JPH02205643A - High strength copper alloy for lead frame - Google Patents

High strength copper alloy for lead frame

Info

Publication number
JPH02205643A
JPH02205643A JP2284489A JP2284489A JPH02205643A JP H02205643 A JPH02205643 A JP H02205643A JP 2284489 A JP2284489 A JP 2284489A JP 2284489 A JP2284489 A JP 2284489A JP H02205643 A JPH02205643 A JP H02205643A
Authority
JP
Japan
Prior art keywords
lead frame
copper alloy
alloy
strength
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284489A
Other languages
Japanese (ja)
Inventor
Hajime Abe
元 阿部
Noboru Hagiwara
登 萩原
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2284489A priority Critical patent/JPH02205643A/en
Publication of JPH02205643A publication Critical patent/JPH02205643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high strength copper alloy for a lead frame having particularly excellent interface peeling resistance in soldering and retaining high conductivity by forming it with the compsn. contg. each prescribed amt. of Ni, Sn, Zn and P and the balance Cu with inevitable impurities. CONSTITUTION:The high strength copper alloy for a lead frame is composed of the compsn. contg. 1.2 to 2.8% Ni, 1.0 to 5.0% Sn, 0.3 to 1.3% Zn, 0.03 to 0.3% P and the balance Cu with inevitable impurities. By the copper alloy, sufficient work hardening can be shown, so that strength equal to that of high Ni alloy can be retained as well as about 66% working ratio. Furthermore, interface peeling resistance in soldering can perfectly be prevented without influencing highly on the lowering of the dielectric constant by suitably adding Zn to the alloy. In this way, the alloy is suitable for working a lead frame into copper alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リードフレーム用として有用な高強度銅合金
に関し、とくに優れた耐半田付界面剥離性を有すると共
に高い導電性を保持し得る高強度鋼合金に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-strength copper alloy useful for lead frames, and in particular to a high-strength copper alloy that has excellent solder interface peeling resistance and can maintain high electrical conductivity. It concerns strength steel alloys.

[従来の技術l 従来、半導体機器用リードフレーム材としては、熱膨張
係数が低く、半導体素子や封止材との接着性や封着性の
良好な42合金(Fe −42%Ni )やコバール(
Fe −29%Ni −17%CO)などの高ニッケル
合金が主に用いられてきた。
[Conventional technology l Conventionally, 42 alloy (Fe-42%Ni) and Kovar, which have a low coefficient of thermal expansion and good adhesiveness and sealing properties with semiconductor elements and sealing materials, have been used as lead frame materials for semiconductor devices. (
High nickel alloys such as Fe-29%Ni-17%CO) have been mainly used.

しかし、最近半導体素子の集積度が益々増大し、電力消
費の高い素子が多くなり、導電性および熱伝導性の良好
なリードフレーム材への要求が一層高まってきている。
However, recently, the degree of integration of semiconductor devices has been increasing, and the number of devices with high power consumption has increased, and the demand for lead frame materials with good electrical conductivity and thermal conductivity has further increased.

上記高ニッケル合金は、引張強さにおいては、65 h
gf / cur2と良好であるが、導電率は3%rA
cs程度と極めて低く、道常導電率とほぼ並行した性質
を示す熱伝導性においても十分なものとはいえない。
The high nickel alloy has a tensile strength of 65 h.
Good gf/cur2, but conductivity is 3% rA
Thermal conductivity, which is extremely low at around cs and exhibits properties almost parallel to ordinary electrical conductivity, cannot be said to be sufficient.

そこで、上記高ニッケル合金に代えて、導電率および熱
伝導性共に優れている銅合金をリードフレーム材として
使用しようという傾向が顕著になってきた。
Therefore, there has been a growing trend to use copper alloys, which have excellent electrical conductivity and thermal conductivity, as lead frame materials in place of the high nickel alloys.

上述した半導体機器のリードフレーム材として一般に要
求される特性には、上記導電性や熱伝導性に優れている
ことのほかに、信頼性の上から実装時や機器への組込み
等に付加される外力に十分側え得る強度を有することお
よび半田付は工程を有するなめに半田付は特性に優れて
いることが、不可欠な条件とされる。
In addition to the above-mentioned characteristics that are generally required for lead frame materials for semiconductor devices, in addition to the above-mentioned excellent electrical conductivity and thermal conductivity, there are also characteristics that are required for reliability during mounting and incorporation into devices. The essential conditions are that the material has sufficient strength to withstand external forces, and that soldering has excellent properties since soldering involves a process.

通常の銅系材料をリードフレーム材に適用しようとして
も、強度の上で不十分であり、なんらかの強度向上策が
必要である。金属材料の強度を上げる一般的方法として
は、合金元素を添加する方法および冷間加工度を大きく
する方法の二つがあり、リードフレーム材においてもそ
のような施策がとられてきた。
Even if an ordinary copper-based material is used as a lead frame material, it is insufficient in terms of strength, and some kind of strength improvement measure is required. There are two general methods for increasing the strength of metal materials: adding alloying elements and increasing the degree of cold working, and such measures have also been taken for lead frame materials.

[発明が解決しようとする課題] リードフレームにおいてはアウターリードを基板に取付
けるために半田付けして使用することが多い。
[Problems to be Solved by the Invention] In lead frames, outer leads are often soldered to attach them to a substrate.

’Wtrfを向上させるために上記のように合金元素を
添加した銅合金を用いたリードフレーム材においては、
半田付けを行なった後に、半田付けの界面において経時
的に脆性剥離が発生する現象がみられることがあり、信
頼性の上から大きな問題となっている。このような脆性
層の形成は、素材としてのCuと半田の中のSn成分お
よび添加元素が拡散することによって生ずるものと考え
られており、X線マイクロアナライザによる所見によっ
ても、銅合金と半田との界面にCu−3n系におけるε
相あるいはη相といった脆性の大きい金属間化合物が拡
散形成されることが確認されている。
'In lead frame materials using copper alloys to which alloying elements are added as described above to improve Wtrf,
After soldering, a phenomenon in which brittle peeling occurs over time at the soldered interface may be observed, which poses a serious problem from the viewpoint of reliability. The formation of such a brittle layer is thought to be caused by the diffusion of Cu as the material and the Sn component and additive elements in the solder. ε in the Cu-3n system at the interface of
It has been confirmed that highly brittle intermetallic compounds such as phase or η phase are formed by diffusion.

さらに、添加元素のマイグレーション層が界面に拡散形
成され(Fe 、P、Siにおいてとくに顕著である)
、これらが前記脆性剥離の原因となることも明らかにな
っている。
Furthermore, a migration layer of additive elements is diffused and formed at the interface (especially noticeable for Fe, P, and Si).
It has also been revealed that these are the cause of the brittle peeling.

このような半田付界面剥離の発生を防止するには、その
理由は不明乍らZnの添加が非常に有効であることがわ
かっている。
Although the reason for this is unknown, it has been found that adding Zn is very effective in preventing the occurrence of such solder interface peeling.

第1表は、各種元素を表示した量だけ添加した銅合金に
20を表中に示した種々な量をもって添加し、5n−4
0%pb半田にドブ付はメツキしな後、150℃で表に
それぞれ示した時間だけ加熱し、これを0.25Rで9
0°曲げ゛しその後曲げ戻した場合の界面の剥離の有無
を顕微鏡で観察した結果を示すものである。
Table 1 shows that 20 was added to the copper alloy in the indicated amounts of various elements in the various amounts indicated in the table, and 5n-4
After plating the 0% PB solder without plating, heat it at 150℃ for the time shown in the table, and then heat it at 0.25R for 9
This figure shows the results of microscopic observation of the presence or absence of peeling at the interface when the film was bent by 0° and then bent back.

第 ■ 表 表において、○は界面剥離の生じないもの、Xは界面1
11AIを生じた場合をそれぞれ示す。
In Table 1, ○ indicates no interfacial peeling, and X indicates interface 1.
The cases in which 11AI occurred are shown respectively.

第1表よりわかるように、添加元素の違いによってその
効果に差異があるものの、Znを添加することにより半
田付界面剥離を適確に防止することが可能となる。
As can be seen from Table 1, the addition of Zn makes it possible to accurately prevent peeling at the soldering interface, although the effect varies depending on the added element.

一方、合金元素を添加して銅系合金の強度を上げるには
、導電率に比較的影響を及ぼすことの少い析出硬化型の
元素を添加することが好ましく、かかる析出硬化型のリ
ードフレーム用銅合金としてcu −Nr−sr系合金
がすでに提案されている。
On the other hand, in order to increase the strength of copper-based alloys by adding alloying elements, it is preferable to add precipitation-hardening elements that have relatively little effect on electrical conductivity. Cu-Nr-sr alloys have already been proposed as copper alloys.

しかし、前記した高ニッケル合金に匹敵する強度を得る
には、Ni 、Siともにかなり高濃度に添加をする必
要がある。この場合、上記第1表からもわかるように8
1の濃度が高くなると、界面剥離を防止するためのzn
の添加量を大巾に増大せねばならず、導電率の低下に及
ぼす影響が大きくなり、電力消費量の大きな半導体素子
用のリードフレーム材としては、好ましくないことにな
る。
However, in order to obtain strength comparable to the above-mentioned high nickel alloy, it is necessary to add both Ni and Si at considerably high concentrations. In this case, as can be seen from Table 1 above, 8
The higher the concentration of 1, the higher the concentration of zn to prevent interfacial peeling.
It is necessary to greatly increase the amount of addition of , which has a large effect on the decrease in conductivity, making it undesirable as a lead frame material for semiconductor devices that consumes a large amount of power.

従って、そのように導電率保持への要求の強いリードフ
レーム材用としてはSlの添加を行なわず、銅合金の強
度を析出硬化に依存する代りに主として固溶硬化に依存
し、必要なZnの添加量を低減可能とすることが望まれ
る。
Therefore, for lead frame materials with strong demands for maintaining electrical conductivity, sl is not added, and instead of relying on precipitation hardening for the strength of the copper alloy, it relies mainly on solid solution hardening, and the necessary Zn content is reduced. It is desirable to be able to reduce the amount added.

本発明の目的は、上記したような従来技術の問題点を解
消し、銅系合金の強度を主として冷間加工により向上さ
せ得ると共に半田付界面剥離性についても大rjJに改
善し、併せて導電率についても相応に保持し得る新規な
リードフレーム用高強度銅合金を提供しようとするもの
である。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, to improve the strength of copper-based alloys mainly through cold working, and to greatly improve the peelability at the soldering interface, as well as to improve conductivity. It is an object of the present invention to provide a new high-strength copper alloy for lead frames that can maintain a suitable ratio.

[課題を解決するための手段] 本発明は、Ni1.2〜2.8%、Sn 1.0〜5.
0%、Zn0.3〜1.3%、Po、003〜0.3%
、を含み、残部Cuおよび不可避なる不純物よりなるも
のである。
[Means for Solving the Problems] The present invention provides Ni 1.2 to 2.8% and Sn 1.0 to 5%.
0%, Zn0.3-1.3%, Po, 003-0.3%
, and the remainder consists of Cu and unavoidable impurities.

[作用] 上記範囲において、snを添加した場合には、加熱急冷
することにより固溶体を形成し、加工硬化による強度向
上効果が大きい、それによって、Siを添加し析出硬化
させた場合と余り差のない強度が得られるばかりでなく
、Slの添加がない分Znの添加量を低減することがで
き、導電率を大巾に低下させるおそれも回避される。
[Effect] When Sn is added in the above range, it forms a solid solution by heating and rapidly cooling, and the strength improvement effect by work hardening is large.Therefore, there is no difference in strength compared to the case where Si is added and precipitation hardened. Not only can the strength be obtained, but also the amount of Zn added can be reduced since there is no addition of Sl, and the possibility of a large decrease in electrical conductivity is avoided.

しかして、Ni含有凰が1.2%以下では高強度効果が
低く、2.8%以上になると導電率を低下させるため好
ましくない。
However, if the Ni content is less than 1.2%, the high strength effect will be low, and if it is more than 2.8%, the electrical conductivity will decrease, which is not preferable.

sn含有量については、1.0%以下では同じく強度の
向上効果が小さく、5.0%以上になると導電率の低下
が大きくなり好ましくない。
Regarding the sn content, if it is less than 1.0%, the effect of improving the strength will be small, and if it is more than 5.0%, the electrical conductivity will decrease significantly, which is not preferable.

znは、先に説明したように、銅合金の半田付けにおけ
る界面剥離防止に非常に有効に作用する。
As explained above, zn is very effective in preventing interfacial peeling during soldering of copper alloys.

しかし、この含有量が0.3%以下では半田界面剥離防
止効果が不十分となり好ましくなく、1.3%以上にな
ると導電率の低下傾向が大きくなり同じく好ましくない
However, if the content is less than 0.3%, the effect of preventing peeling at the solder interface will be insufficient, which is not preferable, and if it is more than 1.3%, the electrical conductivity will tend to decrease, which is also not preferable.

Pはa酸剤として添加するものであり、上記界面剥離防
止に有効なZnが脱酸のために消費され本来の界面剥離
防止効果が低下する結果となるのを防止するためのもの
である。しかし、Pの含有量が0.003%以下では脱
酸効果が小さくznの消費が大きくなり、0.3%以上
になると加工性が低下する1導電率の低下が大きくなり
好ましくないのである。
P is added as an acid agent to prevent Zn, which is effective in preventing interfacial peeling, from being consumed for deoxidation, resulting in a reduction in the original interfacial peeling preventing effect. However, if the P content is less than 0.003%, the deoxidizing effect will be small and the consumption of Zn will be large, and if it is more than 0.3%, the decrease in 1 conductivity, which deteriorates workability, will be large, which is not preferable.

〔実施例] 以下に、本発明について実線例を参照し説明する。〔Example] The present invention will be described below with reference to solid line examples.

40%pb半田浴中においてドブ付はメツキし、これを
大気中において150℃xtooo時間加熱した後、0
.25Rで90゛曲げしその後曲げ戻して界面における
剥離の有無を100倍のW4微鏡で観察評価した。
The doves were plated in a 40% Pb solder bath, heated at 150°C x too many hours in the atmosphere, and then heated to 0.
.. It was bent 90 degrees at 25R, then bent back, and the presence or absence of peeling at the interface was observed and evaluated using a 100x W4 microscope.

第2表に評価結果を示す。Table 2 shows the evaluation results.

実施例 第2表に示す組成よりなる銅合金を水冷鋳型を用いて半
連続鋳造し、850℃で熱間圧延を艙して550℃m’
X10聞tの板とした。これを焼鈍、冷間圧延を繰返し
、550w’ xQ、75+m+’の板とし、さらに7
00℃X30分熱処理した。その後加工度66%で冷間
圧延し、550w’xO,25m’の板とした。
Example A copper alloy having the composition shown in Table 2 was semi-continuously cast using a water-cooled mold, hot-rolled at 850°C, and heated to 550°C.
The board was made of X10mm. This was annealed and cold rolled repeatedly to make a 550w' x Q, 75+m+' plate, and then
Heat treatment was performed at 00°C for 30 minutes. Thereafter, it was cold rolled at a workability of 66% to form a 550w'xO, 25m' plate.

つぎに、上記板材より15mm’ X 0 、25am
’X50am’の供試片を切り出し、半田付界面剥離性
について評価した。
Next, 15mm' X 0, 25am from the above plate material
A test piece of 'X50am' was cut out and evaluated for releasability at the soldering interface.

各g+試片を250℃に保持したSn −第   2 
  表 本発明に係る合金は、引張強さにおいていずれも62k
tr/ram2以上という高い値を示しており、前記し
た高ニッケル合金に比較して遜色のない強度を保持し得
ることがわかる。
Each g+ specimen was held at 250°C.
Table All alloys according to the present invention have a tensile strength of 62k.
It shows a high value of tr/ram2 or more, indicating that it can maintain strength comparable to that of the high nickel alloys described above.

しかも、第2表かられかるように本発明合金は、所定量
以上のZnを含有させることにより半田付界面剥離の発
生を完全に防止することができる。
Moreover, as shown in Table 2, the alloy of the present invention can completely prevent the occurrence of solder interface peeling by containing Zn in a predetermined amount or more.

これに対し、Znを含有しない比較例では、いずれの場
合も界面剥離が生じている。
On the other hand, in the comparative examples that do not contain Zn, interfacial peeling occurs in all cases.

[発明の効果] 以上の通り、本発明に係る銅合金によれば、十分な加工
硬化がみられる結果、66%程度の加工度であり乍ら高
ニッケル合金に比較して遜色のない強度を保持すること
ができ、また、適切にznが添加されることで導電率の
低下に大きな影響を及ぼすことなく半田付界面剥離を完
全に防止することが可能となるものであって、これによ
ってリードフレームの銅合金化に適切に対応できること
となる意義は大きい。
[Effects of the Invention] As described above, the copper alloy according to the present invention exhibits sufficient work hardening, resulting in a workability of about 66% and a strength comparable to that of high nickel alloys. In addition, by appropriately adding Zn, it is possible to completely prevent delamination at the soldering interface without significantly reducing conductivity. The significance of being able to respond appropriately to copper alloying of the frame is significant.

代理人  弁理士  佐 藤 不二雄Agent: Patent Attorney Fujio Sato

Claims (1)

【特許請求の範囲】[Claims] (1)Ni1.2〜2.8%、Sn1.0〜5.0%、
Zn0.3〜1.3%、P 0.003〜0.3%、を含み、残部Cu および不可避なる不純物よりなるリードフ レーム用高強度銅合金。
(1) Ni 1.2-2.8%, Sn 1.0-5.0%,
A high-strength copper alloy for lead frames containing 0.3 to 1.3% of Zn and 0.003 to 0.3% of P, with the remainder being Cu and unavoidable impurities.
JP2284489A 1989-02-01 1989-02-01 High strength copper alloy for lead frame Pending JPH02205643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284489A JPH02205643A (en) 1989-02-01 1989-02-01 High strength copper alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284489A JPH02205643A (en) 1989-02-01 1989-02-01 High strength copper alloy for lead frame

Publications (1)

Publication Number Publication Date
JPH02205643A true JPH02205643A (en) 1990-08-15

Family

ID=12094020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284489A Pending JPH02205643A (en) 1989-02-01 1989-02-01 High strength copper alloy for lead frame

Country Status (1)

Country Link
JP (1) JPH02205643A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174344A (en) * 1985-01-30 1986-08-06 Hitachi Metals Ltd Copper alloy for lead frame
JPS63293130A (en) * 1987-05-26 1988-11-30 Mitsubishi Shindo Kk Lead frame material made of cu alloy for semiconductor device
JPH01242742A (en) * 1988-03-23 1989-09-27 Mitsubishi Electric Corp Copper alloy for electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174344A (en) * 1985-01-30 1986-08-06 Hitachi Metals Ltd Copper alloy for lead frame
JPS63293130A (en) * 1987-05-26 1988-11-30 Mitsubishi Shindo Kk Lead frame material made of cu alloy for semiconductor device
JPH01242742A (en) * 1988-03-23 1989-09-27 Mitsubishi Electric Corp Copper alloy for electronic equipment

Similar Documents

Publication Publication Date Title
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
US4822560A (en) Copper alloy and method of manufacturing the same
JP3465108B2 (en) Copper alloy for electric and electronic parts
JPS6250425A (en) Copper alloy for electronic appliance
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JPS6039139A (en) Softening resistant copper alloy with high conductivity
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS6396237A (en) Material for electrically conductive parts of electronic and electrical appliance
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6345336A (en) Copper alloy for electronic and electric appliance and its production
JPS63307232A (en) Copper alloy
JPH032341A (en) High strength and high conductivity copper alloy
JPS6338547A (en) High strength conductive copper alloy
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPH11323463A (en) Copper alloy for electrical and electronic parts
US5248351A (en) Copper Ni-Si-P alloy for an electronic device
JP3379380B2 (en) High strength and high conductivity copper alloy
JPH02205643A (en) High strength copper alloy for lead frame
JPS60152646A (en) Material for lead frame for semiconductor
JP2870780B2 (en) High-strength copper alloy for lead frames
JPH01225781A (en) Tin or tin alloy-coated copper alloy material having excellent whisker resistance
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPH02205644A (en) High strength copper alloy for lead frame
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPS6311418B2 (en)