation example in Table 1, a homogeneous gel was formed.

なお、A液をビーカーに採取し、これに攪拌しながらB
液を添加混合したところ、塊状シリカ分が析出された。
In addition, collect liquid A in a beaker, and add B while stirring.
When the liquid was added and mixed, bulk silica was precipitated.

前述よシ酸過剰な状態で水ガラスと酸性液を合流すれば
、均質な配合液を得、かつ任意のp)(値とゲル化時間
を設定できることがわかる1、実験−2 以下の数種の野外試験方法を用いて注入管吐出口からの
吐出液の状況を調べた。
As mentioned above, if water glass and acidic liquid are combined in a state of excess phosphoric acid, a homogeneous mixed liquid can be obtained, and it can be seen that any p) (value and gelation time can be set) 1, Experiment 2 The following several types The situation of the liquid discharged from the injection tube outlet was investigated using the field test method.

試験方法−に 二重注入管に至るまでの管路にA液ならびにB液をそれ
ぞれ同一吐出圧で同量づつ送液した。管路は注入管に直
接連結した。
Test method - The same amount of liquid A and liquid B were fed into the pipe line leading to the double injection pipe at the same discharge pressure. The line was connected directly to the injection tube.

試験方法−2 二重注入管に至るまでの管路の一方の入口にパルプを設
けてこの入口からの吐出圧力が他方の入口からの吐出圧
力よりも高くなるようにして、管路内にA液およびB液
をそれぞれ等量づつ送液し、混合した。一方の入口およ
び他方の入口からの管路への吐出圧力の差はそれぞれ0
.5 、1.0 、2.0に9/ cAと定めた。管路
は注入管と直接連結して配置した。吐出圧力の差を生じ
させるためには、例えば、一方の入口にIKpf/i 
の圧力が加わってはじめて開口するパルプを取シつける
か、あるいは一方の入口の径を吐出量に対して小さくし
たり、あるいはノズル状にして行なう。
Test method-2 Pulp is installed at one entrance of the pipe leading to the double injection pipe so that the discharge pressure from this entrance is higher than the discharge pressure from the other entrance, and A is placed in the pipe. Equal amounts of solution and solution B were each sent and mixed. The difference in the discharge pressure into the pipeline from one inlet and the other inlet is 0 respectively.
.. 9/cA was set for 5, 1.0, and 2.0. The pipe line was placed in direct connection with the injection pipe. To create a difference in discharge pressure, for example, IKpf/i at one inlet
This can be done either by installing a pulp that opens only when a pressure of

試験方法−3 実験1と同様にして非アルカリ性珪酸水溶液を調製し、
この水溶液をポンプの作動によplomの長さのホース
を介し、10mの長さの注入管を通して地盤中に送液し
た。
Test method-3 A non-alkaline silicic acid aqueous solution was prepared in the same manner as in Experiment 1,
This aqueous solution was pumped into the ground through a 10 m long injection pipe via a plom long hose.

実験結果を表−2に示す。The experimental results are shown in Table-2.

表−2において、配合NILは表−1のものと一致する
。また、0印は均質なゲルを形成したこと、X印は塊状
シリカ分を形成して不均質ゲルを形成したこと、Δ印は
容器中で、あるいは注入管、ホースまたはポンプ中で詰
ってしまったことをそれぞれ表わす。
In Table-2, the formulation NIL matches that of Table-1. Also, the 0 mark indicates that a homogeneous gel was formed, the X mark indicates that bulk silica was formed and a heterogeneous gel was formed, and the Δ mark indicates that there was a blockage in the container, injection pipe, hose, or pump. Each represents a different thing.

表−2よシ非アルカリ性珪酸水溶液を合流混合したもの
をポンプで送液した場合、注入口に至るまでにゲル化し
てしまったり、塊状シリカ分を析出しやすいことがわか
る。
Table 2 shows that when a mixture of non-alkaline silicic acid aqueous solutions is pumped, it tends to gel or cause bulk silica to precipitate before reaching the injection port.

また、A液、B液の吐出圧力の差がゼロの場合、水ガラ
ス濃度が40X近くになると塊状シリカ分を析出しやす
くなる。本発明では吐出圧力差がある方が望ましく、特
に水ガラス液が酸性液中により高い圧力で吐出混合され
る場合には水ガラス濃度が濃くても均質な配合液を得る
ことができるが、逆の場合には吐出圧力が小さいと水ガ
ラス濃度が40X以上では塊状シリカ分を析出しゃすく
なることがわかる。
Furthermore, when the difference in discharge pressure between liquids A and B is zero, bulk silica tends to precipitate when the water glass concentration approaches 40X. In the present invention, it is preferable to have a discharge pressure difference, and in particular, when the water glass liquid is discharged and mixed into the acidic liquid at a higher pressure, a homogeneous mixed liquid can be obtained even if the water glass concentration is high. In the case of , it can be seen that when the discharge pressure is low and the water glass concentration is 40X or more, bulk silica is likely to be precipitated.

なお、上記実験において使用された酸性液(酸性反応剤
)は硫酸であるが、その他、各種酸性液を用いることが
できる。特に強酸を用眞る場合、経済的に有利である。
Note that although the acidic liquid (acidic reactant) used in the above experiment was sulfuric acid, various other acidic liquids can be used. It is economically advantageous, especially when strong acids are used.

本発明における酸性液(酸性反応剤)は無機酸(硫酸、
塩酸、硝酸、リン酸等)、有機酸(ギ酸、酢酸等)のよ
うな酸、酸性塩(リン酸1カルシウム、リン酸1ナトリ
ウム、硫酸水素ナトリウム、硫酸アルミニウム、塩化ア
ルミニウム等)、アルカリの存在のもとに加水分解して
酸基を生ずる物質(エステル類例えば多価アルコール酢
酸エステル、エチレンカーボネート、α−ブチルラクト
ン等;アルデヒド類例えばグリオキザール等;アミド類
例えばホルムアミド等)をいう。
The acidic liquid (acidic reactant) in the present invention is an inorganic acid (sulfuric acid,
Presence of acids such as hydrochloric acid, nitric acid, phosphoric acid, etc.), organic acids (formic acid, acetic acid, etc.), acid salts (monocalcium phosphate, monosodium phosphate, sodium hydrogen sulfate, aluminum sulfate, aluminum chloride, etc.), and alkalis. Refers to substances that generate acid groups when hydrolyzed under conditions of (esters such as polyhydric alcohol acetate, ethylene carbonate, α-butyl lactone, etc.; aldehydes such as glyoxal, etc.; amides such as formamide, etc.).

以上は一例を示したものであるが、本発明はこれらの例
によって制限されるものではないのは勿論である。
Although the above examples are shown, it goes without saying that the present invention is not limited to these examples.

さらに、本発明では前述のA液またはB液の少なくとも
一方にゲル化調整剤を添加してもよい。
Furthermore, in the present invention, a gelling regulator may be added to at least one of the above-mentioned liquid A or liquid B.

前述ゲル化調整剤として、塩(無機塩、有機塩、塩基性
塩、中性塩、酸性塩等)、アルコール類、苛性ソーダの
ようなアルカリ類等を用いる事が出来、また珪酸と反応
したp、pHを変動せしめたり、或は他の化学的、電気
化学的作用により、珪酸ゲルを形成せしめたり、ゲル化
時間を変動せしめたり、流動性を変動せしめたり、ある
いはpH緩衝剤のようにpHの変動を少なくしたシ、ま
たはpHの変動をゆるやかにしてゲル化をゆるやかに行
わせたり、さらには固結を増大せしめたりするものを用
いることができる。
As the aforementioned gelation modifier, salts (inorganic salts, organic salts, basic salts, neutral salts, acid salts, etc.), alcohols, alkalis such as caustic soda, etc. can be used, and p reacted with silicic acid can be used. , by changing the pH, or by other chemical or electrochemical actions, forming a silicic acid gel, changing the gelation time, changing the fluidity, or changing the pH by using a pH buffer. It is possible to use a gel that reduces pH fluctuation, or a gel that slows down pH fluctuation, or that increases caking.

以下にその一例を示す。An example is shown below.

無機塩: 酸性塩、中性塩、塩基性塩など、 塩化カルシウム、塩化ナトリウム、塩化マグネシウム、
塩化カリ、塩化アルミニウムなどの塩化物、硫酸カルシ
ウム、硫酸ナトリウム、硫酸アルミニウムなどの硫酸塩
、アルミン酸ソーダ、アルミン酸カリウムなどのアルミ
ン酸塩、塩化アルミニウム、硫酸アルミニウム等のアル
ミニウム塩、塩化アンモニウム、塩化亜鉛、塩化アルミ
ニウムなどの塩酸塩、塩素酸ナトリウム、塩素酸カリウ
ム、過塩素酸ナトリウム、過塩素酸カリウムなどの塩素
酸塩、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウ
ム、重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモ
ニウム、炭酸カルシウム、炭酸マグネシウムなどの炭酸
塩、重硫酸ナトリウム、重硫酸カリウム、重硫酸アンモ
ニウムなどの重硫酸塩、重亜硫酸すl−IJウム、重亜
硫酸カリウム、重亜硫酸アンモニウムなどの重亜硫酸塩
、ケイフッ化ナトリウム、ケイフッ化カリウムなどのケ
イフッ酸塩、珪酸のアルカリ金属塩、アルカリ土金属塩
、アルミニウム塩等の珪酸塩、ホウ酸ナトリウム、ホウ
酸カリウム、ホウ酸アンモニウムなどのホウ酸塩、リン
酸水素ナトリウム、リン酸水素カリウム、リン酸水素ア
ンモニウムなどのリン酸水素塩、ピロ硫酸ナトリウム、
ピロ硫酸カリウム、ピロ硫酸アンモニウムなどのど口硫
酸塩、ピロリン酸ナトリウム、ビロリン酸カリウム、ピ
ロリン酸アンモニウムなどのピロリン酸塩、重クロム酸
ナトリウム、重クロム酸カリウム、重クロム酸アンモニ
ウムなどの重クロム酸塩、過マンガン酸カリ、過マンガ
ン酸ナトリウムなどの過マンガン酸塩等。
Inorganic salts: acidic salts, neutral salts, basic salts, etc., calcium chloride, sodium chloride, magnesium chloride,
Chlorides such as potassium chloride and aluminum chloride, sulfates such as calcium sulfate, sodium sulfate and aluminum sulfate, aluminates such as sodium aluminate and potassium aluminate, aluminum salts such as aluminum chloride and aluminum sulfate, ammonium chloride, chloride Zinc, hydrochlorides such as aluminum chloride, chlorates such as sodium chlorate, potassium chlorate, sodium perchlorate, potassium perchlorate, sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate, Carbonates such as ammonium carbonate, calcium carbonate, and magnesium carbonate; bisulfates such as sodium bisulfate, potassium bisulfate, and ammonium bisulfate; bisulfites such as sodium bisulfite, potassium bisulfite, and ammonium bisulfite; Fluorosilicates such as sodium fluorosilicide and potassium fluorosilicide, silicates such as alkali metal salts of silicic acid, alkaline earth metal salts, and aluminum salts, borates such as sodium borate, potassium borate, and ammonium borate, and phosphoric acid. Hydrogen phosphates such as sodium hydrogen phosphate, potassium hydrogen phosphate, ammonium hydrogen phosphate, sodium pyrosulfate,
Throat sulfates such as potassium pyrosulfate and ammonium pyrosulfate; pyrophosphates such as sodium pyrophosphate, potassium pyrophosphate, and ammonium pyrophosphate; dichromates such as sodium dichromate, potassium dichromate, and ammonium dichromate; Permanganates such as potassium permanganate and sodium permanganate.

アルカリ: 苛性ソーダ、水酸化アルミニウム、水酸化マグネシウム
、水酸化カルシウム等のm個アルカリ金属又は多価金属
の水酸化物、或は酸化カルシウム、酸化マグネシウム等
の金属酸化物。
Alkali: hydroxides of m alkali metals or polyvalent metals such as caustic soda, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, or metal oxides such as calcium oxide and magnesium oxide.

有機塩: 酢酸ソーダ、コハク酸ソーダ、ギ酸カリ、ギ酸ソーダ等
Organic salts: Sodium acetate, sodium succinate, potassium formate, sodium formate, etc.

なお、これらはpH調整剤、あるいはゲル化時間調節剤
として作用するほか、強度増強剤としての効果もある。
In addition to acting as a pH adjuster or gelling time adjuster, these also have the effect of a strength enhancer.

又、前述した酸や、酸性珪酸水溶液や水ガラスもpH調
整剤として使用する事が出来る。特に弱アルカリ性とし
て作用する薬剤がpHの調整に有効である。。
Furthermore, the above-mentioned acids, acidic silicic acid aqueous solution, and water glass can also be used as pH adjusters. In particular, agents that act as weak alkalinizers are effective in adjusting pH. .

又、本発明における水ガラスとしては、モル比n(5i
02/ M2O) :1.5−5.0液状水ガラス、無
水水ガラス、和水水ガラス、結晶性水ガラス等を含めた
任意のモル比の珪酸のアルカリ金属塩、或は珪酸のアル
カリ金属塩と珪酸の混合物が用いられる。
In addition, the water glass in the present invention has a molar ratio n(5i
02/M2O): 1.5-5.0 Alkali metal salt of silicic acid or alkali metal silicic acid in any molar ratio including liquid water glass, anhydrous water glass, hydrous water glass, crystalline water glass, etc. A mixture of salt and silicic acid is used.

上述したゲル化調整剤のうち、水酸化マグネシウムや水
酸化アルミニウムのような多価金属の水酸化物、或は炭
酸マグネシウムや炭酸カルシウムのような多価金属の炭
酸塩は難溶性であるため、遅効性アルカリ剤として優れ
ており、リン酸2ナトリウムはpHの急激な変化を妨ぐ
アルカリ性を呈するpH緩衝剤として、又硫酸アルミニ
ウムや塩化アルミニウムは酸性を呈するpH緩衝剤とし
てすぐれている。又硫酸カルシウムのような多価金属の
硫酸塩は難溶性でちるため、遅効性の酸として優れてい
る。
Among the gelling modifiers mentioned above, polyvalent metal hydroxides such as magnesium hydroxide and aluminum hydroxide, or polyvalent metal carbonates such as magnesium carbonate and calcium carbonate are poorly soluble; It is excellent as a slow-acting alkaline agent, disodium phosphate is excellent as an alkaline pH buffer that prevents rapid changes in pH, and aluminum sulfate and aluminum chloride are excellent as acidic pH buffers. In addition, polyvalent metal sulfates such as calcium sulfate are poorly soluble and crumble, so they are excellent as slow-acting acids.

これらのうち遅効性アルカリ剤、アルカリ性を呈する緩
衝剤は水ガラスと混合し、遅効性酸、酸性を呈する緩衝
剤は酸と混合して用いる事により所定のゲル化時間を保
持しながらゲル化後のpH値を中性領域に保持したり、
或はpHの変動を少なくする事によりゲル化時間の調整
を容易にするという効果を得る。
Among these, slow-acting alkaline agents and buffering agents that exhibit alkalinity are mixed with water glass, and slow-acting acids and buffering agents that exhibit acidity are mixed with acids to maintain the predetermined gelation time and after gelation. to maintain the pH value in the neutral range,
Alternatively, it is possible to obtain the effect of making it easier to adjust the gelation time by reducing fluctuations in pH.

以下、遅効性アルカリ剤、PH緩衝剤等を用いた本発明
の応用例について説明する。
Application examples of the present invention using slow-acting alkaline agents, PH buffers, etc. will be described below.

一般に酸性−中性領域でゲル化させる注入工法において
、従来の方法では前述したとおJ)% A液として水ガ
ラス、B液として酸性液を用い、まずB液中にA液を添
加して、或は常に酸過剰の状態を保持するようにA、8
両液を合流しながらまずPHが1〜2付近の強酸性珪酸
水溶液をつくり、その後、この水溶液にPH調整剤を加
えてPHを中性方向に郡内して注入するという二工程の
方法がとられた。
In general, in the injection method that gels in the acidic-neutral region, the conventional method uses water glass as the A liquid and an acidic liquid as the B liquid. Or A, 8 so as to always maintain a state of excess acid.
A two-step method involves first creating a strongly acidic silicic acid aqueous solution with a pH of around 1 to 2 while combining the two solutions, and then adding a pH adjuster to this aqueous solution and injecting it to neutralize the pH. It was taken.

酸性液に水ガラスを加えてPHが1〜2の強酸性珪酸水
溶液を調整することは第1図から明らかなとおり容易で
あるが、PH値を2ないし7の中間値に定めることはき
わめてむづかしい。そこで前記強酸性珪酸水溶液に、は
じめから遅効性アルカリ剤を混入しておけば、強酸性珪
酸水溶液をそのまま注入してもPH値が中性領域罠整向
するから施工がきわめて簡便になることが推考される。
As is clear from Figure 1, it is easy to add water glass to an acidic solution to prepare a strongly acidic silicic acid aqueous solution with a pH of 1 to 2, but it is extremely difficult to set the pH value to an intermediate value between 2 and 7. . Therefore, if a slow-acting alkaline agent is mixed into the strongly acidic silicic acid aqueous solution from the beginning, the PH value will be in the neutral range even if the strongly acidic silicic acid aqueous solution is directly injected, making the installation extremely simple. It is estimated.

本発明ではあらかじめ水ガラス中に遅効性アルカリ剤を
混入してもよい。。
In the present invention, a slow-acting alkaline agent may be mixed into the water glass in advance. .

この場合、上述の本発明Kかかる利点Tl) 、 (2
)ならびに(3)のほかに、さらに注入された非アルカ
リ性珪酸水溶液が地盤中で自動的に中和方向に移動する
ため、よル一層公害防止に役立つという利点が生じる0 前述の遅効性アルカリ剤として、例えばMg(OH)2
kl (0H)s −MgCO5、Ca COs等の難
溶性アルカリまたは塩が用いられる0 さらに本発明ではA液ないしはB液にPH緩衝剤を添加
することもできる。この場合、A液およびB液の合流比
率がばらついても、PH緩衝剤の作用でPHが大幅に変
化しないため、安定した所望のPH値の配合液を得るこ
とができる0このようなPH緩衝剤として、例えばリン
酸2ナトリウb1硫酸アルミニウム等が挙げられる。
In this case, the above-mentioned advantages of the present invention K such advantages Tl), (2
) and (3), since the injected non-alkaline silicic acid aqueous solution automatically moves in the direction of neutralization in the ground, there is an advantage that it further helps prevent pollution. For example, Mg(OH)2
kl (0H)s - A sparingly soluble alkali or salt such as MgCO5 or CaCOs is used.0 Furthermore, in the present invention, a PH buffer may be added to the A solution or the B solution. In this case, even if the merging ratio of solutions A and B varies, the pH does not change significantly due to the action of the pH buffer, so it is possible to obtain a blended solution with a stable desired pH value. Examples of the agent include disodium phosphate b1 aluminum sulfate.

また、さらに本発明において、A液ないしはB液に遅効
性アルカリ剤ならびにPI(緩衝剤の両方を組み合わせ
て用いることもできる。この場合、A、8合流液のPH
値紘変化しに<<、かつ時間の経過とともに徐々に中性
方向に整向する0以下、遅効性アルカリ剤ならびにPH
緩衝剤を用いた本発明実験例を示す。
Furthermore, in the present invention, it is also possible to use a slow-acting alkaline agent and a PI (buffer) in combination in liquid A or liquid B. In this case, the pH of the combined liquid A and 8
0 or less, a slow-acting alkaline agent and a pH value that does not change and gradually becomes neutral over time.
An experimental example of the present invention using a buffer will be shown.

実験−3 (A)A液およびB液として表−3のLAに示す配合の
ものを用いた。A液には遅効性アルカリ剤としてMg 
(OH)!を添加した。この添加量は第2図のグラフの
横軸に示す各音である0実験−1と同様な方法でA液お
よびB液を合流し、得られ光合流液のゲル化時間ならび
にPHの挙動を測定し、結果な′第2図に示した。
Experiment 3 (A) As liquids A and B, the formulations shown in LA in Table 3 were used. Liquid A contains Mg as a slow-acting alkaline agent.
(OH)! was added. This amount of addition is for each sound shown on the horizontal axis of the graph in Figure 2.Liquids A and B are combined in the same manner as in Experiment-1, and the gelation time and PH behavior of the resulting light combined liquid are determined. The results were measured and shown in Figure 2.

(B) A液およびB液として表−3の&Bに示す配合
のものを用いた。A液には0.42のMg (OH)!
のほかに、PH緩衝剤としてNa1HPO4を添加した
0この添加量は第3図のグラフの横軸に示す各音である
。実験−1と同様な方法でA液およびB液を会流し、得
られた合流液のゲル化時間ならびにPHの挙動を測定し
、結果を第3図に示した0(OA液およびB液として表
−3の一〇に示す配合のものを用いたOA液の水ガラス
濃度ならびにB液の酸濃度はそれぞれLAのものよl、
濃厚である。A液には遅効性アルカリ剤としてMg (
0H)2を、第4図のグラフの横軸に示す各量添加した
OA液およびB液を実験−1と同様な方法で合流し、得
られた合流液のゲル化時間ならびにPHの挙動を測定し
、結果を第4図に示した。
(B) As liquids A and B, the formulations shown in &B in Table 3 were used. Liquid A contains 0.42 Mg (OH)!
In addition to this, Na1HPO4 was added as a pH buffering agent.The amounts added are shown on the horizontal axis of the graph in FIG. Liquids A and B were mixed together in the same manner as in Experiment-1, and the gelation time and pH behavior of the resulting combined liquid were measured. The results are shown in Figure 3. The water glass concentration of the OA solution and the acid concentration of the B solution using the formulation shown in Table 3 are the same as those of LA, respectively.
It's rich. Solution A contains Mg (
The OA solution and B solution to which 0H)2 was added in the amounts shown on the horizontal axis of the graph in Figure 4 were combined in the same manner as in Experiment-1, and the gelation time and PH behavior of the resulting combined solution were measured. The results are shown in Figure 4.

(DD A液およびB液として表−3の&Dに示す配合
のものを用いたoA液には0.42のMg (0H)a
の11かに、PH緩衝剤としてNa1HPO4を、第5
図のグラフの横軸に示す各量添加した。A液の水ガラス
濃度ならびにB液の酸濃度はそれぞれ&Bのものよシも
濃厚である0実験−1と同様な方法でA液およびB液を
合流し、得られた合流液のゲル化時間ならびKPHの挙
動を測定し、結果を第5図に示した。
(DDA The oA solution using the formulations shown in &D in Table 3 as the A and B solutions contained 0.42 Mg(0H)a.
No. 11, Na1HPO4 was added as a PH buffer, and No. 5
Each amount shown on the horizontal axis of the graph in the figure was added. The water glass concentration of solution A and the acid concentration of solution B are both higher than those of &B. 0 Solutions A and B are combined in the same manner as in Experiment-1, and the gelation time of the resulting combined solution is The behavior of KPH was also measured, and the results are shown in FIG.

@ A液およびB液として表=3の&EK示す配合のも
のを用いた。A液には遅効性アルカリ剤としてMgCO
5を、第6図のグラフの横軸に示す各量添加した。実験
−1と同様な方法でA液およびB液を合流し、得られた
合流液のゲル化時間ならびにPHの挙動を測定し、第6
図に示した。
@As liquids A and B, the formulations shown in &EK in Table 3 were used. Liquid A contains MgCO as a slow-acting alkaline agent.
5 were added in the amounts shown on the horizontal axis of the graph in FIG. Solution A and Solution B were combined in the same manner as in Experiment-1, and the gelation time and PH behavior of the resulting combined solution were measured.
Shown in the figure.

CF’) A液およびB液として表−3の&Fに示す配
合のものを用いた◇A液には遅効性アルカリ剤としテ0
.6f oMgcosを添加し、B液には3.5vの7
5%)1.804のほかに、PH緩衝剤としてA&(S
O2)sを、第7図の横軸に示す各量添加した。前述の
A液およびB液を実験−1と同様な方法で合流し、得ら
れた合流液のゲル化時間ならびにPHの挙動を測定し、
結果を第7図に示した。
CF') The formulations shown in &F in Table 3 were used as liquids A and B.
.. Add 6f oMgcos and add 3.5v of 7 to B solution.
5%) 1.804, A & (S
O2)s was added in various amounts shown on the horizontal axis in FIG. The above-mentioned liquid A and liquid B were combined in the same manner as in Experiment-1, and the gelation time and PH behavior of the resulting combined liquid were measured,
The results are shown in Figure 7.

表−3 上述の実験−3における第2図ないし第7図かられかる
ように、A液に遅効性アルカリ剤を添加しておけば、A
−8合流液は合流時にはPH値2ないし5の弱酸性を呈
するが、その後、徐々に増大して中性方向に移向してゲ
ル化し、ゲル化後にははソ中性領域を呈している。
Table 3 As can be seen from Figures 2 to 7 in Experiment 3 above, if a slow-acting alkaline agent is added to Solution A,
-8 The combined liquid exhibits weak acidity with a pH value of 2 to 5 at the time of merging, but after that, it gradually increases and shifts to a neutral direction and becomes a gel, and after gelation, it exhibits a so-neutral region. .

また、PH緩衝剤をA液またはB液に添加すると、第3
図、第5図あるいは第7図かられかるようにゲル化時間
の曲線がゆるやかになり、ゲル化時間の調整が容易とな
る。
Also, when a PH buffer is added to solution A or solution B, the third
As can be seen from FIG. 5 or 7, the gelation time curve becomes gentler, making it easier to adjust the gelation time.

なお、第8図は酸性珪酸水溶液に遅効性アルカリ剤(難
溶性アルカリ剤)を添加したときのPH値の経時変化を
示す。第8図から酸性珪酸水溶液社、遅効性アルカリ剤
を添加する場合にはPH値がゆるやかに中性方向に移向
することがわかる。
Incidentally, FIG. 8 shows the change over time in the pH value when a slow-acting alkali agent (slightly soluble alkali agent) is added to the acidic silicic acid aqueous solution. From FIG. 8, it can be seen that when a slow-acting alkali agent is added, the pH value gradually shifts toward neutrality.

第9図は水ガラス水溶液および酸性液の合流液の合流時
とゲル化後のPH漸移状況を示したグラフである。第9
図から、合流液のPH値は合流時にはPH2ないし5の
値を示すが、ゲル化後では中性方向に移向していること
がわかる。
FIG. 9 is a graph showing the gradual change in pH of the combined liquid of the water glass aqueous solution and the acidic liquid at the time of confluence and after gelation. 9th
From the figure, it can be seen that the PH value of the combined liquid shows a value of PH 2 to 5 at the time of merging, but shifts to a neutral direction after gelation.

実験−4 本発明工法における固結標準砂の一軸圧縮強度を試験し
、結果を表−4に示した。表−4中、試験風2.3.6
.7,10,11,14および16の各試料はそれぞれ
表−1の配合風に相当する配合でちゃ、また、試験&1
7’ないしρの試料はそれぞれ、第2図ないし第7図に
おける番号先17ないしN122の配合である。
Experiment 4 The unconfined compressive strength of the consolidated standard sand in the construction method of the present invention was tested, and the results are shown in Table 4. In Table 4, test wind 2.3.6
.. Each of samples 7, 10, 11, 14 and 16 had a composition corresponding to the composition style in Table 1, and was tested in Test &1.
Samples 7' to ρ have the formulations numbered 17 to N122 in FIGS. 2 to 7, respectively.

例えば、試験風2の試料は表−1中の配合風2の配合、
すなわち、A液が50CC当り3号水ガラス19.50
C、残シ水からなり、B液カ50cc当り75%硫酸3
.6CG、残シ水からなる。また試験風17の試料は第
2図におけるN&17の配合、すなわち、A液が500
C当り3号水ガy x 17.5CG% Mg (0H
)2 o、rts残シ残務水なり、B液カ50cc当り
75X硫酸3.6CC1残シ水からなる。試験は各試料
について、養生日数1日、7日、四日後の一軸圧縮強度
(H/d)をめることによって行った。
For example, the sample of test air 2 has the composition of mix air 2 in Table 1.
In other words, No. 3 water glass is 19.50 per 50 cc of liquid A.
C, consisting of residual water, 75% sulfuric acid per 50cc of B solution
.. 6CG, consisting of residual water. In addition, the sample of test air 17 has the composition of N&17 in Figure 2, that is, the A liquid is 500%
No. 3 water gage per C x 17.5CG% Mg (0H
) 2 o, rts residual water, consisting of 75X sulfuric acid 3.6CC1 residual water per 50cc of B liquid. The test was conducted by measuring the unconfined compressive strength (H/d) of each sample after 1 day, 7 days, and 4 days of curing.

表−4から、養生日数が増加するにつれて、また、水ガ
ラス濃度が濃厚になるにつれて各試料にかかる固結標準
砂の一軸圧縮強度が増大することがわかる。
Table 4 shows that the unconfined compressive strength of the consolidated standard sand of each sample increases as the number of curing days increases and as the water glass concentration increases.

参考試験 本発明と比較のため、表−5に示す各試料を調製し、こ
nら各試料について実験−4と同様にして固結標準砂の
一軸圧縮強度を測定し、結果を表−6に示した。表−5
の各試料NaZ3,24,25,26,27,2829
.30ではそれぞれ、水ガラス濃度は表−4の各試料歯
2.3.6.7.10.11 、14.16と同じであ
るが、PHがアルカリ領域にある0 表−5 表−6(単位: kl/evil ’)表−6から、ア
ルカリ領域の試料では、たとえ水ガラス濃度が濃厚にな
っても、固結標準砂の一軸圧縮強度は著しく劣ることが
わか勺、さらに養生日数が増加するにしたがって、−軸
圧縮強度が低下することもわかる0 さらに、本発明工法は複合注入工法に応用することもで
きる0複合注入工法は特に不均質層が互層となっている
地盤に有効である0以下、この応用例について述べる。
Reference test For comparison with the present invention, each sample shown in Table 5 was prepared, and the unconfined compressive strength of consolidated standard sand was measured for each sample in the same manner as in Experiment 4, and the results are shown in Table 6. It was shown to. Table-5
Each sample NaZ3, 24, 25, 26, 27, 2829
.. 30, the water glass concentration is the same as each sample tooth 2.3.6.7.10.11 and 14.16 in Table 4, but the PH is in the alkaline region 0 Table 5 Table 6 ( Units: kl/evil') From Table 6, it can be seen that in the samples in the alkaline region, even if the water glass concentration becomes high, the unconfined compressive strength of the consolidated standard sand is significantly inferior, and the number of curing days increases. It can also be seen that the -axial compressive strength decreases as the -axial compressive strength decreases0 Furthermore, the method of the present invention can also be applied to the composite injection method.0 The composite injection method is particularly effective for ground with alternating heterogeneous layers. 0 An example of this application will be described below.

まず、次のA、B、C液を調製するO A液:水ガラス水溶液 B液:酸性液 C液:急結剤配合液(アルカリ剤、酸等)トおよびA・
8合流液による浸透性二次グラウトの変換が簡便に行わ
れ、これを第11図に示す二重圧入管を用いて複合注入
を行なうことができる〇すなわち、まず、第11図(a
)に示すように二重注入管1に連結さn 7’C’71
路2中に形成される混合室aにA液およびB液を送液し
、ここで両液を合流の後、この合流液を二重注入管1の
内管に導き、さ石に外管からC液を送液し、A−8合流
液ならびにC液を注入管1内の混合室a′で合流して瞬
結性−次グラウドとして地盤に注入し、地盤の粗い部分
や、注入管まわりのすき間を該グラウトで填充固結する
。次いで、第11図(b)に示すようにC液の送液を中
止してA−8合流液による浸透性二次グラウトを調製し
、これをそのまま直ちに地盤中に注入して瞬結性−次グ
ラウドでは浸透しきれなかった細い部分を浸透固結する
First, prepare the following solutions A, B, and C.A solution: water glass aqueous solution B solution: acidic solution C solution: quick-setting agent combination solution (alkaline agent, acid, etc.) and A.
8 Conversion of the permeable secondary grout by the combined liquid can be easily carried out, and this can be carried out by composite injection using the double injection pipe shown in Fig. 11. In other words, first,
) Connected to the double injection tube 1 as shown in 7'C'71
The A liquid and the B liquid are sent to the mixing chamber a formed in the channel 2, and after the two liquids are combined there, the combined liquid is guided to the inner pipe of the double injection pipe 1, and the outer pipe is inserted into the outer pipe. The A-8 combined liquid and C liquid are combined in the mixing chamber a' in the injection pipe 1, and injected into the ground as a quick-setting powder. Fill and solidify the surrounding gaps with the grout. Next, as shown in FIG. 11(b), the feeding of liquid C was stopped and a permeable secondary grout was prepared using the combined liquid A-8, and this was immediately poured into the ground to create an instant-setting grout. In the next step, the thin areas that could not be completely penetrated will be penetrated and solidified.

施工例−1 前述実験−2の試験方法−2にしたがい、水ガラス水溶
液をバルブを通して酸性液よりも1 kg/atl高い
圧力で混合部に吐出して非アルカリ性珪酸水溶液を形成
し、この水溶液を東京部内の均質な細砂地盤中に注入し
た。配合液は表−1の配合へ、7のものを用いた。
Construction Example-1 According to Test Method-2 of Experiment-2 above, a water glass aqueous solution was discharged into the mixing section through a valve at a pressure 1 kg/atl higher than the acidic liquid to form a non-alkaline silicic acid aqueous solution, and this aqueous solution was It was injected into homogeneous fine sand ground in the Tokyo area. The compounded solution No. 7 was used for the formulation shown in Table 1.

A−8合流液を100を注入し、10日後に掘削調査し
たところ、0.5−のはソ球状の均質固結体の形成をみ
た。固結土の一軸圧縮強度は11.514/crlであ
った0 施工例−2 細砂層とレキ層が互層になっている東京部内の地盤中に
本発明工法にかかる注入を行った0試験方法は実施例−
1と同様である。まず、次のA、BならびにC液を調製
したO A液:表−1の配合風7と同じ B液:同上 C液ニア5%硫酸4.2 CC、水5!5.8 CCな
お、A−8−C合流液はPHが8.5でゲル化時間は5
秒である。
When 100% of the A-8 combined liquid was injected and an excavation survey was carried out 10 days later, the formation of spherical homogeneous solids of 0.5% was observed. The unconfined compressive strength of the consolidated soil was 11.514/crl0 Construction Example-20 Test method in which injection according to the method of the present invention was carried out into the ground in the Tokyo area where fine sand layers and sand layers are alternately layered. is an example-
It is the same as 1. First, the following A, B, and C solutions were prepared. A solution: Same as the formulation 7 in Table 1. B solution: Same as above C solution Nia 5% sulfuric acid 4.2 CC, water 5! 5.8 CC. The A-8-C combined solution has a pH of 8.5 and a gelation time of 5.
Seconds.

前述のA、B、C液を用い、第11図(a) 、 (b
)の注入工程にしたがって注入を行った。
Figure 11 (a) and (b) using the aforementioned solutions A, B, and C.
) The injection was performed according to the injection process.

まず、A−B−C合流液を第11図(atのように10
01注入の後、次いで第11図(b)に示すようにA−
8合流液を300を注入し、注入ステージを50crn
づつ引き上げながらこの注入を繰り返した。
First, the A-B-C combined liquid is shown in Figure 11 (at 10
After 01 injection, then A-
8 Inject 300 ml of combined liquid and set the injection stage to 50 crn.
This injection was repeated with gradual withdrawal.

注入10日後に掘削調査を行ったととる、レキ層にはA
−B−C合流液が主として填充され、細い砂層にはA−
8合流液が土粒子間浸透し、全体として均質に固結して
いた。固結体の一軸圧縮強度は9.5 kg/crAで
あった。透水係数試験結果は注入前には、k = 2.
4 X 10−2〜6.8 X 10−3cm/se:
であったものが、注入後では、k = 3.5 XIO
’〜2.3X10−6crn/5ecKまで改善されて
いた。
An excavation survey was carried out 10 days after the injection, and there was A in the Reki layer.
-B-C combined liquid is mainly filled, and the thin sand layer is filled with A-
8 The combined liquid permeated between the soil particles and solidified homogeneously as a whole. The unconfined compressive strength of the solidified body was 9.5 kg/crA. The hydraulic conductivity test results show that k = 2.
4 x 10-2 to 6.8 x 10-3 cm/se:
However, after injection, k = 3.5 XIO
It was improved to ~2.3X10-6 crn/5ecK.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明は非アルカリ性珪酸水溶液を注入
するにあたり、水ガラス水溶液および酸性液を注入管に
至るまでの管路で、酸過剰に保持されるような合流比率
で合流し、次いでそのまま直ちに地盤中に注入するよう
にしたから、注入が一工程ですみ、したがって注入工程
が簡素化されるとともにPH調整剤によるゲル化時間の
調整を必要とせず、しかも水ガラス濃度が稀釈されるこ
とがないので高強度の固結体を得ることができる等の利
点を奏し得、このため実用上極めて有用な発明であると
いうことができる0
As described above, when injecting a non-alkaline silicic acid aqueous solution, the present invention combines a water glass aqueous solution and an acidic liquid in a pipe leading to an injection pipe at a confluence ratio that maintains an excess of acid, and then immediately Because it is injected into the ground, the injection process is completed in one step, which simplifies the injection process, eliminates the need to adjust the gelation time using a pH adjuster, and furthermore allows the water glass concentration to be diluted. Therefore, it can be said that this invention is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水ガラスのPHとゲル化時間との関係を表わし
たグラフであシ、第2図、第3図、第4図、第5図、第
6図および第7図は、そnぞれ、酸性珪酸水溶液に遅効
性アルカリ剤、ないしはさらにPH緩衝剤を含んだ場合
のゲル化時間とPHの関係を表わしたグラフであり、第
8図は酸性珪酸水溶液に遅効性アルカリ剤を添加したと
きPH値の経時変化を表わしたグラフであり、第9図は
水ガラス水溶液と酸性液の合流液の合流時とゲル化後の
PH漸移状況を表わしたグラフであり、第10図は複合
注入工法の適用例を表わしたグラフであり、第11図(
at 、 (b)は複合注入工法の施工例を表わした図
面である。 a・・・混合室、 A液・・・水ガラス水溶液、B液・
・・酸性液、 C液・・・急結剤配合液、1・・・注入
管、2・・・管路。 特許出願人 強化土エンジニャリング株式会社箋1坊 箋2目 N2婚 θ/A凱50− 箋3苗 W眩W勺9rシAネ勺−) 箋9− J’1l(OR)2 (97A”;9−50cc)隻5
劇 表1U〜 (flA執〃Cθ 隻θ糖 J9CO3(t/A勧0ety) All;A11m)3 (’i/13教50cc)代−
人弁理士染 昶l最gFj間 l勿 答9臆 H
Figure 1 is a graph showing the relationship between pH of water glass and gelation time, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 are graphs showing the relationship between pH of water glass and gelation time. These are graphs showing the relationship between gelation time and pH when an acidic silicic acid aqueous solution contains a slow-acting alkali agent or a PH buffer. This is a graph showing the change in pH value over time when the water glass aqueous solution and acidic liquid are combined, and FIG. This is a graph showing an application example of the composite injection method, and is shown in Figure 11 (
At, (b) is a drawing showing an example of construction using the composite injection method. a...mixing chamber, A liquid...water glass solution, B liquid...
...Acidic liquid, C liquid...Accelerating agent combination liquid, 1...Injection pipe, 2...Pipe line. Patent Applicant: Reinforced Soil Engineering Co., Ltd. Paper 1 Note 2 Eyes N2 Marriage θ/A Kai 50- Paper 3 Seedling W Dazzling W 9r Shi A Ne 9-) Paper 9- J'1l (OR) 2 (97A ”;9-50cc) boat 5
Drama table 1U ~ (flA shu〃Cθ ship θ sugar J9CO3 (t/A recommendation 0ety) All; A11m) 3 ('i/13 50cc) generation -
Patent attorney Somesho is the best in the world.

Claims (1)

【特許請求の範囲】[Claims] 水ガラス水溶液および酸性液を注入管を通して地盤中に
合流注入する地盤注入工法において、前記水ガラス水溶
液および酸性液は前記注入管に至るまでの管路で、酸過
剰に保持されるような合流比率で合流され、次いでその
まま直ちに注入管を通して地盤中に注入されることを特
徴とする地盤注入工法。
In a ground injection method in which a water glass aqueous solution and an acidic liquid are jointly injected into the ground through an injection pipe, the water glass aqueous solution and the acidic liquid have a confluence ratio such that the water glass solution and the acidic liquid are maintained in an excessively acidic state in the pipeline leading to the injection pipe. A ground injection method characterized in that the mixture is poured into the ground, and then immediately poured into the ground through an injection pipe.
JP59086089A 1984-05-01 1984-05-01 Pouring grout into ground Granted JPS60231786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086089A JPS60231786A (en) 1984-05-01 1984-05-01 Pouring grout into ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086089A JPS60231786A (en) 1984-05-01 1984-05-01 Pouring grout into ground

Publications (2)

Publication Number Publication Date
JPS60231786A true JPS60231786A (en) 1985-11-18
JPH0354153B2 JPH0354153B2 (en) 1991-08-19

Family

ID=13876980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086089A Granted JPS60231786A (en) 1984-05-01 1984-05-01 Pouring grout into ground

Country Status (1)

Country Link
JP (1) JPS60231786A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233191A (en) * 1984-05-07 1985-11-19 Kyokado Eng Co Ltd Grouting method
JPS60233192A (en) * 1984-05-07 1985-11-19 Kyokado Eng Co Ltd Grouting method
WO2000017126A1 (en) * 1998-09-18 2000-03-30 Leif Nilsson Method, liquid composition, and use of such a liquid composition when sealing water-bearing capillaries in rock
JP2019001957A (en) * 2017-06-19 2019-01-10 富士化学株式会社 Consolidating material for grouting and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164187A (en) * 1982-03-01 1982-10-08 Kyokado Eng Co Ltd Grouting by use of aqueous non-alkaline silicate solution
JPS5827779A (en) * 1981-08-10 1983-02-18 Kyokado Eng Co Ltd Injection method of stratum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827779A (en) * 1981-08-10 1983-02-18 Kyokado Eng Co Ltd Injection method of stratum
JPS57164187A (en) * 1982-03-01 1982-10-08 Kyokado Eng Co Ltd Grouting by use of aqueous non-alkaline silicate solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233191A (en) * 1984-05-07 1985-11-19 Kyokado Eng Co Ltd Grouting method
JPS60233192A (en) * 1984-05-07 1985-11-19 Kyokado Eng Co Ltd Grouting method
JPH0354154B2 (en) * 1984-05-07 1991-08-19
WO2000017126A1 (en) * 1998-09-18 2000-03-30 Leif Nilsson Method, liquid composition, and use of such a liquid composition when sealing water-bearing capillaries in rock
JP2019001957A (en) * 2017-06-19 2019-01-10 富士化学株式会社 Consolidating material for grouting and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0354153B2 (en) 1991-08-19

Similar Documents

Publication Publication Date Title
JPH0428759B2 (en)
JPS60231786A (en) Pouring grout into ground
JPS60233192A (en) Grouting method
JPS60231785A (en) Pouring grout into ground
JP2011116829A (en) Grouting material and grouting method
JP2005075899A (en) Silica solution for grouting and grouting method
JP2006226014A (en) Grouting construction method
JP2001003047A (en) Grouting consolidation material
JP2021020979A (en) Grouting material and grouting method
JPS60233191A (en) Grouting method
JPS6341588A (en) Liquid chemical for grouting
JPS6053587A (en) Liquid for ground impregnation
JPS5815519B2 (en) Chemical injection method
JPS6057476B2 (en) Ground injection method
JPS59124986A (en) Solidification of ground
JPS5993788A (en) Grauting method into ground
JP3431770B2 (en) Chemical injection method
JP3714590B2 (en) Chemical solution for ground injection
JPS608271B2 (en) Ground consolidation method using neutral grout
JPS59152986A (en) Impregnation method for ground
JP2000239661A (en) Grouting material for grouting ground and method for grouting ground using same
JP7390081B1 (en) Ground injection method
JPS59131690A (en) Process for injecting into ground
JP3283171B2 (en) Chemical liquid for ground injection
JPS60124691A (en) Pouring of grout into ground

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term