JPS62199684A - Soil stabilization works - Google Patents

Soil stabilization works

Info

Publication number
JPS62199684A
JPS62199684A JP4076486A JP4076486A JPS62199684A JP S62199684 A JPS62199684 A JP S62199684A JP 4076486 A JP4076486 A JP 4076486A JP 4076486 A JP4076486 A JP 4076486A JP S62199684 A JPS62199684 A JP S62199684A
Authority
JP
Japan
Prior art keywords
acid
water
soluble
soil
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076486A
Other languages
Japanese (ja)
Inventor
Eiji Yoshinari
吉成 英二
Shigeo Yamaguchi
山口 成男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP4076486A priority Critical patent/JPS62199684A/en
Publication of JPS62199684A publication Critical patent/JPS62199684A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To obtain a ground outstanding in waterstop capability with readuced syrenesis, by injection into soil an aqueous mixture comprising sodium silicate glyoxal, water-soluble aluminum salt and water-soluble organic acid, inorganic acid and acidic inorganic salt. CONSTITUTION:Soil stabilization is accomplished by injecting into the soil an aqueous mixture comprising (A) sodium silicate, (B) glyoxal, (C) water-soluble aluminum salt (pref. aluminum sulfate, aluminum chloride, potassium alum or sodium alum), and (D) at least one kind of compound selected from (i) water- soluble organic acids (pref. malonic acid, glutaric acid, succinic acid, tartaric acid, citric acid, or acetic acid), (ii) water-soluble inorganic acids (pref. sulfuric acid, hydrochloric acid, phosphoric acid or boric acid) and (iii) water-soluble acidic inorganic salts (pref. sodium dihydrogenborate, sodium dihydrogenphosphate or sodium hydrogensulfate).

Description

【発明の詳細な説明】 3. VIのi なりIW (産業上の利用分野) 本発明は、ケイ酸ソーダ(水ガラス)系グラウト薬剤を
土壌に注入して、ゲル化により硬化させる土質安定化工
法、特に、離漿水を著しく減少させうる土質安定化工法
に関する。
[Detailed description of the invention] 3. VI Nari IW (Industrial Application Field) The present invention is a soil stabilization method in which a sodium silicate (water glass) grouting agent is injected into the soil and hardened by gelation. Concerning soil stabilization methods that can reduce soil quality.

(従来の技術) ケイ酸ソーダを主剤としたグラウト薬剤をゲル化させて
土質を安定化する工法は、広く行われている。
(Prior Art) A method of stabilizing soil quality by gelling a grouting agent containing sodium silicate as a main ingredient is widely used.

ケイ酸ソーダを主剤とするグラウト薬剤には。For grouting agents whose main ingredient is sodium silicate.

ケイ酸ソーダーセメント系の懸濁型とケイ酸ソーダー水
溶性硬化剤系の溶液型とがある。特に、溶液型のグラウ
ト薬剤は、低粘度であるため細粒土壌にも広く浸透する
ことから、土質の安定化に多用されている。溶液型のグ
ラウト薬剤には、水溶性硬化剤として無機酸または無機
塩を用いる無機系グラウト薬剤と、水溶性硬化剤として
有機酸エステル、有機酸アミド、アルデヒド化合物など
を用いる有機系グラウト薬剤とがある。しかし、無機系
グラウト薬剤は、ゲル化時間を長く調節した場合、安定
化処理後の土壌の圧縮強度が充分ではない。
There are suspension types based on sodium silicate cement and solution types based on sodium silicate water-soluble hardeners. In particular, solution-type grouting chemicals are widely used to stabilize soil quality because they have a low viscosity and can widely penetrate even fine-grained soil. Solution-type grouting agents include inorganic grouting agents that use inorganic acids or inorganic salts as water-soluble hardening agents, and organic grouting agents that use organic acid esters, organic acid amides, aldehyde compounds, etc. as water-soluble hardening agents. be. However, when using inorganic grouting agents, the compressive strength of the soil after stabilization treatment is not sufficient when the gelation time is adjusted to be long.

有機系グラウト薬剤には9例えば、ケイ酸のアルカリ金
属塩とアルデヒド化合物とを含有する薬剤(特公昭40
−20055号公報に開示されている)。
Examples of organic grouting agents include agents containing an alkali metal salt of silicic acid and an aldehyde compound (Japanese Patent Publication No. 40
-20055).

ケイ酸ナトリウムまたはケイ酸カリウム、水溶性脂肪族
アルデヒドおよび水溶性無機塩を含有する薬剤(特公昭
44−19221号公報に開示されている)。
A drug containing sodium or potassium silicate, a water-soluble aliphatic aldehyde, and a water-soluble inorganic salt (disclosed in Japanese Patent Publication No. 44-19221).

水ガラス、グリオキサールおよび重炭酸ナトリウムを含
有する薬剤(特開昭52−84811号公報に開示され
ている)がある。いずれの薬剤を用いても。
There are drugs containing water glass, glyoxal and sodium bicarbonate (disclosed in JP-A-52-84811). No matter which drug is used.

ゲル化時間の調節が容易でありかつ安定化処理後の土壌
は一定の圧縮強度を有する。しかし、シネリシス現象な
どにより、ゲルから多量の離漿水が生じ、そのために土
壌の止水性が低下する傾向にある。
The gelation time can be easily adjusted, and the soil after stabilization has a constant compressive strength. However, due to the syneresis phenomenon, a large amount of syneresis water is generated from the gel, which tends to reduce the water-stopping properties of the soil.

(発明が解決しようとする問題点) 本発明は上記従来の問題点を解決するものであり、その
目的とするところは、離漿水量が著しく少ないため、止
水性の良好な土質安定化工法を提供することにある。本
発明の他の目的は、圧縮強度の優れた土質安定化工法を
提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and its purpose is to develop a soil stabilization method with good water-stopping properties since the amount of syneresis water is extremely small. It is about providing. Another object of the present invention is to provide a soil stabilization method with excellent compressive strength.

本発明のさらに他の目的は、ゲル化時間の調節が容易な
土質安定化工法を提供することにある。
Still another object of the present invention is to provide a soil stabilization method that allows easy adjustment of gelation time.

(問題点を解決するための手段) 本発明の土質安定化工法は、(1)ケイ酸ソーダ。(Means for solving problems) The soil stabilization method of the present invention includes (1) sodium silicate.

(2)グリオキサール、(3)水溶性のアルミニウム塩
(2) glyoxal; (3) water-soluble aluminum salts.

および(4)水溶性の有機酸、水溶性の無機酸および水
溶性の酸性無機塩のうちの少なくとも一種、が添加され
た水性混合液を土壌に注入することを包含し、そのこと
により上記目的が達成される。
and (4) injecting into soil an aqueous mixture to which at least one of a water-soluble organic acid, a water-soluble inorganic acid, and a water-soluble acidic inorganic salt is added, thereby achieving the above-mentioned purpose. is achieved.

ケイ゛酸ソーダは水ガラスとも呼ばれ、土質の安定化に
広く用いられている。ケイ酸ソーダには。
Sodium silicate is also called water glass and is widely used to stabilize soil quality. For sodium silicate.

例えば、 JISK−1408に基づく3号ケイ酸ソー
ダがある。ケイ酸ソーダの含有量は、土壌の状態や目的
に応じて適宜選択でき7例えば上記3号ケイ酸ソーダを
用いる場合、上記水性混合液中に、好ましくは10〜5
0ii量%、より好ましくは20〜45重量%の範囲で
含有される。
For example, there is No. 3 sodium silicate based on JISK-1408. The content of sodium silicate can be appropriately selected depending on the soil condition and purpose.7 For example, when using the above No. 3 sodium silicate, the content of sodium silicate is preferably 10 to 5.
It is contained in an amount of 0% by weight, more preferably in a range of 20 to 45% by weight.

グリオキサールは最も簡単なジアルデヒドであり、工業
用には35%水溶液や40%水溶液がある。
Glyoxal is the simplest dialdehyde, and for industrial use there are 35% and 40% aqueous solutions.

グリオキサールはケイ酸ソーダ中のアルカリと反応して
グリコール酸を形成し、そあ結果、二酸化ケイ素ゲルが
生成する。グリオキサールの35%水溶液は、上記水性
混合液中に、好ましくは0.3〜10重量%、より好ま
しくは0.5〜7重景%の範囲で含有される。0.3重
量%を下まわると、ゲル化時間を長時間に設定した場合
、安定化処理後の土壌の圧縮強度が低下する傾向にある
。10重量%を上まわると、高価となり不経済である。
Glyoxal reacts with the alkali in the sodium silicate to form glycolic acid, resulting in the formation of silicon dioxide gel. The 35% aqueous solution of glyoxal is contained in the aqueous mixture preferably in a range of 0.3 to 10% by weight, more preferably 0.5 to 7% by weight. When it is less than 0.3% by weight, the compressive strength of the soil after stabilization treatment tends to decrease if the gelation time is set for a long time. If it exceeds 10% by weight, it becomes expensive and uneconomical.

水溶性のアルミニウム塩には2例えば、硫酸アルミニウ
ム、塩化アルミニウム、カリウムミョウバン、ナトリウ
ムミョウバンがある。特に、硫酸アルミニウムの18水
塩は、溶解性が良好でありかつ注入ポ7ンプの腐食が少
ないため好ましい。水溶性のアルミニウム塩は、ゲルを
安定化してシネリシス現象を防止する作用があり、これ
は上記水性混合液中に、好ましくは0.2〜3重景%、
より好ましくは0.3〜2重量%の範囲で含有される。
Water-soluble aluminum salts include, for example, aluminum sulfate, aluminum chloride, potassium alum, and sodium alum. In particular, aluminum sulfate 18 hydrate is preferable because it has good solubility and less corrosion of the injection pump. The water-soluble aluminum salt has the effect of stabilizing the gel and preventing the syneresis phenomenon, and is preferably contained in the aqueous mixture in an amount of 0.2 to 3%,
It is more preferably contained in a range of 0.3 to 2% by weight.

0.2重量%を下まわると、シネリシス現象などにより
離漿水量が増大する傾向にあるので、土質の安定化に支
障をきたす。3重量%を上まわると、ゲル化の初期に不
均一なゲルが生成して上述の水性混合液の浸透性が低下
する傾向にある。
If it is less than 0.2% by weight, the amount of syneresis water tends to increase due to the syneresis phenomenon, which impedes the stabilization of soil quality. When it exceeds 3% by weight, a non-uniform gel is formed at the initial stage of gelation, and the permeability of the above-mentioned aqueous mixture tends to decrease.

水溶性の有機酸には1例えば、マロン酸、グルタル酸、
コハク酸などの二塩基酸、酒石酸、クエン酸などのオキ
シカルボン酸、酢酸がある。水溶性の無機酸には1例え
ば、硫酸、塩酸、リン酸。
Water-soluble organic acids include malonic acid, glutaric acid,
These include dibasic acids such as succinic acid, oxycarboxylic acids such as tartaric acid and citric acid, and acetic acid. Examples of water-soluble inorganic acids include sulfuric acid, hydrochloric acid, and phosphoric acid.

ホウ酸がある。水溶性の酸性無機塩としては2例えば、
ホウ酸二水素ナトリウム、リン酸二水素ナトリウム、硫
酸水素ナトリウム、硫酸水素カリウム、リン酸二水素カ
リウム、硫酸水素カリウムが挙げられる。特に、酒石酸
、クエン酸、コハク酸。
There is boric acid. Examples of water-soluble acidic inorganic salts include:
Examples include sodium dihydrogen borate, sodium dihydrogen phosphate, sodium hydrogen sulfate, potassium hydrogen sulfate, potassium dihydrogen phosphate, and potassium hydrogen sulfate. In particular, tartaric acid, citric acid, and succinic acid.

リン酸、ホウ酸、リン酸二水素ナトリウムは、溶解性が
良好でありかつ注入ポンプの腐食が少ないため好ましい
。このような有機酸、無機酸および酸性無機塩は、ケイ
酸ソーダのゲル化を促進する作用がある。水溶性の有機
酸、水溶性の無機酸および水溶性の酸性無機塩のうちの
少なくとも一種は、上記水性混合液中に0.2〜4重量
%、より好ましくは0.5〜3重量%の範囲で含有され
る。0.2重量%を下まわると、ゲル化の初期に不均一
なゲルが生成するため、ゲル化時間を短時間に設定した
場合、安定化処理後の土壌の圧縮強度にむらが生じる。
Phosphoric acid, boric acid, and sodium dihydrogen phosphate are preferred because they have good solubility and are less likely to corrode the infusion pump. Such organic acids, inorganic acids, and acidic inorganic salts have the effect of promoting gelation of sodium silicate. At least one of a water-soluble organic acid, a water-soluble inorganic acid, and a water-soluble acidic inorganic salt is added in an amount of 0.2 to 4% by weight, more preferably 0.5 to 3% by weight in the aqueous mixture. Contained within the range. If it is less than 0.2% by weight, a non-uniform gel will be formed at the initial stage of gelation, so if the gelation time is set to a short time, the compressive strength of the soil after stabilization treatment will be uneven.

4重量%を上まわると、ゲル化時間が過度に短くなり、
そのために土質の安定化作業が困難となる。
When it exceeds 4% by weight, the gelation time becomes excessively short.
This makes soil stabilization work difficult.

前記ケイ酸ソーダおよび前記(2)〜(4)の硬化剤が
添加された水性混合液を得るには、これら囲者を水と混
合する方法、あるいはケイ酸ソーダ水溶液および他の3
成分の水溶液をあらかじめ調製した後、土壌中に注入直
前ないしは注入時に雨水溶液を加え合わせる方法がある
。ゲル化時間を極く短時間に設定する場合には、上記雨
水溶液を土壌中において混合してもよい。いずれの方法
においても、水性混合液は、土壌への注入時においてゲ
ル化していないことが必要である。
In order to obtain an aqueous mixed solution to which the above-mentioned sodium silicate and the curing agents (2) to (4) are added, a method of mixing these surrounds with water, or a method of mixing a sodium silicate aqueous solution and other 3
There is a method in which an aqueous solution of the ingredients is prepared in advance, and then a rainwater solution is added to the soil immediately before or at the time of injection. When the gelation time is set to a very short time, the rainwater solution may be mixed in the soil. In either method, it is necessary that the aqueous mixture is not gelatinized at the time of injection into the soil.

ゲル化時間の調節は、水性混合液中におけるケイ酸ソー
ダと他の添加剤との配合割合を変えることにより、容易
になされる。一般に、ケイ酸ソーダに対する他の添加剤
の割合が増加するにしたがって、ゲル化時間は短縮され
る傾向にある。添加剤の配合量とゲル化時間との関係を
あらかじめ求めることにより、ゲル化時間の調節がなさ
れる。
The gelation time can be easily adjusted by changing the mixing ratio of sodium silicate and other additives in the aqueous mixture. Generally, as the ratio of other additives to sodium silicate increases, the gelation time tends to decrease. The gelling time can be adjusted by determining the relationship between the amount of additives and the gelling time in advance.

ゲル化時間の調節された水性混合液は9例えば。For example, an aqueous mixture with a controlled gelling time may be used.

注入ポンプおよび注入管を用いて土壌中に注入される。Injected into the soil using an injection pump and injection tube.

ケイ酸ソーダ水溶液と他の添加剤水溶液とを土壌中で混
合する場合には1例えばY字管が用いられる。
When mixing the sodium silicate aqueous solution and other additive aqueous solutions in soil, a Y-shaped tube, for example, is used.

(実施例) 以下に本発明を実施例について述べる。(Example) The present invention will be described below with reference to examples.

去止炎土 3号ケイ酸ソーダ(JISK−1408にもとづ<)1
00mlに水100m lを加えて、これをA液とした
。硫酸アルミニウム18水塩4g、35%グリオキサー
ル5gおよびグルタル酸6.3gに水を加えて溶解させ
、 200mj!のB液を調製した。A液とB液とを2
0℃にて50m jlずつ混合し、ゲル化時間を測定し
たところ、3分30秒であった。生成したゲルを1日間
放置して離漿水量を測定したところ、  2.1gであ
った。他方、この薬液によるサンドゲルの一軸圧縮強度
を、 JISA−1216(土の一軸圧縮試験法)によ
り測定したところ、  5.8kg/aaであった。
Sodium silicate No. 3 Sodium silicate (based on JISK-1408) 1
100 ml of water was added to 00 ml to make this solution A. Add water to 4 g of aluminum sulfate 18 hydrate, 5 g of 35% glyoxal, and 6.3 g of glutaric acid and dissolve. 200 mj! Solution B was prepared. 2 liquids A and B
The mixture was mixed in 50ml portions at 0°C, and the gelation time was measured, and it was 3 minutes and 30 seconds. The produced gel was left for one day and the amount of syneresis water was measured, and it was found to be 2.1 g. On the other hand, the unconfined compressive strength of the sand gel with this chemical solution was measured according to JISA-1216 (uniaxial compression test method for soil) and was found to be 5.8 kg/aa.

去施炭1 グルタル酸に代えて酸性硫酸ソーダを11.5g用いた
こと以外は、実施例1と同様にしてA液およびB液を調
製した。両液を用いて、実施例1と同様の方法により、
ゲル化時間、離漿水量および一軸圧縮強度を測定したと
ころ、ゲル化時間は3分20秒、離漿水量は1.0gそ
して一軸圧縮強度は5.6kg / cdであった。こ
れらの結果を下表に示す。尚。
Carbonation 1 Solutions A and B were prepared in the same manner as in Example 1, except that 11.5 g of acidic sodium sulfate was used in place of glutaric acid. Using both solutions, by the same method as in Example 1,
When the gelation time, syneresis water amount, and unconfined compressive strength were measured, the gelation time was 3 minutes 20 seconds, the syneresis water amount was 1.0 g, and the unconfined compressive strength was 5.6 kg/cd. These results are shown in the table below. still.

()は水性混合液中の各成分の割合を表す。() represents the proportion of each component in the aqueous mixture.

叉隻適ニ ゲルタル酸に代えてクエン酸を用いたこと以外は、実施
例1と同様にしてA液およびB液を調製した。両液を用
いて、実施例1と同様の方法により、ゲル化時間、離漿
水量および一軸圧縮強度を測定したところ、ゲル化時間
は3分OO秒、離漿水量は1.1gそして一軸圧縮強度
は6.1 kg/cJであった。これらの結果を下表に
示す。
Solutions A and B were prepared in the same manner as in Example 1, except that citric acid was used in place of citric acid. Using both solutions, gelation time, syneresis water amount, and uniaxial compression strength were measured using the same method as in Example 1. The gelation time was 3 minutes OO seconds, the syneresis water amount was 1.1 g, and uniaxial compression The strength was 6.1 kg/cJ. These results are shown in the table below.

実韮雁」− グルタル酸に代えて75%リン酸を7.9g用いたこと
以外は、実施例1と同様にしてA液およびB液を調製し
た。両液を用いて、実施例1と同様の方法により、ゲル
化時間、離漿水量および一軸圧゛ 縮強度を測定したと
ころ、ゲル化時間は3分55秒。
"Jitnyrogan" - Solutions A and B were prepared in the same manner as in Example 1, except that 7.9 g of 75% phosphoric acid was used in place of glutaric acid. Using both solutions, gelation time, syneresis water amount, and uniaxial compressive strength were measured using the same method as in Example 1. The gelation time was 3 minutes and 55 seconds.

離漿水量は1.8gそして一軸圧縮強度は5.6kg/
−であった。これらの結果を下表に示す。
The amount of syneresis water is 1.8g and the unconfined compressive strength is 5.6kg/
-It was. These results are shown in the table below.

止較炭土 硫酸アルミニウム18水塩を用いず、グルタル酸を9.
3gとしたこと以外は、実施例1と同様にしてA液およ
びB液を調製した。両液を用いて、実施例1と同様の方
法により、ゲル化時間、離漿水量および一軸圧縮強度を
測定したところ、ゲル化時間は2分47秒、離漿水量は
16.0gそして一軸圧縮強度は5.7kg/cjであ
った。これらの結果を下表に示す。
Without using aluminum sulfate 18 hydrate, glutaric acid was added to 9.
Solutions A and B were prepared in the same manner as in Example 1, except that the amount was 3 g. Using both solutions, gelation time, syneresis water amount, and uniaxial compression strength were measured using the same method as in Example 1. The gelation time was 2 minutes 47 seconds, the syneresis water amount was 16.0 g, and the uniaxial compression strength was 2 minutes and 47 seconds. The strength was 5.7 kg/cj. These results are shown in the table below.

此JIJ引影 硫酸アルミニウム18水塩を用いず、グルタル酸に代え
て酸性硫酸ソーダを17.1g用いたこと以外は、実施
例1と同様にしてA液およびB液を調製した。両液を用
いて、実施例1と同様の方法により、ゲル化時間、離漿
水量および一軸圧縮強度を測定したところ、ゲル化時間
は3分47秒、離漿水量は12.0gそして一軸圧縮強
度は5.5kg/cJであった。これらの結果を下表に
示す。
Solutions A and B were prepared in the same manner as in Example 1, except that aluminum sulfate 18 hydrate was not used and 17.1 g of acidic sodium sulfate was used in place of glutaric acid. Using both solutions, gelation time, syneresis water amount, and uniaxial compression strength were measured using the same method as in Example 1. The gelation time was 3 minutes 47 seconds, the syneresis water amount was 12.0 g, and the uniaxial compression strength was 3 minutes and 47 seconds. The strength was 5.5 kg/cJ. These results are shown in the table below.

止較五主 硫酸アルミニウム18水塩を用いず、グルタル酸に代え
てクエン酸を12.0g用いたこと以外は、実施例1と
同様にしてA液およびB液を調製した。
Solution A and Solution B were prepared in the same manner as in Example 1, except that 12.0 g of citric acid was used in place of glutaric acid and without using pentaminic aluminum sulfate 18 hydrate.

両液を用いて、実施例1と同様の方法により、ゲル化時
間、離漿水量および一軸圧縮強度を測定したところ、ゲ
ル化時間は2分30秒、離漿水量は6.0gそして一軸
圧縮強度は5.4kg/co!であった。これらの結果
を下表に示す。
Using both solutions, gelation time, syneresis water amount, and uniaxial compression strength were measured using the same method as in Example 1. The gelation time was 2 minutes 30 seconds, the syneresis water amount was 6.0 g, and the uniaxial compression strength was 2 minutes and 30 seconds. Strength is 5.4kg/co! Met. These results are shown in the table below.

止較■1 硫酸アルミニウム18水塩を用いず、グルタル酸に代え
て75%リン酸を11,0g用いたこと以外は。
Comparison ■1 Except that aluminum sulfate 18 hydrate was not used and 11.0 g of 75% phosphoric acid was used instead of glutaric acid.

実施例1と同様にしてA液およびB液を調製した。Solution A and solution B were prepared in the same manner as in Example 1.

両液を用いて、実施例1と同様の方法により、ゲル化時
間、離漿水量および一軸圧縮強度を測定したところ、ゲ
ル化時間は3分20秒2離漿水量は8.0gそして一軸
圧縮強度は5.3に+r/−であった。これらの結果を
下表に示す。
Using both solutions, gelation time, syneresis water amount, and unconfined compressive strength were measured using the same method as in Example 1. The gelation time was 3 minutes 20 seconds, the syneresis water amount was 8.0 g, and the unconfined compression strength was The intensity was 5.3 +r/-. These results are shown in the table below.

ル較炭ニ ゲルタル酸を用いなかったこと以外は、実施例1と同様
にしてA液およびB液を調製した。両液を用いて、実施
例1と同様の方法により、ゲル化時間、離漿水量および
一軸圧縮強度の測定を試みたものの、数秒で不均一なゲ
ルとなり、離漿水量の測定はできず、また、供試体の作
成は困難であった。
Solutions A and B were prepared in the same manner as in Example 1, except that the comparative carbonic acid was not used. Using both solutions, we tried to measure the gelation time, amount of synergic water, and uniaxial compressive strength using the same method as in Example 1, but the gel turned into an uneven gel within a few seconds, and the amount of synergic water could not be measured. In addition, it was difficult to prepare the specimen.

ル較開工 35%グリオキサールを用いず、グルタル酸に代えてク
エン酸を8.0g用いたこと以外は、実施例1と同様に
してA液およびB液を調製した。両液を用いて、実施例
1と同様の方法により、ゲル化時間、離漿水量および一
軸圧縮強度を測定したところ、ゲル化時間は3分58秒
、離漿水量は3.8gそして一軸圧縮強度は3.1 k
g/co!であった。これらの結果を下表に示す。
Solutions A and B were prepared in the same manner as in Example 1, except that 35% glyoxal was not used and 8.0 g of citric acid was used in place of glutaric acid. Using both solutions, gelation time, syneresis water amount, and unconfined compression strength were measured using the same method as in Example 1. The gelation time was 3 minutes 58 seconds, the syneresis water amount was 3.8 g, and the unconfined compression strength was 3 minutes and 58 seconds. Strength is 3.1k
g/co! Met. These results are shown in the table below.

(応用例) 次のようにして土質の安定化を行なった。(Application example) Soil quality was stabilized as follows.

(1)薬液の調製 20Of溶解ミキサーに、3号ケイ酸ソーダ(JISK
−1408にもとづ<)  100Rおよび水1001
を加えて攪拌、溶解してA液2001を得た。別の20
01溶解ミキサーに、硫酸アルミニウム18水塩4kg
(1) Preparation of chemical solution Add No. 3 sodium silicate (JISK) to a 20Of dissolution mixer.
-Based on 1408<) 100R and water 1001
was added, stirred, and dissolved to obtain Solution A 2001. another twenty
01 Into the dissolution mixer, 4 kg of aluminum sulfate 18 hydrate
.

35%グリオキサール5 kgおよびクエン酸8.1k
gを入れ、これに水を加えて溶解してB液2001を得
た。同様の方法により、A液およびB液を10・ノドず
つ調製した。A液とB液との混合によるゲル化時間は、
実施例3通り約3分であった。
35% glyoxal 5 kg and citric acid 8.1k
g, and water was added thereto to dissolve it to obtain Solution B 2001. In the same manner, 10 mm each of Solution A and Solution B were prepared. The gelation time due to mixing of liquid A and liquid B is:
As in Example 3, it took about 3 minutes.

(2)削孔 深度約4〜5mのところが礫層であり、約5〜8mのと
ころは透水係数がI Xl0−2cm/secの細砂混
じり粗砂層である地盤について、削孔を実施した。削孔
は、ロンドの先端から水道水を流しながら温度約8mま
で実施した。
(2) Drilling was carried out on the ground where the depth of the hole was about 4 to 5 m was a gravel layer, and the depth of about 5 to 8 m was a layer of coarse sand mixed with fine sand with a hydraulic conductivity of IXl0-2 cm/sec. Drilling was carried out to a temperature of approximately 8 m while running tap water from the tip of the rondo.

(3)注入 グラウトポンプ2台を用い、(2)により削孔した地盤
に対し、1.5ショット方式により、A液およびB液の
混合薬液2001を注入した。注入速度はA液、B液そ
れぞれ毎分10j2であった。注入終了後、ロンドを1
mステップアップし、同様の方法により混合薬液200
1を注入した。注入圧力は。
(3) Using two injection grout pumps, a mixed chemical solution 2001 of liquids A and B was injected into the ground drilled in (2) using a 1.5-shot method. The injection rate was 10j2/min for each of liquids A and B. After the injection is finished, add 1 rondo
m step up, and mixed chemical solution 200 m by the same method.
1 was injected. What is the injection pressure?

礫層が0.5〜1.0kg/co!そして細砂混じり粗
砂層が2.0〜4.0 kg/catであった。
Gravel layer is 0.5~1.0kg/co! The coarse sand layer mixed with fine sand was 2.0 to 4.0 kg/cat.

(4)開削による固結状況の観察および固結物の物性試
験 (3)により薬液が注入された地盤を注入深度まで開削
し、固結状況を観察するとともに固結物の物性試験を行
なった。その結果、礫層については。
(4) Observation of the consolidation status through excavation and physical property test of the consolidated material (3) The ground into which the chemical solution was injected was excavated to the injection depth, the consolidation status was observed, and the physical properties of the consolidated material were tested. . As a result, for the gravel layer.

薬液が礫と礫との間隙部分に充分に注入されて固結して
おり、シネリシス現象は見られなかった。
The chemical solution was sufficiently injected into the gaps between the gravels and solidified, and no syneresis phenomenon was observed.

また、細砂混じり粗砂層は、浸透箇所がほぼ円形に近く
、理想的な固結状況を示していた。この固結部分につい
て物性試験を行なったところ、−軸圧縮強度は5.3 
kg/cJ、そして透水係数はに1.=7、I XIQ
−’am八eへであった。
In addition, in the coarse sand layer mixed with fine sand, the permeation points were almost circular, indicating ideal consolidation conditions. When a physical property test was conducted on this consolidated part, the −axial compressive strength was 5.3.
kg/cJ, and the hydraulic conductivity is 1. =7, IXIQ
-'am 8e.

(以下余白) 実施例、比較例および応用例から明らかなように1本発
明の土質安定化工法に用いられる水性混合液は、離漿水
量が著しく少ない。しかも安定化された地盤は一軸圧縮
強度が高い。硫酸アルミニウム18水塩を含まない水性
混合液は、多量の離漿水が分離される傾向にある。有機
酸、無機酸および酸性無機塩のいずれも含まない水性混
合液は。
(Left below) As is clear from the Examples, Comparative Examples, and Application Examples, the aqueous liquid mixture used in the soil stabilization method of the present invention has a significantly small amount of syneresis water. Moreover, the stabilized ground has high unconfined compressive strength. In an aqueous liquid mixture that does not contain aluminum sulfate 18 hydrate, a large amount of syneresis water tends to be separated. An aqueous mixture containing neither organic acids nor inorganic acids nor acidic inorganic salts.

゛ 混合後、数秒で不均一なゲルを生成し、注入液とし
て適さない。35%グリオキサールを含まない水性混合
液は、離漿水量は比較的少ないものの、安定化された地
盤の一軸圧縮強度が低い。
゛ After mixing, it forms a non-uniform gel within a few seconds, making it unsuitable as an injection solution. Although the aqueous mixture that does not contain 35% glyoxal has a relatively small amount of syneresis water, the uniaxial compressive strength of the stabilized ground is low.

また1本発明の土質安定化工法により地盤を安定化すれ
ば、−軸圧縮強度に優れるうえに止水性の良好な地盤が
得られる。
Further, by stabilizing the ground using the soil stabilization method of the present invention, a ground with excellent -axial compressive strength and water-stopping properties can be obtained.

(発明の効果) 本発明の土質安定化工法によれば、ゲル化時間の調節が
容易になされ、このように、離漿水量が少ないため止水
性の良好な地盤が得られる。安定化された地盤は、圧縮
強度にも優れている。従って、このような土質安定化工
法は、基礎地盤の安定化、特に、坑道や賜道を掘削する
際に、地下水などの漏水を防止しかつ地盤を安定化する
ために有効に利用されうる。
(Effects of the Invention) According to the soil stabilization method of the present invention, the gelation time can be easily adjusted, and as described above, since the amount of syneresis water is small, a ground with good water-stopping properties can be obtained. Stabilized ground also has superior compressive strength. Therefore, such a soil stabilization method can be effectively used for stabilizing the foundation ground, particularly for preventing leakage of groundwater and stabilizing the ground when excavating a tunnel or a tunnel.

以上that's all

Claims (1)

【特許請求の範囲】 1、(1)ケイ酸ソーダ、 (2)グリオキサール、 (3)水溶性のアルミニウム塩、および (4)水溶性の有機酸、水溶性の無機酸および水溶性の
酸性無機塩のうちの少なくとも一種、が添加された水性
混合液を土壌に注入することを包含する土質安定化工法
。 2、前記水溶性のアルミニウム塩が、硫酸アルミニウム
、塩化アルミニウム、カリウムミョウバンおよびナトリ
ウムミョウバンのうちの少なくとも一種である特許請求
の範囲第1項に記載の土質安定化工法。 3、前記水溶性の有機酸が、マロン酸、グルタル酸、コ
ハク酸などの二塩基酸、酒石酸、クエン酸などのオキシ
カルボン酸および酢酸のうちの少なくとも一種である特
許請求の範囲第1項に記載の土質安定化工法。 4、前記水溶性の無機酸が、硫酸、塩酸、リン酸および
ホウ酸のうちの少なくとも一種である特許請求の範囲第
1項に記載の土質安定化工法。 5、前記水溶性の酸性無機塩が、ホウ酸二水素ナトリウ
ム、リン酸二水素ナトリウム、硫酸水素ナトリウム、硫
酸水素カリウム、リン酸二水素カリウムおよび硫酸水素
カリウムのうちの少なくとも一種である特許請求の範囲
第1項に記載の土質安定化工法。 6、前記水性混合液中に、前記グリオキサールの35%
水溶液が0.3〜10重量%の範囲で含有された特許請
求の範囲第1項に記載の土質安定化工法。 7、前記水性混合液中に、前記水溶性のアルミニウム塩
が0.2〜3重量%の範囲で含有された特許請求の範囲
第1項に記載の土質安定化工法。 8、前記水性混合液中に、前記水溶性の有機酸、水溶性
の無機酸および水溶性の酸性無機塩のうちの少なくとも
一種が0.2〜4重量%の範囲で含有された特許請求の
範囲第1項に記載の土質安定化工法。
[Claims] 1. (1) Sodium silicate, (2) Glyoxal, (3) Water-soluble aluminum salt, and (4) Water-soluble organic acid, water-soluble inorganic acid, and water-soluble acidic inorganic acid. A soil stabilization method that includes injecting into soil an aqueous mixture to which at least one type of salt is added. 2. The soil stabilization method according to claim 1, wherein the water-soluble aluminum salt is at least one of aluminum sulfate, aluminum chloride, potassium alum, and sodium alum. 3. Claim 1, wherein the water-soluble organic acid is at least one of dibasic acids such as malonic acid, glutaric acid, and succinic acid, oxycarboxylic acids such as tartaric acid and citric acid, and acetic acid. The soil stabilization method described. 4. The soil stabilization method according to claim 1, wherein the water-soluble inorganic acid is at least one of sulfuric acid, hydrochloric acid, phosphoric acid, and boric acid. 5. The water-soluble acidic inorganic salt is at least one of sodium dihydrogen borate, sodium dihydrogen phosphate, sodium hydrogen sulfate, potassium hydrogen sulfate, potassium dihydrogen phosphate, and potassium hydrogen sulfate. Soil stabilization method described in Scope 1. 6. 35% of the glyoxal in the aqueous mixture
The soil stabilization method according to claim 1, wherein the aqueous solution is contained in a range of 0.3 to 10% by weight. 7. The soil stabilization method according to claim 1, wherein the water-soluble aluminum salt is contained in the aqueous mixture in a range of 0.2 to 3% by weight. 8. The aqueous mixture contains at least one of the water-soluble organic acid, water-soluble inorganic acid, and water-soluble acidic inorganic salt in a range of 0.2 to 4% by weight. Soil stabilization method described in Scope 1.
JP4076486A 1986-02-26 1986-02-26 Soil stabilization works Pending JPS62199684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076486A JPS62199684A (en) 1986-02-26 1986-02-26 Soil stabilization works

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076486A JPS62199684A (en) 1986-02-26 1986-02-26 Soil stabilization works

Publications (1)

Publication Number Publication Date
JPS62199684A true JPS62199684A (en) 1987-09-03

Family

ID=12589688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076486A Pending JPS62199684A (en) 1986-02-26 1986-02-26 Soil stabilization works

Country Status (1)

Country Link
JP (1) JPS62199684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212620A (en) * 1992-06-16 1994-08-02 Kyokado Eng Co Ltd Method of ground impregnation construction
JP2007177087A (en) * 2005-12-28 2007-07-12 Denki Kagaku Kogyo Kk Injection material and method
JP2009235174A (en) * 2008-03-26 2009-10-15 Mitsubishi Rayon Co Ltd Hardener for soil stabilization chemical liquid, and the soil stabilization chemical liquid
JP2014043582A (en) * 2013-10-21 2014-03-13 Mitsubishi Rayon Co Ltd Curative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212620A (en) * 1992-06-16 1994-08-02 Kyokado Eng Co Ltd Method of ground impregnation construction
JP2007177087A (en) * 2005-12-28 2007-07-12 Denki Kagaku Kogyo Kk Injection material and method
JP2009235174A (en) * 2008-03-26 2009-10-15 Mitsubishi Rayon Co Ltd Hardener for soil stabilization chemical liquid, and the soil stabilization chemical liquid
JP2014043582A (en) * 2013-10-21 2014-03-13 Mitsubishi Rayon Co Ltd Curative

Similar Documents

Publication Publication Date Title
EP0273445B1 (en) Chemical grout for ground injection and method for accretion
JPS62199684A (en) Soil stabilization works
JPH0525272B2 (en)
JPH024634B2 (en)
JP3226510B2 (en) Ground hardening method
JP3437084B2 (en) Injected material for ground consolidation and ground injection method using this injected material
JPH0236154B2 (en) JIBANCHUNYUZAIOYOBIJIBANNOANTEIKAHOHO
JPH10324872A (en) Grout for ground and grout injection method
JPH0554520B2 (en)
JP2001098271A (en) Ground solidification material
JP2588053B2 (en) Ground injection method
JPS6223995B2 (en)
JPH04356588A (en) Stabilization of soil
JP2801272B2 (en) Work stabilization method
JP4094285B2 (en) Silicate-based soil stabilization chemicals
JPS58174489A (en) Stabilization method of soil
JPH08269449A (en) Grout for the ground and method for grouting the ground
JP4519207B2 (en) Chemical injection method
KR101078043B1 (en) Composition for Grouting by Liquid Injection Type and Method of Construction Using Thereof
JPH05320643A (en) Grout for ground and grouting work
JPS5842228B2 (en) Doshitsu no Antei Kahouhou
JPH08134446A (en) Grout for ground and method for grouting ground
JP2001348572A (en) Method of solidifying ground foundation
JP2000109835A (en) Chemical liquid to be injected in soil
JP2002180046A (en) Ground-grouting material