JPH0565569B2 - - Google Patents

Info

Publication number
JPH0565569B2
JPH0565569B2 JP62129288A JP12928887A JPH0565569B2 JP H0565569 B2 JPH0565569 B2 JP H0565569B2 JP 62129288 A JP62129288 A JP 62129288A JP 12928887 A JP12928887 A JP 12928887A JP H0565569 B2 JPH0565569 B2 JP H0565569B2
Authority
JP
Japan
Prior art keywords
solder
alloy
materials
lead frame
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62129288A
Other languages
Japanese (ja)
Other versions
JPS63293130A (en
Inventor
Rensei Futatsuka
Shunichi Chiba
Tadao Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP12928887A priority Critical patent/JPS63293130A/en
Publication of JPS63293130A publication Critical patent/JPS63293130A/en
Publication of JPH0565569B2 publication Critical patent/JPH0565569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、高強度と、すぐれたはんだの耐熱
剥離性を有する半導体装置用Cu合金製リードフ
レーム材に関するものである。 〔従来の技術〕 従来、IC、LSI、VLSIなどの半導体装置のリ
ードフレーム材として、例えば特開昭61−174345
号公報には、重量%で、Sn:1.0〜3.0%、Zn:
0.1〜2.0%、Ni:0.1〜1.0%を含有し、さらにAl、
Si、Mn、Mgのうちより選ばれた1種以上の元
素を合計で0.005〜0.5%含有し、残部が実質的に
CuからなるCu合金が記載されており、さらに特
開昭61−264144号公報には、Sn:0.8〜10.0%、
P:0.005〜0.08%、Ni:0.05〜1.0%、Al、Be、
Co、Cr、Fe、Hf、In、Mn、Mo、Mg、Pb、
Si、Te、Ti、Zn、Zrの1種又は2種以上を0.05
〜1.0%含有し、残部がCuおよび不可避不純物か
らなるCu合金が記載されている。 〔発明が解決しようとする問題点〕 しかし、近年の半導体装置の高性能化および高
集積化に伴い、ピンを基板に直接ハンダ付けする
リードフレーム材が要求され、さらに小型化に伴
つてピンの足も細くなり、リードフレーム材にも
一層の薄肉化と高強度が要求されるようになつて
きたが、上記従来のCu合金製リードフレーム材
は、上記要求に対して十分に対応することができ
ないばかりでなく、はんだの耐熱剥離性にも満足
するものでないため、信頼性の点で問題点があつ
た。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点から
導電性を多少犠牲にしても薄肉化が可能で強度の
一層すぐれた半導体装置用Cu合金製リードフレ
ーム材を開発すべく研究を行つた結果、 Pを含有せずにNiを1.0%より多く含有した重
量%で(以下、%は重量%を示す)、 Sn:2.1〜2.8%、 Ni:1.0超〜2.0%、 Si:0.1〜0.5%、 Zn:0.1〜1.0%、 を含有し、残りがCuと不可避不純物からなる組
成を有し、上記SiはNiとNi2Si化合物を形成して
いるCu合金は、引張強さ;60Kgf/mm2以上の高
強度を有し、かつ、はんだの耐熱剥離性にもすぐ
れ、さらに、薄肉化されたリードフレーム材に要
求される繰り返し曲げ性および伸びにもすぐれた
特性をもつという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、 Sn:2.1〜2.8%、 Ni:1.0超〜2.0%、 Si:0.1〜0.5%、 Zn:0.1〜1.0%、 を含有し、残りがCuと不可避不純物からなる組
成を有し、上記SiはNiとNi2Si化合物を形成して
いるCu合金で構成された半導体装置用Cu合金製
リードフレーム材に特徴を有するものである。 以下に、成分組成を上記の通りに限定した理由
を説明する。 (a) Sn Sn成分には、強度と繰返し曲げ性を向上さ
せる作用があるが、その含有量が2.1%未満で
は、上記特性に所望の向上効果が得られず、一
方その含有量が2.8%を越えると熱間加工性が
低下するようになうことから、その含有量を
2.1〜2.8%と定めた。 (b) Ni Ni成分には、薄肉化しても強度および繰返
し曲げ性を向上させる作用があるが、その含有
量が1.0%以下では上記作用に所望の効果が得
られず、一方その含有量が2.8%を越えると熱
間加工性が低下するようになることから、その
含有量を1.0超〜2.0%と定めた。 (c) Si Si成分には、主としてNi2Siの化合物を形成
して強度を向上させる作用があるが、その含有
量が0.1%未満では所望の高強度を確保するこ
とができず、一方その含有量が0.5%を越える
と、遊離Siを形成するようになつて、はんだの
耐熱剥離性が損なわれるようになることから、
その含有量を0.1〜0.5%と定めた。 (d) Zn Zn成分には、はんだの耐熱剥離性を一段と
向上させる作用があるが、その含有量が0.1%
未満では、所望のすぐれたはんだの耐熱剥離性
を確保することができず、一方その含有量が1
%を越えると、はんだ付け性が劣化するように
なることから、その含有量を0.1〜1%と定め
た。 〔実施例〕 つぎに、この発明を実施例により具体的に説明
する。 通常の低周波溝型溶解炉を用い、木炭被覆下の
大雰囲気中で、それぞれ第1表に示される成分組
成をもつた合金溶湯を調製し、半連続鋳造法に
て、厚さ:160mm×幅:450mm×長さ:2400mmの寸
法のもつた鋳塊に鋳造し、この鋳塊に温度:800
℃で熱間圧延を施して、厚さ:10mmの熱延板と
し、熱間圧延後、直ちに水冷し、スケール除去の
面削を行ない、ついで上記熱延板に冷間圧延と焼
鈍、酸洗を交互に繰返し、厚さ:0.5mmの冷延板
とした時点で、これに温度:500℃に2時間保持
の条件で焼鈍を施し、再び冷間圧延にて、その厚
さを0.25mmとし、最終的に連続焼鈍炉を用いて、
温度:500℃、20秒間保持の条件で歪取り焼鈍を
施すことによつて、本発明Cu合金製リードフレ
ーム素材(以下、本発明リードフレーム素材とい
う)1〜9、比較Cu合金製リードフレーム素材
(以下、比較リード素材という)1〜4をそれぞ
れ製造した。なお、従来のCu合金製リードフレ
ーム素材(以下、従来リード素材という)は市販
品を用いた。 なお、比較リード素材1〜4は、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※
印を付しもの)が、この発明の範囲から外れたも
のである。 この結果得られた本発明リード素材1〜9、比
較リード素材1〜4および従来リード素材につい
て、引張試験、はんだの熱剥離試験および繰り返
し試験を行ない、それぞれ引張強さ、伸び、はん
だの耐熱剥離性および繰り返し曲げ性を評価し
た。 上記引張試験は、圧延方向に平行に採取した
JIS5号試験片を用いて行ない、引張強さと伸びを
測定した。 上記はんだの熱剥離試験は、厚さ:0.25mm×
幅:15mm×長さ:60mmの寸法のもつた試験片を、
ロジンフラツクスで処理し、温度:230℃の60%
Sn−40%Pbのはんだ浴中に浸漬して、その表面
に上記はんだを付着させ、この状態で、大気中、
温度:150℃に1000時間保持の条件で加熱し、加
熱後、試験片を180°密着曲げし、再び180°曲げ戻
す条件で行ない、この180°曲げ部におけるはんだ
剥離の有無を観察した。 上記繰り返し曲げ試験は、厚さ:0.25mm×幅:
0.5mmの寸法のもつた試験片を、水平に置き、中
心を支点として一方端に取り付けた226.8g(8
オンス)の錐りにより90°曲げ、再び水平に戻す
工程を1サイクルとし、これを繰り返し条件でそ
れぞれ10個の試験片について行ない、破断に至る
までの曲げサイクル数を測定し、この測定結果に
もとづいて10個の試験片の平均値を求めた。 上記引張試験、はんだ熱剥離試験および繰り返
し曲げ試験の結果を第1表に示した。 第1表に示された結果から、本発明リード素材
1〜9は、いずれも従来リード素材と同等あるい
はこれ以上のすぐれた繰り返し曲げ性もち、かつ
従来リード素材と比較して一段とすぐれてた引張
強さおよびはんだの耐熱剥離性をもつことが明ら
かであり、また、比較リード素材1〜4に見られ
るように、構成成分のうちのいずれかの成分含有
量でも、この発明の範囲から外れると、上記特性
のうちの少なくともいずれかの性質が劣ることも
明らかである。 さらに、本発明リード素材のその他の性質、た
とえば、熱および電気伝導性、めつき性およびは
んだ付け性なども調べたが、電気伝導性に関して
は、半導体装置のリードフレーム材として最低必
要な3%IACSより一段と高い20%IACS以上の導
電性を示し、熱電導性にもすぐれ、まためつき性
およびはんだ付け性に関しても、従来リード素材
とほぼ同等のすぐれたものであることを確認し
た。
[Industrial Application Field] The present invention relates to a lead frame material made of a Cu alloy for semiconductor devices, which has high strength and excellent heat peeling resistance of solder. [Prior art] Conventionally, lead frame materials for semiconductor devices such as IC, LSI, VLSI, etc.
In the publication, Sn: 1.0 to 3.0%, Zn:
Contains 0.1-2.0%, Ni: 0.1-1.0%, and further contains Al,
Contains a total of 0.005 to 0.5% of one or more elements selected from among Si, Mn, and Mg, and the remainder is substantially
A Cu alloy consisting of Cu is described, and JP-A No. 61-264144 also describes a Cu alloy consisting of Sn: 0.8 to 10.0%,
P: 0.005-0.08%, Ni: 0.05-1.0%, Al, Be,
Co, Cr, Fe, Hf, In, Mn, Mo, Mg, Pb,
0.05 of one or more of Si, Te, Ti, Zn, and Zr
A Cu alloy containing up to 1.0% of Cu with the remainder consisting of Cu and unavoidable impurities is described. [Problems to be solved by the invention] However, as semiconductor devices have become more sophisticated and highly integrated in recent years, lead frame materials that allow pins to be soldered directly to the substrate are required. As lead frames become thinner, lead frame materials are required to be even thinner and have higher strength, but the conventional lead frame materials made of Cu alloy mentioned above cannot sufficiently meet the above requirements. Not only was it impossible to do so, but the heat-removability of the solder was also unsatisfactory, which caused problems in terms of reliability. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoints, the present inventors have developed a lead frame made of a Cu alloy for semiconductor devices that can be made thinner and has better strength even if it sacrifices some conductivity. As a result of research to develop the material, we found that it contained no P and more than 1.0% of Ni by weight (hereinafter, % indicates weight%), Sn: 2.1 to 2.8%, Ni: more than 1.0. ~2.0%, Si: 0.1~0.5%, Zn: 0.1~1.0%, and the rest is Cu and unavoidable impurities, and the above Si is Cu forming a Ni2Si compound with Ni. The alloy has a high tensile strength of 60 Kgf/mm 2 or more, has excellent heat peeling resistance of solder, and also has excellent repeated bending and elongation properties required for thinned lead frame materials. They discovered that it has excellent properties. This invention was made based on the above knowledge, and contains Sn: 2.1 to 2.8%, Ni: more than 1.0 to 2.0%, Si: 0.1 to 0.5%, Zn: 0.1 to 1.0%, and the remaining has a composition consisting of Cu and unavoidable impurities, and the above-mentioned Si is characterized by a Cu alloy lead frame material for semiconductor devices composed of a Cu alloy in which Ni forms a Ni 2 Si compound. The reason why the component composition was limited as described above will be explained below. (a) Sn The Sn component has the effect of improving strength and repeated bending properties, but if its content is less than 2.1%, the desired effect of improving the above properties cannot be obtained; If the content is exceeded, hot workability will decrease, so the content should be
It was set at 2.1-2.8%. (b) Ni The Ni component has the effect of improving strength and repeated bendability even when the wall is thinned, but if the content is less than 1.0%, the desired effect cannot be obtained; If it exceeds 2.8%, hot workability will deteriorate, so the content was set at more than 1.0% to 2.0%. (c) Si The Si component mainly has the effect of forming Ni 2 Si compounds to improve strength, but if its content is less than 0.1%, the desired high strength cannot be achieved; If the content exceeds 0.5%, free Si will be formed and the heat peeling properties of the solder will be impaired.
Its content was set at 0.1-0.5%. (d) Zn Zn component has the effect of further improving the heat peeling properties of solder, but its content is 0.1%.
If the content is less than 1, the desired excellent heat peeling resistance of the solder cannot be secured;
%, the solderability deteriorates, so the content was set at 0.1 to 1%. [Example] Next, the present invention will be specifically explained with reference to Examples. Molten alloys having the respective compositions shown in Table 1 were prepared in a large atmosphere under charcoal coating using an ordinary low-frequency groove-type melting furnace, and were cast to a thickness of 160 mm by semi-continuous casting method. It is cast into an ingot with dimensions of width: 450mm x length: 2400mm, and this ingot is heated to a temperature of 800.
℃ to obtain a hot-rolled sheet with a thickness of 10 mm. After hot rolling, the hot-rolled sheet is immediately cooled with water and subjected to surface milling to remove scale. Then, the hot-rolled sheet is cold-rolled, annealed, and pickled. The process was repeated alternately to obtain a cold-rolled plate with a thickness of 0.5 mm. This was then annealed at a temperature of 500°C for 2 hours, and cold-rolled again to a thickness of 0.25 mm. , finally using a continuous annealing furnace,
By performing strain relief annealing at a temperature of 500°C and holding for 20 seconds, the Cu alloy lead frame materials of the present invention (hereinafter referred to as the present lead frame materials) 1 to 9 and the comparative Cu alloy lead frame materials Samples 1 to 4 (hereinafter referred to as comparative lead materials) were manufactured, respectively. Note that a commercially available conventional Cu alloy lead frame material (hereinafter referred to as conventional lead material) was used. In addition, comparative lead materials 1 to 4 all have the content of one of the constituent components (as shown in Table 1).
(marked) are outside the scope of this invention. The resultant lead materials 1 to 9 of the present invention, comparative lead materials 1 to 4, and conventional lead materials were subjected to a tensile test, a solder thermal peeling test, and a repeated test, and were tested for tensile strength, elongation, and solder heat peeling resistance. The strength and repeated bendability were evaluated. The above tensile test was taken parallel to the rolling direction.
Tensile strength and elongation were measured using JIS No. 5 test pieces. The thermal peeling test of the above solder was performed using a thickness of 0.25 mm x
A test piece with dimensions of width: 15 mm x length: 60 mm,
Treated with rosin flux, temperature: 60% of 230℃
Immerse it in a Sn-40%Pb solder bath to attach the above solder to the surface, and in this state, in the atmosphere,
The test piece was heated at a temperature of 150°C for 1000 hours, and after heating, the test piece was closely bent 180° and then bent back 180° again, and the presence or absence of solder peeling at the 180° bent portion was observed. In the above repeated bending test, thickness: 0.25mm x width:
A test piece with a size of 0.5 mm was placed horizontally and attached to one end with the center as a fulcrum.
One cycle is the process of bending 90° with a drill bit of 10 ounces and returning it to the horizontal position.This process is repeated for each of 10 test pieces, and the number of bending cycles until breakage is measured. Based on this, the average value of 10 test pieces was determined. Table 1 shows the results of the tensile test, solder heat peeling test, and repeated bending test. From the results shown in Table 1, lead materials 1 to 9 of the present invention all have excellent repeated bending properties equivalent to or better than conventional lead materials, and have even better tensile strength than conventional lead materials. It is clear that the material has strength and heat peeling resistance of solder, and as seen in Comparative Lead Materials 1 to 4, the content of any of the constituent components is outside the scope of the present invention. It is also clear that at least one of the above characteristics is inferior. Furthermore, other properties of the lead material of the present invention, such as thermal and electrical conductivity, plating properties, and soldering properties, were also investigated. It has been confirmed that it exhibits electrical conductivity of 20% IACS or higher, which is even higher than IACS, and has excellent thermal conductivity, as well as excellent stickiness and solderability that are almost on par with conventional lead materials.

【表】 [発明の効果] この発明のCu合金製リードフレーム材は、高
強度とすぐれたはんだの耐熱剥離性を有し、さら
に薄肉化してもリードフレームに要求される繰り
返し曲げ、熱おび電気伝導性、めつき性およびは
んだ付け性などの特性にも、従来のCu合金製リ
ードフレーム材と同程度にすぐれているので、半
導体装置の高性能化および高集積化に寄与すると
ころ大なるものがあり、かつすぐれた性能を長期
に亘つて発揮する信頼性の高い半導体装置が得ら
れるというすぐれた効果を奏するものである。
[Table] [Effects of the Invention] The Cu alloy lead frame material of the present invention has high strength and excellent heat peeling resistance for solder, and even with thinner walls, it can withstand repeated bending, heat and electricity required for lead frames. It has properties such as conductivity, plating and solderability that are as good as conventional Cu alloy lead frame materials, making it a great contribution to higher performance and higher integration of semiconductor devices. This has the advantage of providing a highly reliable semiconductor device that exhibits excellent performance over a long period of time.

Claims (1)

【特許請求の範囲】 1 Sn:2.1〜2.8%、 Ni:1.0超〜2.0%、 Si:0.1〜0.5%、 Zn:0.1〜1.0%、 を含有し、残りがCuと不可避不純物からなる組
成(以上重量%)を有し、上記SiはNiとNi2Si化
合物を形成しているCu合金で構成されたことを
特徴とする半導体装置用Cu合金製リードフレー
ム材。
[Claims] 1 A composition containing Sn: 2.1 to 2.8%, Ni: more than 1.0 to 2.0%, Si: 0.1 to 0.5%, Zn: 0.1 to 1.0%, with the remainder consisting of Cu and inevitable impurities ( % by weight), and the Si is composed of a Cu alloy in which Ni forms a Ni 2 Si compound.
JP12928887A 1987-05-26 1987-05-26 Lead frame material made of cu alloy for semiconductor device Granted JPS63293130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12928887A JPS63293130A (en) 1987-05-26 1987-05-26 Lead frame material made of cu alloy for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12928887A JPS63293130A (en) 1987-05-26 1987-05-26 Lead frame material made of cu alloy for semiconductor device

Publications (2)

Publication Number Publication Date
JPS63293130A JPS63293130A (en) 1988-11-30
JPH0565569B2 true JPH0565569B2 (en) 1993-09-20

Family

ID=15005869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12928887A Granted JPS63293130A (en) 1987-05-26 1987-05-26 Lead frame material made of cu alloy for semiconductor device

Country Status (1)

Country Link
JP (1) JPS63293130A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205644A (en) * 1989-02-01 1990-08-15 Hitachi Cable Ltd High strength copper alloy for lead frame
JP2870780B2 (en) * 1989-02-01 1999-03-17 日立電線株式会社 High-strength copper alloy for lead frames
JP2870779B2 (en) * 1989-02-01 1999-03-17 日立電線株式会社 High-strength copper alloy for lead frames
JPH02205643A (en) * 1989-02-01 1990-08-15 Hitachi Cable Ltd High strength copper alloy for lead frame
JP2673973B2 (en) * 1991-03-07 1997-11-05 三菱伸銅 株式会社 High-strength Cu alloy with excellent hot rolling cracking resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174345A (en) * 1985-01-30 1986-08-06 Hitachi Metals Ltd Copper alloy for lead frame
JPS61264144A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS63192835A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPS63266049A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174345A (en) * 1985-01-30 1986-08-06 Hitachi Metals Ltd Copper alloy for lead frame
JPS61264144A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS63192835A (en) * 1987-02-05 1988-08-10 Furukawa Electric Co Ltd:The Lead material for ceramic package
JPS63266049A (en) * 1987-04-24 1988-11-02 Furukawa Electric Co Ltd:The Production of high tensile copper based alloy

Also Published As

Publication number Publication date
JPS63293130A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US5814168A (en) Process for producing high-strength, high-electroconductivity copper-base alloys
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP2008127605A (en) High-strength copper alloy sheet superior in bend formability
KR960010816B1 (en) Copper alloy lead frame material for semiconductor devices
JPS6314056B2 (en)
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH0565569B2 (en)
JPS6239218B2 (en)
JPS59145749A (en) Copper alloy for lead material of semiconductor apparatus
JPS6256937B2 (en)
JPS6142772B2 (en)
JPH09316569A (en) Copper alloy for lead frame and its production
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPS63192835A (en) Lead material for ceramic package
JPH02129326A (en) High strength copper alloy
JPS58147140A (en) Lead wire of semiconductor device
JPS6157379B2 (en)
JP2534917B2 (en) High strength and high conductivity copper base alloy
JPS60194031A (en) Copper alloy for lead material for semiconductor device
JPH0218375B2 (en)
JPS63183143A (en) Cu alloyed lead frame material for semiconductor device
JPS63312932A (en) Copper based alloy for zigzag-in line-package
JPH08288450A (en) Sheet metal for high heat dissipation cu-fe alloy ic lead frame and its manufacture
JP2000038627A (en) Copper alloy for semiconductor lead frame
JPH0453945B2 (en)