JP2555067B2 - Manufacturing method of high strength copper base alloy - Google Patents

Manufacturing method of high strength copper base alloy

Info

Publication number
JP2555067B2
JP2555067B2 JP62101401A JP10140187A JP2555067B2 JP 2555067 B2 JP2555067 B2 JP 2555067B2 JP 62101401 A JP62101401 A JP 62101401A JP 10140187 A JP10140187 A JP 10140187A JP 2555067 B2 JP2555067 B2 JP 2555067B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
hours
cold
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62101401A
Other languages
Japanese (ja)
Other versions
JPS63266049A (en
Inventor
真人 浅井
好正 大山
道明 寺下
章二 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62101401A priority Critical patent/JP2555067B2/en
Publication of JPS63266049A publication Critical patent/JPS63266049A/en
Application granted granted Critical
Publication of JP2555067B2 publication Critical patent/JP2555067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子・電気機器、特に電子部品のリード
材,スイッチ,端子,コネクター等の配器材やばね材と
して用いられる高い強度と優れたメッキ性,半田接合
性,耐食性,耐熱性等を示す高力銅基合金の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is excellent in high strength and is used as a spring material and a distribution material such as a lead material, a switch, a terminal and a connector of an electronic / electrical device, particularly an electronic component. The present invention relates to a method for producing a high-strength copper-based alloy that exhibits plating properties, solder joint properties, corrosion resistance, heat resistance, and the like.

〔従来の技術および発明が解決すべき問題点〕[Problems to be solved by conventional technology and invention]

電子機器部品、例えば半導体(Tr,IC,LSI,VLSI等)の
リードフレーム材、ヒートシンク材,電子部品のリード
材,構成部品(コネクター,スイッチ,リレー等)のば
ね材,各種端子材には多くの銅合金が利用されてきた。
近年電子機器部品の小型化,高性能化,高密度化に伴っ
てより高性能の合金が求められるようになり、特に最先
端にある半導体は高集積化が目覚しく、これに用いられ
るリード材には高い強度が要求されている。
Many are used in electronic equipment parts such as semiconductor (Tr, IC, LSI, VLSI, etc.) lead frame materials, heat sink materials, electronic parts lead materials, component (connectors, switches, relays, etc.) spring materials, and various terminal materials. Copper alloys have been used.
In recent years, with the miniaturization, high performance, and high density of electronic device parts, higher performance alloys have been required. Especially, the semiconductors at the leading edge are remarkably highly integrated. Is required to have high strength.

強度の優れた代表的な銅合金としては、Cu−Sn−P
系,Cu−Ni−Sn系,Cu−Zn−Pb系,Cu−Ni−Si系の合金が
知られているが、これ等の合金はその熱間加工性が乏し
いか又は溶体化処理のための設備投資やそれに伴う諸問
題の解決が必要であり、これが生産性を著しく低下せし
めてコスト高の一因となっている。
Cu-Sn-P is a typical copper alloy with excellent strength.
System, Cu-Ni-Sn system, Cu-Zn-Pb system, Cu-Ni-Si system alloys are known, but these alloys have poor hot workability or because of solution treatment. It is necessary to solve the above-mentioned capital investment and various problems associated therewith, which significantly reduces productivity and contributes to high costs.

このような熱間加工性に乏しい合金の場合でも、材料
製造には熱間加工は不可欠であり、そのため様々の方法
が考えられているが以下の問題点を克服していない。
Even in the case of such an alloy having poor hot workability, hot working is indispensable for material production, and various methods have been considered for that purpose, but the following problems have not been overcome.

(1)熱延時に大気中での高温加熱が必要なため、この
処理中に材料表面に多層,多量の酸化スケールが発生
し、また熱間加工時にもこの酸化スケールが発生する。
そこでその除去のため、多大な研削が必要となり、材料
歩留りの低下が起きると共に、添加元素の内部酸化や圧
延時の酸化スケールの巻き込み等によって内部欠陥を生
じ、半田付け性やメッキ密着性を低下させる原因とな
る。
(1) Since high temperature heating in the atmosphere is required during hot rolling, a multi-layered, large amount of oxide scale is generated on the material surface during this treatment, and this oxide scale is generated also during hot working.
Therefore, a large amount of grinding is required to remove it, resulting in a decrease in material yield, and internal defects due to internal oxidation of additive elements and inclusion of oxide scale during rolling, which lowers solderability and plating adhesion. Cause

(2)大気加熱による再熱割れ並びに熱間加工時の割れ
による歩留りの低下と生産コストの増加をもたらす。
(2) Reheating cracking due to atmospheric heating and cracking during hot working cause a decrease in yield and an increase in production cost.

(3)熱間加工時に材料を高温に加熱するため、多くの
エネルギーとそれに伴う設備投資が必要であり、生産コ
ストの増加を招く。
(3) Since the material is heated to a high temperature during hot working, a large amount of energy and accompanying capital investment are required, resulting in an increase in production cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、上記諸問題の発
生源となる熱間加工を省略した高力銅基合金の製造法を
開発したものである。
As a result of various studies in view of the above, the present invention has developed a method for producing a high-strength copper-based alloy that omits hot working, which is a source of the above-mentioned problems.

即ち本発明製造法は、Sn1.5wt%を超え10wt%以下
(以下wt%を単に%と略記),Ni0.1〜10%,Si0.1〜5%
を含み、又はこれにZn2.5%以下,Fe2.5%以下,Mn2.5%
以下,Co2.5%以下,Al2.5%以下,Mg0.5%以下,As0.5%以
下,Ca0.5%以下,V0.5%以下,Y0.5%以下,希土類元素0.
5%以下,In0.5%以下,Pb0.5%以下,Sb0.5%以下,Bi0.5
%以下,Te0.5%以下,Ag0.5%以下,Au0.5%以下,P0.5%
以下,B0.5%以下,Cr0.5%以下,Ga0.5%以下,Ti0.5%以
下,Zr0.5%以下,Ge0.5%以下の範囲内で何れか1種又は
2種以上を合計3.0%以下含み、残部Cuと不可避的不純
物からなる銅合金を連続鋳造後、鋳塊表面の偏析層及び
鋳塊欠陥を研削して除去する工程と、研削した鋳塊を20
〜95%の加工率で冷間加工し、しかる後非酸化性雰囲気
中300〜950℃で5秒〜24時間加熱後、0.01〜500℃/秒
の冷却速度で冷却する工程と、冷却した材料の表面を酸
洗又は研削又はこれ等の組み合せにより清浄化した後、
5〜90%の加工率で冷間加工し、しかる後非酸化性雰囲
気中200〜650℃で5秒〜24時間熱処理することを1回以
上繰返す工程とからなることを特徴とするものである。
That is, according to the manufacturing method of the present invention, Sn is more than 1.5 wt% and 10 wt% or less (hereinafter wt% is simply referred to as%), Ni 0.1 to 10%, Si 0.1 to 5%
Or contains Zn2.5% or less, Fe2.5% or less, Mn2.5%
Less than Co2.5%, less than Al2.5%, less than Mg0.5%, less than As0.5%, less than Ca0.5%, less than V0.5%, less than Y0.5%, rare earth element 0.
5% or less, In0.5% or less, Pb0.5% or less, Sb0.5% or less, Bi0.5
% Or less, Te 0.5% or less, Ag 0.5% or less, Au 0.5% or less, P 0.5%
Below, B 0.5% or less, Cr 0.5% or less, Ga 0.5% or less, Ti 0.5% or less, Zr 0.5% or less, Ge 0.5% or less, any one or two or more After continuously casting a copper alloy containing a total of 3.0% or less and the balance Cu and unavoidable impurities, a step of grinding and removing the segregation layer and the ingot defects on the surface of the ingot, and the ingot after grinding 20
Cold working at a working rate of up to 95%, then heating in a non-oxidizing atmosphere at 300 to 950 ° C for 5 seconds to 24 hours, and then cooling at a cooling rate of 0.01 to 500 ° C / second, and the cooled material After cleaning the surface of by pickling or grinding or a combination of these,
It is characterized in that it comprises a step of repeating cold working at a working rate of 5 to 90% and then heat treating at 200 to 650 ° C. for 5 seconds to 24 hours in a non-oxidizing atmosphere at least once. .

〔作 用〕[Work]

本発明において、使用する合金の組成を上記の如く限
定したのは次の理由によるものである。
The reason why the composition of the alloy used in the present invention is limited as described above is as follows.

Sn,Ni及びSiは、合金の強度を高めるためで、それぞ
れ下限未満では十分な強度が得られず、上限を越えると
高い強度は得られるが、冷間加工性や曲げ成型性の低下
が著しく、更に半田付け性やメッキ密着性を低下するた
めである。
Sn, Ni and Si are for increasing the strength of the alloy, and if each is less than the lower limit, sufficient strength cannot be obtained, and if it exceeds the upper limit, high strength can be obtained, but cold workability and bend formability are significantly deteriorated. This is because the solderability and plating adhesion are further reduced.

Zn,Fe,Mn,CO,Al,Mg,As,Ca,V,Y,希土類元素(RE),In,
Pb,Sb,Bi,Te,Ag,Au,P,B,Cr,Ga,Ti,Zr,Ge(以下副成分と
いう)は、何れも強度を向上すると共に半田付け性,メ
ッキ密着性及び鋳造性を改善するためで、それぞれ上限
を越えるか、又は2種以上の合計が3%を越えると、逆
に鋳造性,半田付け性及びメッキ密着性を劣化するため
である。
Zn, Fe, Mn, CO, Al, Mg, As, Ca, V, Y, rare earth element (RE), In,
Pb, Sb, Bi, Te, Ag, Au, P, B, Cr, Ga, Ti, Zr, Ge (hereinafter referred to as "subcomponents") all improve the strength and solderability, plating adhesion and castability This is because, if the respective upper limits are exceeded or the total of two or more types exceeds 3%, conversely, the castability, solderability and plating adhesion are deteriorated.

次に連続鋳造した鋳塊は、鋳造時の欠陥や偏析を除去
するために機械的又は/及び化学的に表層を研削し、こ
れに冷間加工を施すのは、次の加熱処理により再結晶さ
せるためで、この冷間加工の加工率を20〜95%と限定し
たのは、20%未満では次の加熱処理により再結晶を起こ
させるのに不十分であり、95%を越えると材料組織の不
均一性を招くためである。冷間加工後の加熱処理温度を
300〜950℃と限定したのは300℃未満では材料の再結晶
が不十分であり、950℃を越える温度では粗大な結晶粒
を生じ、その後の特性を劣化させるためである。また加
熱処理時間を5秒〜24時間と限定したのは、5秒未満で
は再結晶を伴う焼鈍の効果がなく、24時間を越える加熱
処理は生産性を低下させてコスト高の要因となる。また
加熱処理後の冷却速度を0.01〜500℃/秒と限定したの
は、冷却速度が0.01℃/秒未満では冷却終了までの時間
が長く、生産性を低下せしめると共に、Crの粗大析出物
の成長を誘発する原因となり、500℃/秒を越えると、
冷却に伴う温度差により材料変形の問題を生じるためで
ある。
Next, in the continuously cast ingot, the surface layer is mechanically or / and chemically ground to remove defects and segregation during casting, and cold working is performed by recrystallization by the next heat treatment. Therefore, the reason for limiting the working ratio of this cold working to 20 to 95% is that if it is less than 20%, it is insufficient to cause recrystallization by the next heat treatment, and if it exceeds 95%, the material structure is This is because of the non-uniformity of. Heat treatment temperature after cold working
The reason for limiting the temperature to 300 to 950 ° C. is that recrystallization of the material is insufficient at a temperature lower than 300 ° C., and coarse crystal grains are generated at a temperature higher than 950 ° C. to deteriorate the subsequent properties. Further, the heat treatment time is limited to 5 seconds to 24 hours. If the heat treatment time is less than 5 seconds, there is no effect of annealing accompanied by recrystallization, and heat treatment for more than 24 hours lowers productivity and causes a cost increase. Further, the cooling rate after the heat treatment is limited to 0.01 to 500 ° C./sec. When the cooling rate is less than 0.01 ° C./sec, it takes a long time to finish cooling, which lowers the productivity and causes coarse precipitates of Cr. It causes growth, and if it exceeds 500 ℃ / sec,
This is because the problem of material deformation occurs due to the temperature difference due to cooling.

更に加熱処理後冷却した材料を溶解又は/及び研削に
より材料表面を清浄化するのは、製造工程中における材
料酸化や冷間圧延時の圧延油の付着に伴う加熱処理時の
変色等を除去するためのもので、これをそのまま放置し
て製品化すると、半田付け性やメッキ密着性の著しい低
下を引き起し、信頼性を大きく損ねる。これを防止する
ために酸やバフ等により溶解又は/及び研削を行ない、
表面欠陥部を除去する事により、上記特性の劣化を抑え
ることができる。除去量としては0.1〜5μm程度が望
ましく、これを越えると逆に表面が荒れ、半田付け性や
メッキ密着性を低下する。この表面清浄化した材料に冷
間加工を施すが、その加工率を5〜90%と限定したの
は、5%未満の加工では材料の平坦度や面粗度を良好に
することができず、また求める強度も得られず、90%を
越える加工は材料組織の不均一性を招くためである。更
にその後の熱処理を200〜650℃で5秒〜24時間と限定し
たのは、仕上げ加工後の熱処理では調質と内部歪を除去
し、中間焼鈍では以後の加工を容易にするためで、この
範囲外では所望とする特性が得られない。
Furthermore, the material that has been cooled after the heat treatment is melted and / or cleaned to clean the surface of the material by removing the oxidation of the material during the manufacturing process and the discoloration during the heat treatment due to the adhesion of rolling oil during cold rolling. However, if this is left as it is for commercialization, the solderability and the plating adhesion are significantly reduced, and the reliability is greatly impaired. In order to prevent this, it is dissolved or / and ground with acid or buff,
By removing the surface defect portion, the deterioration of the above characteristics can be suppressed. The removal amount is preferably about 0.1 to 5 μm, and if the removal amount is exceeded, the surface becomes rough and the solderability and plating adhesion are deteriorated. Although cold working is applied to this surface-cleaned material, the processing rate is limited to 5 to 90% because the flatness and surface roughness of the material cannot be improved by processing less than 5%. Also, the required strength cannot be obtained, and processing exceeding 90% causes nonuniformity of the material structure. The reason why the subsequent heat treatment is limited to 200 to 650 ° C for 5 seconds to 24 hours is that the heat treatment after finishing process removes the heat treatment and internal strain, and the intermediate annealing facilitates the subsequent processes. Outside the range, desired characteristics cannot be obtained.

尚、上記表面清浄化,冷間加工及び熱処理は適宜繰返
し行なう事により、平滑で表面欠陥のない表面性に優れ
た高強度かつ伸びの優れた材料を得ることができる。し
かして仕上げ加工後の熱処理は200〜560℃で5秒〜24時
間と再結晶温度以下とし、中間焼鈍は400〜650℃で10秒
〜24時間と再結晶領域で行なうことが望ましい。また上
記加熱処理及び熱処理を非酸化性雰囲気中で行なうのは
材料の表面及び内部酸化を抑制するためである。また本
発明は最終的に歪とりと形状矯正のため、テンションレ
ベラーやテンションアニール等を行なうことにより所望
の特性に調整することもできる。
By appropriately repeating the above-mentioned surface cleaning, cold working and heat treatment, it is possible to obtain a material which is smooth and has high strength and elongation excellent in surface property without surface defects. Therefore, it is desirable that the heat treatment after finishing is carried out at 200 to 560 ° C. for 5 seconds to 24 hours and below the recrystallization temperature, and the intermediate annealing is carried out at 400 to 650 ° C. for 10 seconds to 24 hours in the recrystallization region. Further, the above heat treatment and heat treatment are performed in a non-oxidizing atmosphere in order to suppress surface and internal oxidation of the material. Further, in the present invention, in order to finally remove strain and correct the shape, it is possible to adjust to desired characteristics by performing tension leveler, tension annealing or the like.

〔実施例〕〔Example〕

第1表に示す組成の合金について、水平連続鋳造した
鋳塊(厚さ10mm)の片面あたり0.5mm面削し、これを厚
さ1.5mmまで冷間圧延した後、610℃で2時間加熱処理
し、しかる後0.03℃/秒の速度で冷却した。続いて冷却
した材料の表面を清浄にしてから厚さ0.42mmまで冷間圧
延した後、480℃で1時間熱処理し、しかる後0.03℃/
秒の速度で冷却した。次に冷却した材料の表面を再び清
浄にしてから厚さ0.25mmまで冷間圧延した後、300℃で
2時間熱処理し、しかる後0.05℃/秒の速度で冷却し
た。これ等について引張強さ,伸び,曲げ成型性,半田
接合強度及びメッキ密着性を調べた。その結果を第1表
に併記した。
For alloys with the composition shown in Table 1, 0.5 mm per side of a horizontally continuous cast ingot (thickness 10 mm) was face-rolled, cold-rolled to a thickness of 1.5 mm, and then heat treated at 610 ° C for 2 hours. Then, it was cooled at a rate of 0.03 ° C./sec. Subsequently, the surface of the cooled material is cleaned and cold-rolled to a thickness of 0.42 mm, followed by heat treatment at 480 ° C for 1 hour and then 0.03 ° C /
Cooled at a rate of seconds. Then, the surface of the cooled material was cleaned again, cold-rolled to a thickness of 0.25 mm, heat-treated at 300 ° C. for 2 hours, and then cooled at a rate of 0.05 ° C./sec. The tensile strength, elongation, bendability, solder joint strength and plating adhesion of these materials were examined. The results are also shown in Table 1.

尚曲げ成型性は先端半径(R)の異なる90゜ダイスで
折り曲げ、マイクロクラックの発生を調べ、クラックの
発生する先端半径(R)と板厚(t)の比(R/t)で表
わした。折り曲げ軸は圧延方向と平行な方向について行
なった。半田接合強度は直径12mmの面に引張用リード線
を共晶半田付けした後、150℃で600時間保持してから引
張試験を行なった。またメッキ密着性についてはホウフ
ッ化物浴を用いてSn−5%Pb合金を7.5μmの厚さにメ
ッキした後、105℃で1000時間保持し、しかる後180゜に
折曲げて、折曲げ部のメッキ層の剥離を検鏡した。
The bending formability was expressed by the ratio (R / t) of the tip radius (R) and the plate thickness (t) at which the cracks were generated by bending with 90 ° dies having different tip radii (R) and examining the occurrence of microcracks. . The folding axis was parallel to the rolling direction. Regarding the solder joint strength, a pulling lead wire was eutectic-soldered on a surface having a diameter of 12 mm, and then held at 150 ° C. for 600 hours, and then a tensile test was conducted. For plating adhesion, Sn-5% Pb alloy was plated to a thickness of 7.5 μm using a borofluoride bath, then held at 105 ° C for 1000 hours, then bent at 180 ° and the bent part The peeling of the plating layer was examined under a microscope.

次に第1表に示すNo.5の合金について、水平連続鋳造
した鋳塊(厚さ10mm)を片面あたり0.5mm面削し、これ
を厚さ1.5mmまで冷間圧延した後、加熱処理を第2表に
示す条件で行ない、続いて表面清浄にしてから厚さ0.42
mmまで冷間圧延した後、480℃で1時間熱処理し、しか
る後0.03℃/秒の速度で冷却した。続いて材料の表面を
再び清浄にしてから厚さ0.25mmまで冷間圧延した後、30
0℃で2時間熱処理し、しかる後0.05℃/秒の速度で冷
却した。これ等について上記と同様にして引張強さ,伸
び,曲げ成型性,半田接合強度及びメッキ密着性を調べ
た。その結果を第2表に併記した。
Next, for the No. 5 alloy shown in Table 1, a horizontally ingot-cast ingot (thickness 10 mm) was chamfered by 0.5 mm per side, cold-rolled to a thickness of 1.5 mm, and then heat treated. The conditions shown in Table 2 are followed, and then the surface is cleaned to a thickness of 0.42
After cold rolling to mm, heat treatment was carried out at 480 ° C. for 1 hour, followed by cooling at a rate of 0.03 ° C./sec. The material surface is then cleaned again and cold-rolled to a thickness of 0.25 mm, then 30
It was heat-treated at 0 ° C. for 2 hours and then cooled at a rate of 0.05 ° C./sec. The tensile strength, elongation, bendability, solder joint strength, and plating adhesion of these materials were examined in the same manner as above. The results are also shown in Table 2.

次に第1表に示すNo.5の合金について、水平連続鋳造
した鋳塊(厚さ10mm)を片面あたり0.5mm面削し、これ
を厚さ1.5mmまで冷間圧延した後、580℃で5時間加熱処
理し、しかる後0.02℃/秒の速度で冷却した。続いて冷
却した材料の表面を清浄にしてから第3表に示す加工率
で冷間圧延し、これを300℃で2時間熱処理し、しかる
後0.05℃/秒の速度で冷却した。これらについて上記と
同様にして引張強さ,伸び,曲げ成型性,半田接合強度
及びメッキ密着性を調べた。その結果を第3表に併記し
た。
Next, for the No. 5 alloy shown in Table 1, a horizontal continuous cast ingot (thickness 10 mm) was chamfered by 0.5 mm per side, cold-rolled to a thickness of 1.5 mm, and then at 580 ° C. It was heat-treated for 5 hours and then cooled at a rate of 0.02 ° C./sec. Subsequently, the surface of the cooled material was cleaned and then cold-rolled at the processing rate shown in Table 3, heat-treated at 300 ° C. for 2 hours, and then cooled at a rate of 0.05 ° C./sec. The tensile strength, elongation, bendability, solder joint strength, and plating adhesion of these materials were examined in the same manner as above. The results are also shown in Table 3.

次に第1表に示すNo.5の合金について、水平連続鋳造
した鋳塊(厚さ10mm)を片面あたり0.5mm面削し、これ
を厚さ1.5mmまで冷間圧延した後、610℃で2時間加熱処
理し、しかる後0.03℃/秒の速度で冷却した。続いて冷
却した材料の表面を清浄にしてから厚さ0.42mmまで冷間
圧延した後、480℃で1時間熱処理し、しかる後0.03℃
/秒の速度で冷却した。これを再び表面清浄にしてから
厚さ0.25mmまで冷間圧延した後、第4表に示す条件で熱
処理した。これらについて上記と同様にして引張強さ,
伸び,曲げ成型性,半田接合強度及びメッキ密着性を調
べた。その結果を第4表に併記した。尚実施例における
加熱処理及び熱処理は何れもN2ガス中で行なった。
Next, for the No. 5 alloy shown in Table 1, horizontal ingots (thickness 10 mm) were chamfered by 0.5 mm per side, cold-rolled to a thickness of 1.5 mm, and then at 610 ° C. It was heat-treated for 2 hours and then cooled at a rate of 0.03 ° C./sec. Then, the surface of the cooled material is cleaned, cold rolled to a thickness of 0.42 mm, heat treated at 480 ° C for 1 hour, then 0.03 ° C.
Cooled at a rate of / sec. The surface of this was cleaned again, cold-rolled to a thickness of 0.25 mm, and then heat-treated under the conditions shown in Table 4. For these, tensile strength,
The elongation, bendability, solder joint strength and plating adhesion were investigated. The results are also shown in Table 4. Both the heat treatment and the heat treatment in the examples were performed in N 2 gas.

第1表〜第4表から明らかなように、本発明法No.1〜
11,No.12〜14,No.18〜21及びNo.24〜27によるものは何
れも引張強さ68Kg f/mm2以上、伸び9.5%以上、曲げ成
型性0.8以下、半田接合強度0.9Kg f/mm2以上の特性を示
し、かつメッキ密着性も良いことが判る。
As is clear from Tables 1 to 4, the present invention method No. 1 to
11, No. 12 to 14, No. 18 to 21 and No. 24 to 27 are all tensile strength 68Kg f / mm 2 or more, elongation 9.5% or more, bending formability 0.8 or less, solder joint strength 0.9Kg It can be seen that it exhibits characteristics of f / mm 2 or more and also has good plating adhesion.

これに対し本発明で規定する製造条件より外れる比較
法No.15〜17,No.22〜23,No.28〜29では上記特性の何れ
か1つ以上が劣化していることが判る。
On the other hand, in Comparative Methods No. 15 to 17, No. 22 to 23, and No. 28 to 29, which deviate from the manufacturing conditions specified in the present invention, it is understood that any one or more of the above characteristics is deteriorated.

〔発明の効果〕〔The invention's effect〕

本発明製造法は処理中に材料表面の酸化スケールの発
生,内部酸化,酸化スケールの巻込み等の問題点の発生
源となる熱間加工を省略し、特性の優れた高力銅基合金
を製造するもので、熱間加工時の材料を高温に加熱する
ための多くのエネルギーとそれに伴う設備投資を必要と
せず、歩留りを向上し、生産コストを低減することがで
きる等、工業上顕著な効果を奏するものである。
The production method of the present invention eliminates hot working, which is a source of problems such as generation of oxide scale on the surface of the material during processing, internal oxidation, and inclusion of oxide scale. It is manufactured and does not require much energy for heating the material to a high temperature during hot working and the capital investment accompanying it, which can improve the yield and reduce the production cost. It is effective.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志賀 章二 日光市清滝町500番地 古河電気工業株 式会社日光電気精銅所内 (56)参考文献 特開 昭61−143566(JP,A) 特開 昭61−272339(JP,A) 特開 昭61−44142(JP,A) 特開 昭61−99647(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Shiga 500 Kiyotaki Town, Nikko City Furukawa Electric Co., Ltd. Nikko Denki Copper Works (56) Reference JP-A-61-143566 (JP, A) JP 61-272339 (JP, A) JP 61-44142 (JP, A) JP 61-99647 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sn1.5wt%を超え10wt%以下,Ni0.1〜10wt
%,Si0.1〜5wt%を含み、又はこれにZn2.5wt%以下,Fe
2.5wt%以下,Mn2.5wt%以下,Co2.5wt%以下,Al2.5wt%
以下,Mg0.5wt%以下,As0.5wt%以下,Ca0.5wt%以下,V0.
5wt%以下,Y0.5wt%以下,希土類元素0.5wt%以下,In0.
5wt%以下,Pb0.5wt%以下,Sb0.5wt%以下,Bi0.5wt%以
下,Te0.5wt%以下,Ag0.5wt%以下,Au0.5wt%以下,P0.5w
t%以下,B0.5wt%以下,Cr0.5wt%以下,Ga0.5wt%以下,T
i0.5wt%以下,Zr0.5wt%以下,Ge0.5wt%以下の範囲内で
何れか1種又は2種以上を合計3.0wt%以下含み、残部C
uと不可避的不純物からなる銅合金を連続鋳造後、鋳塊
表面の偏析層及び鋳塊欠陥を研削して除去する工程と、
研削した鋳塊を20〜95%の加工率で冷間加工し、しかる
後非酸化性雰囲気中300〜950℃で5秒〜24時間加熱後、
0.01〜500℃/秒の冷却速度で冷却する工程と、冷却し
た材料の表面を酸洗又は研削又はこれ等の組み合せによ
り清浄化した後、5〜90%の加工率で冷間加工し、しか
る後非酸化性雰囲気中200〜650℃で5秒〜24時間熱処理
することを1回以上繰返す工程とからなる高力銅基合金
の製造法。
1. Sn in excess of 1.5 wt% and 10 wt% or less, Ni 0.1 to 10 wt
%, Si 0.1 to 5 wt% or Zn2.5 wt% or less, Fe
2.5wt% or less, Mn2.5wt% or less, Co2.5wt% or less, Al2.5wt%
Below, Mg 0.5 wt% or less, As 0.5 wt% or less, Ca 0.5 wt% or less, V0.
5 wt% or less, Y 0.5 wt% or less, rare earth element 0.5 wt% or less, In0.
5wt% or less, Pb0.5wt% or less, Sb0.5wt% or less, Bi0.5wt% or less, Te0.5wt% or less, Ag0.5wt% or less, Au0.5wt% or less, P0.5w
t% or less, B 0.5 wt% or less, Cr 0.5 wt% or less, Ga 0.5 wt% or less, T
i 0.5wt% or less, Zr 0.5wt% or less, Ge 0.5wt% or less, and one or more of them are included in total 3.0wt% or less, and the balance C
After continuously casting a copper alloy consisting of u and unavoidable impurities, a step of grinding and removing segregation layers and ingot defects on the surface of the ingot,
The ground ingot is cold worked at a working rate of 20 to 95% and then heated in a non-oxidizing atmosphere at 300 to 950 ° C for 5 seconds to 24 hours,
After the step of cooling at a cooling rate of 0.01 to 500 ° C / second and the surface of the cooled material are cleaned by pickling or grinding or a combination of these, cold working is performed at a working rate of 5 to 90%. A process for producing a high-strength copper-based alloy, which comprises a step of repeating heat treatment at 200 to 650 ° C. for 5 seconds to 24 hours in a non-oxidizing atmosphere one or more times.
JP62101401A 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy Expired - Fee Related JP2555067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101401A JP2555067B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101401A JP2555067B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Publications (2)

Publication Number Publication Date
JPS63266049A JPS63266049A (en) 1988-11-02
JP2555067B2 true JP2555067B2 (en) 1996-11-20

Family

ID=14299709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101401A Expired - Fee Related JP2555067B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Country Status (1)

Country Link
JP (1) JP2555067B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293130A (en) * 1987-05-26 1988-11-30 Mitsubishi Shindo Kk Lead frame material made of cu alloy for semiconductor device
JPH01272733A (en) * 1988-04-25 1989-10-31 Mitsubishi Shindoh Co Ltd Lead frame material made of cu alloy for semiconductor device
JPH02225651A (en) * 1988-11-15 1990-09-07 Mitsubishi Electric Corp Manufacture of high strength cu-ni-sn alloy
JPH07116536B2 (en) * 1989-02-10 1995-12-13 三菱伸銅株式会社 High strength Cu alloy
JPH03115538A (en) * 1989-09-29 1991-05-16 Tsuneaki Mikawa Oxide dispersion strengthened special copper alloy
JPH05214467A (en) * 1990-09-25 1993-08-24 Mitsuo Asada Hard copper alloy having corrosion resistance and acid resistance
EP0589609B1 (en) * 1992-09-16 1997-01-08 Showa Electric Wire And Cable Co.,Ltd Method of producing Cu - Ag alloy based conductive material
US6419766B1 (en) 1996-04-02 2002-07-16 Tabuchi Corp. Cutting-free bronze alloys
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
US20010001400A1 (en) * 1997-04-18 2001-05-24 Dennis R. Brauer Et Al Grain refined tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6379478B1 (en) * 1998-08-21 2002-04-30 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
JP4810703B2 (en) * 2005-09-30 2011-11-09 Dowaメタルテック株式会社 Copper alloy production method
DE102016008754B4 (en) * 2016-07-18 2020-03-26 Wieland-Werke Ag Copper-nickel-tin alloy, process for their production and their use
DE102016008753B4 (en) * 2016-07-18 2020-03-12 Wieland-Werke Ag Copper-nickel-tin alloy, process for their production and their use
CN109943748A (en) * 2019-05-16 2019-06-28 杭州辰卓科技有限公司 A kind of 300-400 degree high-voltage motor heat transmission is copper-based from cold material and its technique
CN109943747A (en) * 2019-05-16 2019-06-28 杭州辰卓科技有限公司 A kind of 100-200 degree high-voltage motor heat transmission is copper-based from cold material and its technique
CN110284018B (en) * 2019-07-22 2021-04-13 中南大学 Environment-friendly high-missile-resistance corrosion-resistant copper alloy and production method of plate and strip thereof
CN111020282B (en) * 2019-12-09 2021-03-16 苏州天兼新材料科技有限公司 Copper-based alloy material for power equipment
CN111621657B (en) * 2020-05-18 2021-08-10 昆明理工大学 Method for simultaneously improving strength plasticity and wear resistance of copper-tin alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143566A (en) * 1984-12-13 1986-07-01 Nippon Mining Co Ltd Manufacture of high strength and highly conductive copper base alloy
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production

Also Published As

Publication number Publication date
JPS63266049A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
JP2555067B2 (en) Manufacturing method of high strength copper base alloy
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPH0841612A (en) Copper alloy and its preparation
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP2011162848A (en) Copper alloy having small strength anisotropy and superior bendability
WO2013018228A1 (en) Copper alloy
JP2001294957A (en) Copper alloy for connector and its producing method
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JPH11293367A (en) Copper alloy excellent in property of proof stress relaxation, and its production
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP3729733B2 (en) Copper alloy plate for lead frame
JP2555068B2 (en) Manufacturing method of high strength copper base alloy
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JP2555070B2 (en) Manufacturing method of high strength copper base alloy
JP4225733B2 (en) Terminal, connector, lead frame material plate
JP2555069B2 (en) Manufacturing method of high strength copper base alloy
JPS63266053A (en) Production of high tensile copper based alloy
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees