JPS629154B2 - - Google Patents

Info

Publication number
JPS629154B2
JPS629154B2 JP53158674A JP15867478A JPS629154B2 JP S629154 B2 JPS629154 B2 JP S629154B2 JP 53158674 A JP53158674 A JP 53158674A JP 15867478 A JP15867478 A JP 15867478A JP S629154 B2 JPS629154 B2 JP S629154B2
Authority
JP
Japan
Prior art keywords
ground
gypsum
grout
sodium silicate
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158674A
Other languages
Japanese (ja)
Other versions
JPS5586879A (en
Inventor
Shunsuke Tazawa
Kenji Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP15867478A priority Critical patent/JPS5586879A/en
Publication of JPS5586879A publication Critical patent/JPS5586879A/en
Publication of JPS629154B2 publication Critical patent/JPS629154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 本発明は改良された珪酸塩グラフトにより地盤
を安定化させる方法に関する。 従来、軟弱地盤を強化したり、湧水地盤の止水
をするために種々の薬液を地盤に注入し、地盤中
で硬化させる薬液注入工法(グラウト工法)が知
られているが、近年珪酸ソーダ水溶液を主剤と
し、これに硬化剤を配合して成る薬液、いわゆる
珪酸塩系グラフトが安価であること、他の化学グ
ラウトにくらべて危険性が少ないことなどの特徴
があることから広く実用化されている。 薬液注入工法の最近の動向は、より性能がすぐ
れたグラウトを開発するための研究が進められて
いる一方これと並行してより確実で安全な施工法
の開発が進められている。 たとえば、従来はゲルタイムを数分ないし数十
分に調節したグラウトを地盤に注入し、土壌粒子
の間隙にグラウトを充分浸透させたのち硬化させ
る施工法、いわゆる浸透注入工法といわれる施工
法が一般に行なわれているが、このようにゲルタ
イムが数分以上のグラウトを地盤に注入すると地
盤によつてはグラウトがまだ硬化しないうちに施
工場所以外の地盤中に流出して施工を不確実なも
のにしたり、グラウトが地下水や井戸水に流入し
て公害問題を起したりする恐れがあるので最近は
かかるトラブルが起らないよう、地盤に注入した
グラウトを地盤中において数秒ないし十数秒の短
時間で硬化させる施工法、いわゆる瞬結工法とい
われる施工法が開発された。 この瞬結工法によれば、地盤に注入したグラウ
トが施工個所以外の地盤中に流出したり、井戸
水、地下水等に混入するような恐れはないが、こ
の工法は所定量のグラウトをごく短時間のうちに
地盤中に注入するので、土壌粒子の間隙にグラウ
トが十分に浸透せず、このため浸透注入工法によ
る場合にくらべてグラウトと土壌の混合状態が格
段に悪い。 したがつて、瞬結工法により地盤を安定化させ
た場合は処理土壌の強度が小さくて、該土壌を掘
削した場合に地盤が崩壊する恐れがある。また、
従来の珪酸塩系グラウトを瞬結工法に適用した場
合は硬化物の初期強度が小さいので流水の激しい
地盤にグラウトを注入した場合には硬化物が流出
することがある。 本発明は瞬結工法に適用した場合にも上記のよ
うな欠点をあらわさない珪酸塩系グラウトにより
地盤を安定化させる方法であつて、その要旨とす
るところは、主剤である珪酸ソーダ水溶液と硬化
剤の混合物からなるグラウトを地盤に注入し、地
盤中において数秒ないし十数秒のうちに硬化させ
て地盤を安定化させる瞬結工法において、(a)石灰
と(b)2水石膏、α半水石膏、β半水石膏および
型無水石膏からなる群から選ばれた少なくとも1
種の石膏を(a),(b)=1:3〜3:1(重量比)の
割合で混合してなる硬化剤を珪酸ソーダ:純分1
重量部あたり0.7〜3.6重量部を使用することを特
徴とする地盤の安定化法にある。 珪酸ソーダ水溶液を主剤とし、これに硬化剤と
して石灰、2水石膏、α半水石膏、β半水石膏、
型無水石膏を配合して成るグラウトは従来公知
であるが、これらのグラウトのうち、石灰、2水
石膏等を硬化剤とするグラウトを瞬結工法に適用
した場合は処理土壌の強度が小さくて掘削により
地盤は容易に崩壊し、また、α半水石膏、β半水
石膏、型無水石膏等を硬化剤とするグラウトを
瞬結工法に適用しようとしてもグラウトの粘度が
高過ぎて地盤注入が困難である。 しかるに、本発明者らの研究によれば、石灰と
2水石膏、α半水石膏、β半水石膏および型無
水石膏からなる群から選ばれた少なくとも1種の
石膏を重量で1:3〜3:1の割合に混合したも
のと珪酸ソーダ水溶液を組み合せたグラウトは粘
度が低くて地盤注入が容易であるばかりか、この
グラウトを用いて瞬結工法により地盤を安定化さ
せた場合は処理土壌の強度が大きくて、瞬結工法
による地盤の安定化が従来よりも有利に行なえる
ことが見出された。 本発明はかかる知見に基づき完成されたもの
で、本発明にしたがえば安定化処理後の土壌強度
が十分大きいので処理後の掘削時に地盤が崩壊す
る恐れがなく、また本発明に用いるグラウトは硬
化物の初期強度が大きいので流水の激しい地盤に
グラウトを注入した場合にも硬化体が流失するよ
うなことはない。 本発明に用いるグラウトについて説明すると、
珪酸ソーダとしては従来珪酸塩系グラウトに用い
られているSiO2/Na2Oのモル比が2〜4の珪酸
ソーダを用いることができるが、通常はJIS、K
―1408に規定されている1〜3号珪酸ソーダ、特
に3号珪酸ソーダが好適に用いられる。 これらの珪酸ソーダは一般に水溶液状となつて
いるが、施工時に更に水で希釈して地盤安定化に
適した適宜の濃度の水溶液にする。 たとえば、珪酸ソーダ水溶液(A液)と硬化剤
を水にといてスラリー状にしたもの(B液)を等
容量ずつ混合して地盤中に注入する通常の施工法
において珪酸ソーダ源としてJIS3号珪酸ソーダが
用いられた場合は該珪酸ソーダ40〜180容量部を
水で希釈して200容量部にしたものをA液として
使用する。A液中の珪酸ソーダ濃度を高めるほど
処理土壌の強度は大きくなる。 本発明においてはグラウトの硬化剤として石灰
〔以下(a)成分という〕と2水石膏、α半水石膏、
β半水石膏および型無水石膏からなる群から選
ばれた少なくとも1種の石膏〔以下(b)成分とい
う〕を重量で1:3〜3:1の割合に混合したも
ので(以下、本発明の硬化剤という)を使用す
る。 第1図はJIS3号珪酸ソーダ100mlと水100mlの混
合物からなるA液と、これと等容量の本発明の硬
化剤のスラリーからなるB液(200ml)とを混合
し、混合物が硬化してから60分後に測定した硬化
物の強度と硬化剤組成との関係をあらわす図であ
つて、図の横軸は(a)成分と(b)成分の混合比(重
量)を示し、縦軸は硬化物の一軸圧縮強度を示
す。 そして、曲線1はB液中に消石灰と2水石膏の
混合物を120g含有させた場合を、曲線2はB液
中に消石灰とα半水石膏の混合物を120g含有さ
せた場合を、曲線3はB液中に消石灰と型無水
石膏の混合物を100g含有させた場合をそれぞれ
示す。 第1図から明らかなように、(a)成分および(b)成
分の各単独で珪酸ソーダ水溶液を硬化させた場合
は硬化剤の強度は小さいが、(a),(b)両成分を混用
して珪酸ソーダ水溶液を硬化させると硬化物の強
度は向上し、(a)と(b)の混合割合が1:3〜3:1
の場合に硬化物強度は最も大きくなる。 本発明に用いられる(a)成分の種類としては消石
灰および生石灰が挙げられ、これらは混合して用
いることもできる。 本発明において(b)成分として用いられる2水石
膏、α半水石膏、β半水石膏はいかなる種類のも
のでも使用可能であるが、通常、リン酸、フツ
酸、硫安等の製造時あるいは製塩やチタン製錬、
排煙脱硫操作時に副生する化学石膏が好適に用い
られる。 本発明において(b)成分として用いられる型無
水石膏とは2水石膏、半水石膏を400℃以上の温
度で焼成して得られるものであつて、通常湿式リ
ン酸製造時や排煙脱硫操作時に副生する2水石
膏、半水石膏等を焼成して得られるものが安価で
入手が容易なので好適なものと云えるが、たとえ
ば輸入の天然型無水石膏等を用いることもでき
る。 本発明の硬化剤の使用量はグラウトにケルタイ
ムに応じて変化させ、ゲルタイムを短くする場合
は多く用い、反対にゲルタイムを長くする場合は
少なく用いる。 たとえば、JIS3号珪酸ソーダ100と水100か
らなるA液(200)とこれと等容量の本発明の
硬化剤スラリー(B液、200)の混合物からな
るグラウト(400)により地盤を安定化させる
場合はB液中に本発明の硬化剤を40〜180Kg含有
させる。これによりグラウトを地盤中において数
秒〜十数秒で硬化させることができる。 JIS3号珪酸ソーダ100には、珪酸ソーダが純
分換算で通常50〜56Kg含まれているので、珪酸ソ
ーダ:純分1重量部あたり、本発明の硬化剤を
0.7〜3.6重量部の割合で使用することによりグラ
ウトの硬化時間を数秒ないし十数秒に調節するこ
とができる。 本発明の実施にあたり、グラウトの土壌注入法
について説明すると、先ず施工前にそれぞれ施工
目的に適した濃度にした珪酸ソーダ水溶液(A
液)と本発明の硬化剤スラリー(B液)とをそれ
ぞれ専用の槽で調合し、次いで施工時に両者を混
合して地盤中に注入する。 瞬結工法により地盤を安定化する場合、グラウ
トの地盤注入法として従来種々の方法が提案され
ており、たとえばその先端(土壌注入部)に適当
な混合器を装着した中空二重管を地盤に打ち込
み、管内にA液とB液をそれぞれ別々に流し、先
端の混合器で両液を混合したのち直ちに地盤中に
注入する方法が一般に行なわれている。本発明に
おいてもこのような方法を採るのが好ましい。 以下、本発明を実施例により説明する。 実施例 JIS3号珪酸ソーダ100mlに水100mlを加えて溶解
し、これをA液とした。 一方、第1表に記載の通りの種々の濃度の本発
明の硬化剤スラリー200mlをつくり、これをB液
とした。 A,B両液を混合し、5℃の温度で硬化させた
場合のゲルタイムと硬化物(ホモゲル)の一軸圧
縮強度を測定した結果およびA,B混合物をこれ
と等重量の標準砂と混合し、硬化させて得られた
砂ゲルの一軸圧縮強度を測定した結果を第1表に
示す。 なお、比較のために、本発明の硬化剤を構成す
るa,b両成分の各単独のスラリーからなるB液
をつくり、これと上記A液との等容量混合物につ
いて上記と同じ試験をした結果を対照として第1
表に併記する。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of stabilizing ground by improved silicate grafting. Conventionally, chemical injection methods (grouting methods) have been known in which various chemical solutions are injected into the ground and hardened in the ground in order to strengthen soft ground or stop water flowing from springs. The so-called silicate-based graft, which is a chemical solution consisting of an aqueous solution as the main ingredient and a curing agent mixed therein, has been widely put into practical use because it is inexpensive and less dangerous than other chemical grouts. ing. Recent trends in chemical injection methods include research to develop grouts with even better performance, and at the same time, more reliable and safer construction methods are being developed. For example, the conventional construction method is to inject grout with a gel time of several minutes to several tens of minutes into the ground, allowing the grout to fully penetrate into the gaps between soil particles and then hardening, which is the so-called penetration injection method. However, if grout with a gel time of several minutes or more is injected into the ground, depending on the ground, the grout may leak into the ground outside the construction site before it hardens, making the construction process uncertain. There is a risk that grout may flow into groundwater or well water and cause pollution problems, so in order to prevent such problems, grout is poured into the ground and hardened within a short period of a few seconds to more than 10 seconds. A construction method called the instant connection method was developed. According to this instant setting method, there is no risk that the grout injected into the ground will flow into the ground other than the construction site or mix with well water, groundwater, etc.; Since it is injected into the ground, the grout does not penetrate sufficiently into the gaps between soil particles, resulting in a much worse mixing condition of the grout and soil than in the case of the infiltration injection method. Therefore, when the ground is stabilized by the instant setting method, the strength of the treated soil is low, and there is a risk that the ground will collapse when the soil is excavated. Also,
When conventional silicate-based grout is applied to the instant setting method, the initial strength of the hardened product is low, so if the grout is injected into the ground with heavy flowing water, the hardened product may flow out. The present invention is a method for stabilizing the ground using a silicate-based grout that does not exhibit the above-mentioned drawbacks even when applied to the instant bonding method. In the instant setting method, grout consisting of a mixture of (a) lime, (b) dihydrate gypsum, and alpha hemihydrate is injected into the ground and hardens within a few seconds to tens of seconds to stabilize the ground. At least one selected from the group consisting of gypsum, β-hemihydrate gypsum, and type anhydrite
A hardening agent made by mixing seed gypsum in a ratio of (a) and (b) = 1:3 to 3:1 (weight ratio) is mixed with sodium silicate: purity 1
A method for stabilizing the ground characterized by using 0.7 to 3.6 parts by weight per part by weight. The main ingredient is aqueous sodium silicate solution, and the hardening agents are lime, dihydrate gypsum, α-hemihydrate gypsum, β-hemihydrate gypsum,
Grouts containing type anhydrous gypsum are conventionally known, but among these grouts, when grouts containing lime, dihydrate gypsum, etc. as hardeners are applied to the instant setting method, the strength of the treated soil is low and The ground easily collapses due to excavation, and even if we try to apply grout using hardeners such as α-hemihydrate gypsum, β-hemihydrate gypsum, and type anhydrite to the instant setting method, the viscosity of the grout is too high and it is difficult to inject into the ground. Have difficulty. However, according to the research of the present inventors, lime and at least one type of gypsum selected from the group consisting of dihydrate gypsum, α-hemihydrate gypsum, β-hemihydrate gypsum, and type anhydrite are mixed in a ratio of 1:3 to 1:3 by weight. A grout made by combining a 3:1 mixture with a sodium silicate aqueous solution has a low viscosity and is easy to inject into the ground, and when this grout is used to stabilize the ground using the instant setting method, the treated soil It was discovered that the strength of the ground is high, and that the instantaneous bonding method can stabilize the ground more favorably than conventional methods. The present invention was completed based on this knowledge, and according to the present invention, the soil strength after stabilization treatment is sufficiently high, so there is no fear that the ground will collapse during excavation after treatment, and the grout used in the present invention is Since the initial strength of the hardened product is high, the hardened product will not be washed away even when the grout is injected into the ground where there is heavy running water. To explain the grout used in the present invention,
As the sodium silicate, sodium silicate with a molar ratio of SiO 2 /Na 2 O of 2 to 4, which is conventionally used in silicate grouts, can be used, but usually JIS, K
-1408, No. 1 to No. 3 sodium silicate, particularly No. 3 sodium silicate, is preferably used. These sodium silicates are generally in the form of an aqueous solution, but at the time of construction, they are further diluted with water to form an aqueous solution with an appropriate concentration suitable for ground stabilization. For example, JIS No. 3 silicic acid is used as a source of sodium silicate in the usual construction method, in which equal volumes of a sodium silicate aqueous solution (liquid A) and a slurry made by dissolving a hardening agent in water (liquid B) are mixed and injected into the ground. When soda is used, 40 to 180 parts by volume of the sodium silicate is diluted with water to make 200 parts by volume and used as liquid A. The higher the concentration of sodium silicate in Solution A, the greater the strength of the treated soil. In the present invention, lime (hereinafter referred to as component (a)), dihydrate gypsum, α-hemihydrate gypsum,
A mixture of at least one type of gypsum (hereinafter referred to as component (b)) selected from the group consisting of β-hemihydrate gypsum and type anhydrite in a weight ratio of 1:3 to 3:1 (hereinafter referred to as the present invention). curing agent). Figure 1 shows a mixture of liquid A consisting of a mixture of 100 ml of JIS No. 3 sodium silicate and 100 ml of water, and liquid B (200 ml) consisting of an equal volume of slurry of the curing agent of the present invention, and after the mixture has hardened. This is a diagram showing the relationship between the strength of the cured product measured after 60 minutes and the curing agent composition. The horizontal axis of the diagram shows the mixing ratio (weight) of components (a) and (b), and the vertical axis shows the curing Indicates the unconfined compressive strength of an object. Curve 1 represents the case where 120g of a mixture of slaked lime and dihydrate gypsum is contained in liquid B, curve 2 represents the case where 120g of a mixture of slaked lime and α-hemihydrate gypsum is contained in liquid B, and curve 3 represents the case where 120g of a mixture of slaked lime and α-hemihydrate gypsum is contained in liquid B. Each case is shown in which 100g of a mixture of slaked lime and type anhydrite is contained in liquid B. As is clear from Figure 1, when the sodium silicate aqueous solution is cured using each component (a) and (b) alone, the strength of the curing agent is small, but when both components (a) and (b) are used in combination, the strength of the curing agent is low. When the sodium silicate aqueous solution is cured, the strength of the cured product increases, and the mixing ratio of (a) and (b) is 1:3 to 3:1.
In this case, the strength of the cured product is the highest. Examples of the component (a) used in the present invention include slaked lime and quicklime, which can also be used in combination. Any type of gypsum dihydrate, gypsum α hemihydrate, and gypsum β hemihydrate used as component (b) in the present invention can be used, but it is usually used during the production of phosphoric acid, hydrofluoric acid, ammonium sulfate, etc. or during salt production. and titanium smelting,
Chemical gypsum, which is produced as a by-product during flue gas desulfurization, is preferably used. The type anhydrite used as component (b) in the present invention is obtained by firing gypsum dihydrate or gypsum hemihydrate at a temperature of 400°C or higher, and is usually used during wet phosphoric acid production or during flue gas desulfurization. A material obtained by firing gypsum dihydrate, gypsum hemihydrate, etc., which are sometimes by-products, is preferred because it is cheap and easily available, but imported natural anhydrite, etc., for example, can also be used. The amount of the curing agent used in the present invention is varied depending on the gel time of the grout; more is used when the gel time is to be shortened, and less is used when the gel time is to be lengthened. For example, when the ground is stabilized with a grout (400) made of a mixture of JIS No. 3 sodium silicate 100% and water 100% A liquid (200) and an equal volume of the hardener slurry of the present invention (B liquid, 200). In this case, 40 to 180 kg of the curing agent of the present invention is contained in liquid B. This allows the grout to harden in the ground in a few seconds to more than ten seconds. Since JIS No. 3 Sodium Silicate 100 usually contains 50 to 56 kg of sodium silicate in terms of pure content, the curing agent of the present invention is added per 1 part by weight of sodium silicate in pure terms.
By using it in a proportion of 0.7 to 3.6 parts by weight, the curing time of the grout can be adjusted from several seconds to more than ten seconds. To explain the soil injection method for grout in implementing the present invention, first, before construction, a sodium silicate aqueous solution (A
Liquid) and the curing agent slurry of the present invention (Liquid B) are prepared in respective dedicated tanks, and then, during construction, the two are mixed and injected into the ground. When stabilizing the ground using the instant bonding method, various methods have been proposed for injecting grout into the ground. The commonly used method is to pour liquid A and liquid separately into the pipe, mix the two liquids in a mixer at the tip, and then immediately inject them into the ground. It is preferable to adopt such a method in the present invention as well. The present invention will be explained below using examples. Example 100 ml of water was added to 100 ml of JIS No. 3 sodium silicate to dissolve it, and this was used as liquid A. On the other hand, 200 ml of curing agent slurries of the present invention having various concentrations as shown in Table 1 were prepared and used as liquid B. The results of measuring the gel time and unconfined compressive strength of the cured product (homogel) when both liquids A and B were mixed and cured at a temperature of 5°C, and when the mixture A and B were mixed with the same weight of standard sand. Table 1 shows the results of measuring the unconfined compressive strength of the sand gel obtained by curing. For comparison, a liquid B consisting of a slurry of both components a and b constituting the curing agent of the present invention was prepared, and a mixture of equal volumes of this and the liquid A was subjected to the same test as above. The first
Also listed in the table. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるグラウトを硬化させる
ことによつて得られる硬化物の一軸圧縮強度と硬
化剤組成との関係をあらわす図であつて、図の横
軸は硬化剤組成〔(a)成分と(b)成分の重量混合比〕
を、縦軸は硬化物の一軸圧縮強度をそれぞれ示
す。 また、図中の記号は、下記の通りである。
FIG. 1 is a diagram showing the relationship between the uniaxial compressive strength of the cured product obtained by curing the grout used in the present invention and the curing agent composition, and the horizontal axis of the figure is the curing agent composition [(a) Weight mixing ratio of component and component (b)]
, the vertical axis indicates the uniaxial compressive strength of the cured product. Moreover, the symbols in the figure are as follows.

【表】【table】

Claims (1)

【特許請求の範囲】 1 主剤である珪酸ソーダ水溶液と硬化剤の混合
物からなるグラウトを地盤に注入し、地盤中にお
いて数秒ないし十数秒のうちに硬化させて地盤を
安定化させる瞬結工法において、(a)石灰と(b)2水
石膏、α半水石膏、β半水石膏および型無水石
膏からなる群から選ばれた少なくとも1種の石膏
を(a):(b)=1:3〜3:1(重量比)の割合で混
合してなる硬化剤を珪酸ソーダ:純分1重量部あ
たり0.7〜3.6重量部を使用することを特徴とする
地盤の安定化法。 2 石灰が消石灰または/および生石灰である特
許請求の範囲第1項記載の安定化法。
[Scope of Claims] 1. An instant setting method in which a grout made of a mixture of a sodium silicate aqueous solution as a main ingredient and a hardening agent is injected into the ground and hardened within a few seconds to more than ten seconds to stabilize the ground, (a) lime and (b) at least one type of gypsum selected from the group consisting of dihydrate gypsum, alpha hemihydrate gypsum, beta hemihydrate gypsum, and type anhydrite (a):(b)=1:3~ A method for stabilizing the ground, characterized in that a hardening agent mixed at a ratio of 3:1 (weight ratio) is used in an amount of 0.7 to 3.6 parts by weight per 1 part by weight of sodium silicate. 2. The stabilization method according to claim 1, wherein the lime is slaked lime and/or quicklime.
JP15867478A 1978-12-25 1978-12-25 Stabilization of ground Granted JPS5586879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15867478A JPS5586879A (en) 1978-12-25 1978-12-25 Stabilization of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15867478A JPS5586879A (en) 1978-12-25 1978-12-25 Stabilization of ground

Publications (2)

Publication Number Publication Date
JPS5586879A JPS5586879A (en) 1980-07-01
JPS629154B2 true JPS629154B2 (en) 1987-02-26

Family

ID=15676878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15867478A Granted JPS5586879A (en) 1978-12-25 1978-12-25 Stabilization of ground

Country Status (1)

Country Link
JP (1) JPS5586879A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925877A (en) * 1982-08-04 1984-02-09 Nitto Chem Ind Co Ltd Grouting method
JPS5925876A (en) * 1982-08-04 1984-02-09 Nitto Chem Ind Co Ltd Grouting method
JPH0813965B2 (en) * 1988-03-31 1996-02-14 積水化学工業株式会社 Ground injection chemical solution and method for injecting chemical solution into the ground using the chemical solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971735A (en) * 1972-11-14 1974-07-11
JPS5235412A (en) * 1975-09-16 1977-03-18 Kyokado Eng Co Composite grouting method
JPS53122203A (en) * 1977-03-31 1978-10-25 Sanyo Chemical Ind Ltd Method of stabilizing nature of soil by chemical liquid
JPS54162810A (en) * 1978-06-13 1979-12-24 Sanyo Chemical Ind Ltd Soil nature stabilizing method by liquid chemicals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971735A (en) * 1972-11-14 1974-07-11
JPS5235412A (en) * 1975-09-16 1977-03-18 Kyokado Eng Co Composite grouting method
JPS53122203A (en) * 1977-03-31 1978-10-25 Sanyo Chemical Ind Ltd Method of stabilizing nature of soil by chemical liquid
JPS54162810A (en) * 1978-06-13 1979-12-24 Sanyo Chemical Ind Ltd Soil nature stabilizing method by liquid chemicals

Also Published As

Publication number Publication date
JPS5586879A (en) 1980-07-01

Similar Documents

Publication Publication Date Title
US4548270A (en) Process for plugging a subterranean formation
JPS629154B2 (en)
JPS6216991B2 (en)
JPH09104865A (en) Material for injection
JPS5827833B2 (en) Nanjiyakujibannoanteikashiyorikohou
JPS629155B2 (en)
JPS6223995B2 (en)
JPH0236154B2 (en) JIBANCHUNYUZAIOYOBIJIBANNOANTEIKAHOHO
JPS58138778A (en) Soil hardening agnet
JPS6260436B2 (en)
JPS58103586A (en) Pollution-free grouting
JPS6241552B2 (en)
JPS6216990B2 (en)
JPH08333146A (en) Setting regulator, grouting material composition, and soil improvement using the composition
JPS6115114B2 (en)
JPS6247915B2 (en)
JPH07324189A (en) Grout for the ground and method for grouting the ground
JPS59152986A (en) Impregnation method for ground
JPS59131690A (en) Process for injecting into ground
JPS5949284A (en) Slag-lime liquid impregnation method
JPH0791537B2 (en) Ground injection chemical solution and method for injecting chemical solution into the ground using this chemical solution
JPH1161123A (en) Material for civil engineering and its application
JPH0813965B2 (en) Ground injection chemical solution and method for injecting chemical solution into the ground using the chemical solution
SU65406A1 (en) A method of manufacturing building masses based on cement with the addition of calcium chloride
JPS5962689A (en) Soil stabilizer