JPH0143797B2 - - Google Patents

Info

Publication number
JPH0143797B2
JPH0143797B2 JP11958481A JP11958481A JPH0143797B2 JP H0143797 B2 JPH0143797 B2 JP H0143797B2 JP 11958481 A JP11958481 A JP 11958481A JP 11958481 A JP11958481 A JP 11958481A JP H0143797 B2 JPH0143797 B2 JP H0143797B2
Authority
JP
Japan
Prior art keywords
potassium
sodium
sodium silicate
soil
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11958481A
Other languages
Japanese (ja)
Other versions
JPS5821478A (en
Inventor
Eiji Yoshinari
Takanao Ishikawa
Shigeo Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11958481A priority Critical patent/JPS5821478A/en
Publication of JPS5821478A publication Critical patent/JPS5821478A/en
Publication of JPH0143797B2 publication Critical patent/JPH0143797B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硅酸ソーダ(水ガラス)系グラウト薬
剤を土壤に注入しゲル化させ、土壤粒子を固化す
ることによつて土質を強化し、液体不浸透性とな
して土質の安定化処理を行う方法に関するもので
ある。 従来より硅酸ソーダを主剤としたグラウト薬剤
を用いて土質の安定化を行うことは広く知られて
いる。 この硅酸ソーダを主剤とするグラウト薬剤はセ
メント−水ガラス系の懸濁型と硅酸ソーダと有機
系もしくは無機系の水溶性硬化剤よりなる溶液型
との二つのタイプのものに大別される。 前者は、セメント粒子が経時的に沈降分離した
り、土粒子により濾過作用を受けて深く浸透する
ことができず有効な注入効果をあげることが出来
ない場合があるが、後者は低粘度で細粒土質にも
適用出来るので、一般的に後者が多用されてい
る。なお、これらの硬化剤の中には瞬結性でゲル
化時間の調整の困難なものや添加量の少量の変化
によつてゲル化時間が大幅に変動するものがあ
り、又、その他の有毒であつたり、硅酸ソーダと
共に水溶液として土壤に注入した際にシネリシス
現象を生じたり、一軸圧縮強度の充分な土壤が得
られない等の欠点を持つものが多い。 更に近年細粒土質と粗大粒土質とが混在した地
盤に対しては、懸濁型薬剤を注入して粗大粒子を
固結せしめた後溶液型薬剤を注入して細粒土質を
固結せしめて、粗密の異なる各種間隙が混在した
地盤を一体化して安定化する上記薬剤の併用型工
法が採用されている。然し乍らこの工法の場合、
懸濁型薬剤の注入により生成されたゲルに接触す
ることとなる溶液型注入剤が、前記ゲル中より溶
出してくるアルカリ分の為に土質粒子を固結する
ことができなかつたり或いは一時的固結の数日後
に再溶解したりするという重大な欠点があつた。 本発明は、硅酸ソーダ系グラウト薬剤を用いた
従来の土質の安定化処理工法の上記の如き諸欠点
にかんがみ、薬剤が毒性を有さず、ゲル化時間の
調節が容易で、すなわち数10秒から数10分までの
ゲル化時間を任意に調節出来、さらにシネリシス
現象も生じることなく、ゲル化時間の長短にもか
かわらず常に高い一軸圧縮強度が得られ、又、高
い止水性能を有するとともに、さらに懸濁型注入
剤を用いる工法と併用しても土質の固結が妨げら
れたり固結後の再溶解が生じたりすることのない
土質の安定化処理工法を提供することを目的とし
てなされたものである。しかして本発明の要旨
は、硅酸ソーダとアルミン酸カリウムと、アルミ
ン酸カリウム以外のカリウム塩もしくはナトリウ
ム塩が含有されてなり、アルミン酸カリウム含有
量が3〜20重量%である溶液型水性混合液を土壤
に注入することを特徴とする土質の安定化処理工
法に存する。 本発明に於て用いられる硅酸ソーダは別名水ガ
ラスとも呼ばれているもので、従来より土質の安
定化に使用されているものである。そして該硅酸
ソーダは水溶液の状態で使用されるが、使用量の
硅酸ソーダの濃度は注入する土壤の状態や目的に
応じて適宜な濃度とされて良く、例えば
JISK1408にもとずく3号硅酸ソーダを用いる場
合は一般に該3号硅酸ソーダの使用量を水性混合
液の10〜75重量%、好ましくは15〜60重量%を占
める様にされる。又、硅酸ソーダとしては3号硅
酸ソーダの他、1号硅酸ソーダや2号硅酸ソーダ
も好適に用いられる。 本発明に於けるアルミン酸カリウムとしてはメ
タアルミン酸カリウムが用いられてもよいもので
あり、これらは固体のまま用いられてもよく、一
般に不純物として酸化カリウムを含有する市販の
水溶液(濃度40〜50重量%)が用いられてもよ
い。 該アルミン酸カリウムの使用量は、少なすぎれ
ば硅酸ソーダのゲル化に至らず、また圧縮強度の
低下を来たし、一方多すぎればゲルタイムの調節
が困難となるので注入液全体に対して上記アルミ
ン酸カリウムは、好ましくは3〜20重量%用いら
れる。 他に用いられる硬化剤としては、アルミン酸カ
リウム以外のカリウム塩もしくはナトリウム塩
(以下、便宜上アルカリ金属塩という)が用いら
れる。 カリウム塩の具体例としては塩化カリウム、硫
酸カリウム、酸性硫酸カリウム、硝酸カリウム、
炭酸カリウム、重炭酸カリウム、ホウ酸カリウム
等の無機カリウム塩類やシユウ酸カリウム、酒石
酸カリウム、クエン酸カリウム、蟻酸カリウム、
酢酸カリウム等の有機カリウム塩類が挙げられ
る。 またナトリウム塩の具体例としては、塩化ナト
リウム、硫酸ナトリウム、酸性硫酸ナトリウム、
硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリ
ウム、ホウ酸ナトリウム、アルミン酸ナトリウム
等の無機ナトリウム塩類やシユウ酸ナトリウム、
洒石酸ナトリウム、クエン酸ナトリウム、蟻酸ナ
トリウム、酢酸ナトリウム等の有機ナトリウム塩
類が挙げられる。これらは単独で又は適宜混合さ
れて、一般に水性混合されて、一般に水性混合液
中で2〜20重量%を占める量が用いられる。本発
明に於ける水性混合液のゲル化時間は、これに添
加されるアルミン酸カリウムの量あるいはアルカ
リ金属塩の添加量により調整可能であるが、また
前記硅酸ソーダの量を変える事によつても調整す
ることができる。特にアルミン酸カリウムとアル
カリ金属塩との添加量を一定にしておき硅酸ソー
ダ濃度をを変えてゲル化時間の調整を行う方法
は、ゲル化時間の調整が再現よく行われ且つゲル
化時間の長短にかかわらず常に一定の高い圧縮強
度が得られる点で好ましい。本発明に於て、上記
硅酸ソーダ、アルミン酸カリウム及びアルカリ金
属塩が含有されてなる水性混合液を調整するに
は、これら3者と水とを加え合めて水性混合液と
なしてもよく、或いは適宜なる濃度の硅酸ソーダ
水溶液と他に調整したアルミン酸カリウムとアル
カリ金属塩との水溶液とを加え合めてもよい。但
し該水性混合液は注入前に於てゲル化が生じない
ことが必要とされる。 しかして本発明により土質の安定化を行うに
は、安定化処理を行わんとする土質中に前記硅酸
ソーダと共にアルミン酸カリウムと上記アルカリ
金属塩が含有された水性混合液を注入するのであ
り、かくすることにより、土壤中で硅酸ソーダ水
溶液がゲル化し、土壤粒子を固結すると共にその
部分を水不浸透性となし、土質の安定化処理が達
成されるのである。そして、本発明に於ては注入
液の土壤中への注入の仕方や注入装置については
特に制限されるものでなく、いかなる注入方式や
注入装置が用いられてよいが、硬化時間について
の正確性を期す為に、所定濃度の硅酸ソーダ水溶
液と硬化剤水溶液とを別々に、例えば注入ポンプ
にて輸送し、注入直前もしくは注入時にY字管等
にて混合して土壤に注入するのが好ましい。 本発明工法は上述の通りの方法であり、硅酸ソ
ーダの他のアルミン酸カリウムとアルカリ金属塩
とが含有されてなる水性混合液を土壤に注入する
ことを特徴とするものであるから、安全性が高く
取扱いも容易であるという条件が満足され、混合
液中の上記成分に量を調節することによつてゲル
化時間の調節が容易であると共に、注入液成分の
配合ばらつきが多少生じてもゲル化時間の大幅な
変動を小さく押えることが出来るのである。さら
に本発明によればゲル化時間の長短にかゝわらず
常に高水準の一軸圧縮強度並びに高い止水性能を
示すことが出来、又、ゲル化物のシネリシスも小
さく、更に又、懸濁型注入剤を用いる土質安定化
法と本発明工法とを併用しても、懸濁型注入剤に
より生成されたゲルからアルカリ成分が溶出して
きて上記水性混合液による土質粒子の固結が妨げ
られたり或いは経時により該固結部分が再溶解し
たりすることがないのである。 次に本発明の実施例及び比較例について説明す
る。 なお以下に単に部とあるのは重量部を意味す
る。 実施例 1 JISK1408にもとずく1号硅酸ソーダ70部及び
水50部よりなる水溶液(以下A液と称す)と、ア
ルミン酸カリウム10部、炭酸ナトリウム5部を水
95部に溶解した水溶液(以下B液と称す)とを用
意した。 A液及びB液の液温が20℃になる様に調整した
のち、A液及びB液を容積比で1:1の割合で加
え合せてゲル化時間を測定したところ、ゲル化時
間は1分30秒であつた。 次にA液及びB液を溶積比で1:1の割合で混
合した混合液100部を豊補標準砂250部に浸透させ
た間隙率40%になる様に突き固めて硬化させた。
この硬化物を湿砂中で7日間養生させたのちに測
定したところ、透水係数は7×10-7cm/secであ
り、又一軸圧縮強度は6.5Kg/cm2であつた。 実施例2〜7、比較例1、2 第1表にB液組成として示されている各成分を
同表に表示されている量だけ取り、水を加えて
100部となした水溶液(B液)を用意し、実施例
1で用意したA液及びB液の液温を20℃に調整し
たのち、同じ溶積のA液、B液を加え合せてゲル
化時間を測定したところ、第1表に示される通り
であつた。又、かくして得られたゲル化物を密閉
容器中に入れ、20℃の恒温室に24時間保存したの
ち、上記ゲル化物から分離された離漿水を測定す
ることによりシネリシスの測定を行い、第1表に
示す通りの結果を得た。
The present invention injects a sodium silicate (water glass) grout agent into the soil and gels it, solidifying the soil particles to strengthen the soil and stabilize the soil by making it impermeable to liquids. It is about the method. It has been widely known that soil quality can be stabilized using a grout agent containing sodium silicate as a main ingredient. This grouting agent based on sodium silicate is roughly divided into two types: a cement-water glass suspension type and a solution type consisting of sodium silicate and an organic or inorganic water-soluble hardening agent. Ru. The former method may not be able to achieve an effective injection effect because the cement particles settle and separate over time or are filtered by soil particles and cannot penetrate deeply, but the latter method has a low viscosity and is a fine injection material. Since it can also be applied to granular soils, the latter is generally used more frequently. Note that some of these curing agents are instant-setting, making it difficult to adjust the gelling time, or that the gelling time may vary significantly with small changes in the amount added, and may contain other toxic substances. Many of them have drawbacks, such as a syneresis phenomenon occurring when they are injected into a pot as an aqueous solution together with sodium silicate, and a pot with sufficient unconfined compressive strength cannot be obtained. Furthermore, in recent years, for ground with a mixture of fine-grained soil and coarse-grained soil, suspension-type chemicals are injected to solidify the coarse particles, and then solution-type chemicals are injected to solidify the fine-grained soil. , a construction method in which the above-mentioned chemicals are used in combination has been adopted to integrate and stabilize the ground where various gaps of different density and density coexist. However, in the case of this construction method,
The solution-type injection agent that comes into contact with the gel produced by the injection of the suspension-type agent may be unable to solidify the soil particles due to the alkaline content eluted from the gel, or may be temporarily unable to solidify the soil particles. A serious drawback was that it redissolved several days after solidification. In view of the above-mentioned drawbacks of the conventional soil stabilization treatment method using a sodium silicate grouting agent, the present invention provides that the agent is non-toxic and that the gelation time can be easily adjusted. The gelation time can be adjusted arbitrarily from seconds to several tens of minutes, and there is no syneresis phenomenon, and regardless of the length of the gelation time, high unconfined compressive strength is always obtained, and it also has high water-stopping performance. In addition, the purpose is to provide a soil stabilization treatment method that does not prevent soil consolidation or cause re-dissolution after consolidation even when used in combination with a method that uses suspension-type injection agents. It has been done. Therefore, the gist of the present invention is a solution-type aqueous mixture containing sodium silicate, potassium aluminate, and a potassium salt or sodium salt other than potassium aluminate, the potassium aluminate content being 3 to 20% by weight. It consists in a soil stabilization treatment method characterized by injecting a liquid into the soil. The sodium silicate used in the present invention is also called water glass, and has been conventionally used to stabilize soil quality. The sodium silicate is used in the form of an aqueous solution, but the concentration of the sodium silicate used may be determined as appropriate depending on the condition of the pot to be injected and the purpose. For example,
When No. 3 sodium silicate based on JISK 1408 is used, the amount of No. 3 sodium silicate used is generally 10 to 75% by weight, preferably 15 to 60% by weight of the aqueous mixture. Further, as the sodium silicate, in addition to No. 3 sodium silicate, No. 1 sodium silicate and No. 2 sodium silicate are also suitably used. Potassium metaaluminate may be used as the potassium aluminate in the present invention, and these may be used as solids, and generally commercially available aqueous solutions containing potassium oxide as an impurity (concentration 40-50 % by weight) may be used. If the amount of potassium aluminate used is too small, the gelation of sodium silicate will not occur and the compressive strength will decrease, while if it is too large, it will be difficult to adjust the gel time. Potassium acid is preferably used in an amount of 3 to 20% by weight. Other curing agents used include potassium salts or sodium salts other than potassium aluminate (hereinafter referred to as alkali metal salts for convenience). Specific examples of potassium salts include potassium chloride, potassium sulfate, acidic potassium sulfate, potassium nitrate,
Inorganic potassium salts such as potassium carbonate, potassium bicarbonate, potassium borate, potassium oxalate, potassium tartrate, potassium citrate, potassium formate,
Examples include organic potassium salts such as potassium acetate. Specific examples of sodium salts include sodium chloride, sodium sulfate, acidic sodium sulfate,
Inorganic sodium salts such as sodium nitrate, sodium carbonate, sodium bicarbonate, sodium borate, sodium aluminate, sodium oxalate,
Examples include organic sodium salts such as sodium chlorate, sodium citrate, sodium formate, and sodium acetate. These are used alone or in an appropriate mixture, generally in an aqueous mixture, and generally in an amount accounting for 2 to 20% by weight in the aqueous mixture. The gelation time of the aqueous liquid mixture in the present invention can be adjusted by adjusting the amount of potassium aluminate or the amount of alkali metal salt added thereto, but it can also be adjusted by changing the amount of sodium silicate. It can also be adjusted. In particular, a method in which the amount of potassium aluminate and alkali metal salt added is kept constant and the gelation time is adjusted by changing the concentration of sodium silicate is a method that allows the adjustment of the gelation time to be performed with good reproducibility. It is preferable because a constant high compressive strength can always be obtained regardless of length. In the present invention, in order to prepare the aqueous liquid mixture containing the above-mentioned sodium silicate, potassium aluminate, and alkali metal salt, these three substances and water may be added together to form an aqueous liquid mixture. Alternatively, an aqueous solution of sodium silicate at an appropriate concentration and an aqueous solution of potassium aluminate and an alkali metal salt prepared elsewhere may be added together. However, it is necessary that the aqueous mixture does not undergo gelation before injection. Therefore, in order to stabilize the soil according to the present invention, an aqueous liquid mixture containing the sodium silicate, potassium aluminate, and the alkali metal salt is injected into the soil to be stabilized. By doing this, the aqueous sodium silicate solution gels in the soil pot, solidifying the soil particles and making the area impermeable to water, thereby achieving soil stabilization. In the present invention, there are no particular restrictions on the method or device for injecting the injection liquid into the soil, and any injection method or device may be used, but the accuracy of the curing time In order to ensure this, it is preferable to transport the sodium silicate aqueous solution and the hardening agent aqueous solution of a predetermined concentration separately, for example, using an injection pump, mix them in a Y-shaped pipe, etc. immediately before or at the time of injection, and inject the mixture into the pot. . The method of the present invention is as described above, and is characterized by injecting into the clay an aqueous mixture containing sodium silicate, potassium aluminate, and an alkali metal salt, so it is safe. The conditions of high compatibility and ease of handling are satisfied, and the gelation time can be easily adjusted by adjusting the amounts of the above components in the mixed solution, and there may be some variation in the composition of the injection solution components. However, large fluctuations in gelation time can be kept to a minimum. Furthermore, according to the present invention, regardless of the length of the gelation time, it is possible to always exhibit a high level of unconfined compressive strength and high water-stopping performance, and the syneresis of the gelled product is also small. Even if the soil stabilization method using a suspension-type injection agent is used in combination with the construction method of the present invention, alkaline components may be eluted from the gel produced by the suspension-type injection agent, and the consolidation of soil particles by the aqueous mixture may be hindered. This prevents the solidified portion from redissolving over time. Next, examples and comparative examples of the present invention will be described. In the following, "parts" simply means parts by weight. Example 1 An aqueous solution (hereinafter referred to as liquid A) consisting of 70 parts of No. 1 sodium silicate and 50 parts of water based on JISK1408, 10 parts of potassium aluminate, and 5 parts of sodium carbonate was mixed with water.
An aqueous solution (hereinafter referred to as Solution B) in which 95 parts of the solution was dissolved was prepared. After adjusting the temperature of liquids A and B to 20℃, liquids A and B were added at a volume ratio of 1:1 and the gelation time was measured. It was hot in minutes and 30 seconds. Next, 100 parts of a mixture of liquid A and liquid B mixed at a volume ratio of 1:1 was infiltrated into 250 parts of Tohoho standard sand and tamped and hardened to a porosity of 40%.
This cured product was cured in wet sand for 7 days and then measured, and found to have a hydraulic conductivity of 7×10 -7 cm/sec and an unconfined compressive strength of 6.5 Kg/cm 2 . Examples 2 to 7, Comparative Examples 1 and 2 Take the amount of each component shown as the B liquid composition in Table 1 and add water.
Prepare 100 parts of an aqueous solution (solution B), adjust the temperature of solutions A and B prepared in Example 1 to 20°C, and then add solutions A and B of the same volume to form a gel. When the curing time was measured, it was as shown in Table 1. In addition, the gelled product thus obtained was placed in a sealed container and stored in a constant temperature room at 20°C for 24 hours, and syneresis was measured by measuring the syneresis water separated from the gelled product. The results shown in the table were obtained.

【表】 実施例8、比較例3 下記配合の懸濁型注入剤100c.c.を250c.c.のガラス
製ビーカーに入れてゲル化させたところ、ゲル化
時間は2分35秒であつた。 A液 計200c.c.JIS1号硅酸ソーダ 230部 水 50部 B液 計200c.c.ポルトランドセメント 150部 水 140部 その後このゲル化物の1日間養生し、更に実施
例3の配合の溶液型注入剤100c.c.をビーカー内の
上記ゲルの上部に流入させてゲルを生成せしめ、
懸濁型注入剤により生成したゲルと溶液型注入剤
により生成したゲルとの接触面の観察を行つたと
ころ第2表に示す如く何等異常は認められなかつ
た。 次に比較の為に(比較例3)比較例1の配合の
溶液型注入剤100c.c.を用い上記と同様の方法によ
り溶液型注入剤による約100c.c.のゲルを得、2種
類のゲルの接触面の観察を行つたところ、第2表
に示す如く該溶液型注入剤を上記懸濁型注入剤と
併用するのは実際上不可能であることがわかつ
た。
[Table] Example 8, Comparative Example 3 When 100 c.c. of the suspension-type injection of the following formulation was placed in a 250 c.c. glass beaker and gelled, the gelation time was 2 minutes and 35 seconds. Ta. A total of 200 c.c. JIS No. 1 Sodium Silicate 230 parts Water 50 parts B Liquid Total of 200 c.c. Injecting agent 100 c.c. is flowed into the upper part of the gel in the beaker to form a gel,
When the contact surface between the gel produced by the suspension-type injection and the gel produced by the solution-type injection was observed, no abnormality was observed as shown in Table 2. Next, for comparison (Comparative Example 3), using 100 c.c. of the solution-type injection formulation of Comparative Example 1, approximately 100 c.c. of gel was obtained by the solution-type injection agent in the same manner as above, and two types of gels were obtained. When the contact surface of the gel was observed, as shown in Table 2, it was found that it was practically impossible to use the solution-type injection in combination with the above-mentioned suspension-type injection.

【表】 実施例9、比較例4 第1図の横軸に示されるJISK1408にもとずく
1号硅酸ソーダの各量に更に水を加えて100c.c.と
して種々の濃度の硅酸ソーダ水溶液(A液)100
c.c.と、炭酸ナトリウム5部、アルミン酸カリウム
10部を水95部に溶解した水溶液(B液)100c.c.と
を混合し、20℃におけるゲル化時間の測定を行つ
た。一方比較の為(比較例4)同じA液100c.c.と、
アルミン酸ソーダ7.5部を水95部に溶解した水溶
液(B液)100c.c.とを混合しゲル化時間の測定を
行つた。その結果、第1図に示される如く実施例
ではA液中の硅酸ソーダ濃度とゲル化時間には明
確な相関関係がありゲル化時間の調整が容易であ
ることが判明したが、比較例では硅酸ソーダ濃度
とゲル化時間との関係が複雑でゲル化時間調整は
困難であつた。 実施例10、比較例5 下記配合の、A液・B液の等容積混合液を調整
した。混合液には白色沈殿物等の異物は生成され
なかつた。 A液 計200c.c.JIS1号硅酸ソーダ 150c.c. 水 50c.c. B液 計200c.c.アルミン酸カリウム量は 第3表記載通り 炭酸ナトリウム 10g 水 残 直径5cm、長さ10cmのモールドに豊浦標準砂を
入れて間隙率が40%になるように突き固め、上記
の、混合直後の水性混合液を注入圧2Kg/cm2で加
圧注入してサンドゲルを得た。操作上のトラブル
は一切なかつた。このサンドゲルをモールド内で
1日養生後、脱型して一軸圧縮強度を測定した結
果は第3表及び第2図に示す通りであつた。 比較のために(比較例5)、実施例10で用いた
A液200c.c.と、同B液におけるアルミン酸カリウ
ムの代りにアルミン酸ナトリウムを第3表記載の
割合で用いたB液200c.c.とを用意して実施例10と
同じゲルタイムとなるような注入剤をセツトし
た。 A、B両液を混合し、実施例10と同様にして標
準砂を注入してサンドゲルを得た。その一軸圧縮
強度の測定結果は第3表及び第2図に示す通りで
あつた。 上述の如く、アルミン酸カリウムと炭酸ナトリ
ウムとを併用する本発明によれば、アルミン酸ナ
トリウムと炭酸ナトリウムとを併用した場合に比
して、同じゲルタイムの場合の強度が大巾に向上
することが明らかである。
[Table] Example 9, Comparative Example 4 Water was added to each amount of No. 1 sodium silicate based on JISK1408 shown on the horizontal axis of Figure 1 to make 100 c.c. Sodium silicate with various concentrations Aqueous solution (A liquid) 100
cc, 5 parts of sodium carbonate, potassium aluminate
100 cc of an aqueous solution (solution B) prepared by dissolving 10 parts in 95 parts of water was mixed, and the gelation time was measured at 20°C. On the other hand, for comparison (Comparative Example 4), the same A liquid 100c.c.
The mixture was mixed with 100 c.c. of an aqueous solution (solution B) in which 7.5 parts of sodium aluminate was dissolved in 95 parts of water, and the gelation time was measured. As a result, as shown in FIG. 1, it was found that there was a clear correlation between the sodium silicate concentration in liquid A and the gelation time in the example, and that the gelation time could be easily adjusted. The relationship between sodium silicate concentration and gelation time was complicated, and it was difficult to adjust the gelation time. Example 10, Comparative Example 5 A liquid mixture of equal volume of liquid A and liquid B having the following composition was prepared. No foreign matter such as white precipitate was generated in the mixed solution. A total of 200 c.c. JIS No. 1 Sodium silicate 150 c.c. Water 50 c.c. B component Total of 200 c.c. The amount of potassium aluminate is as shown in Table 3. Sodium carbonate 10 g Water Remaining 5 cm in diameter and 10 cm in length Toyoura standard sand was placed in a mold and compacted to a porosity of 40%, and the above-mentioned aqueous mixture immediately after mixing was injected under pressure at an injection pressure of 2 kg/cm 2 to obtain a sand gel. There were no operational problems. After curing this sand gel in a mold for one day, it was demolded and the unconfined compressive strength was measured, and the results were as shown in Table 3 and FIG. 2. For comparison (Comparative Example 5), 200 c.c. of liquid A used in Example 10 and 200 c.c. of liquid B in which sodium aluminate was used in place of potassium aluminate in the same liquid B in the proportions listed in Table 3. An injection solution with the same gel time as in Example 10 was prepared. Both solutions A and B were mixed, and standard sand was poured in the same manner as in Example 10 to obtain a sand gel. The measurement results of the unconfined compressive strength were as shown in Table 3 and FIG. As described above, according to the present invention in which potassium aluminate and sodium carbonate are used in combination, the strength can be greatly improved at the same gel time compared to the case in which sodium aluminate and sodium carbonate are used in combination. it is obvious.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例9及び比較例4における夫々
のグラフト薬剤に用いられる硅酸ソーダ水溶濃度
とゲル化時間との関係を示す相関図であり、第2
図は実施例10及び比較例5における夫々のゲルタ
イムと一軸圧縮強度との関係を示す図である。
FIG. 1 is a correlation diagram showing the relationship between the aqueous concentration of sodium silicate used in each of the grafting agents in Example 9 and Comparative Example 4 and the gelation time;
The figure is a diagram showing the relationship between gel time and unconfined compressive strength in Example 10 and Comparative Example 5.

Claims (1)

【特許請求の範囲】[Claims] 1 硅酸ソーダとアルミン酸カリウムと、アルミ
ン酸カリウム以外のカリウム塩もしくはナトリウ
ム塩が含有されてなり、アルミン酸カリウム含有
量が3〜20重量%である溶液型水性混合液を土壤
に注入することを特徴とする土質の安定化処理工
法。
1. Injecting into the clay a solution-type aqueous mixture containing sodium silicate, potassium aluminate, and a potassium salt or sodium salt other than potassium aluminate, with a potassium aluminate content of 3 to 20% by weight. A soil stabilization treatment method characterized by:
JP11958481A 1981-07-29 1981-07-29 Soil stabilizing method Granted JPS5821478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11958481A JPS5821478A (en) 1981-07-29 1981-07-29 Soil stabilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11958481A JPS5821478A (en) 1981-07-29 1981-07-29 Soil stabilizing method

Publications (2)

Publication Number Publication Date
JPS5821478A JPS5821478A (en) 1983-02-08
JPH0143797B2 true JPH0143797B2 (en) 1989-09-22

Family

ID=14764974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11958481A Granted JPS5821478A (en) 1981-07-29 1981-07-29 Soil stabilizing method

Country Status (1)

Country Link
JP (1) JPS5821478A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071948B2 (en) * 1988-07-27 1995-01-11 松下電器産業株式会社 Remote control device for industrial equipment

Also Published As

Publication number Publication date
JPS5821478A (en) 1983-02-08

Similar Documents

Publication Publication Date Title
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
JPH09157646A (en) Production of solidifying materail-bentonite injecting solution and powder for producing the same injecting solution
JPH0143797B2 (en)
JPS6118593B2 (en)
JP3166960B2 (en) Ground injection method
JPH024634B2 (en)
KR100402456B1 (en) Ground hardening material
JP2001098271A (en) Ground solidification material
JPS62172088A (en) Ground grouting process
JPH07324188A (en) Grout for the ground and method for grouting the ground
JP5744393B2 (en) Backfilling material
JPH0525272B2 (en)
JPS594471B2 (en) Cement Tomizu glass saw blade
JPS62199684A (en) Soil stabilization works
JPS5842228B2 (en) Doshitsu no Antei Kahouhou
JPH08269449A (en) Grout for the ground and method for grouting the ground
JPH05280032A (en) Civil-engineering material
JPH0759701B2 (en) Ground remodeling filler
JPS5833277B2 (en) Soil stabilization treatment method
JPH07259073A (en) Ground injecting material
JPH11241336A (en) Ground hardening injection material, and ground injection construction method using same
JPH1036841A (en) Soil stabilizer excellent in solution hardening stability at low temperature
JPH0242778B2 (en)
JPH1036840A (en) Soil stabilizer excellent in solution stability at low temperature and soil stabilization method
JPH08134446A (en) Grout for ground and method for grouting ground