JPH0565042B2 - - Google Patents

Info

Publication number
JPH0565042B2
JPH0565042B2 JP62206064A JP20606487A JPH0565042B2 JP H0565042 B2 JPH0565042 B2 JP H0565042B2 JP 62206064 A JP62206064 A JP 62206064A JP 20606487 A JP20606487 A JP 20606487A JP H0565042 B2 JPH0565042 B2 JP H0565042B2
Authority
JP
Japan
Prior art keywords
film
alloy
magnetic
thickness
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62206064A
Other languages
Japanese (ja)
Other versions
JPS6449209A (en
Inventor
Toshiaki Wada
Masateru Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP20606487A priority Critical patent/JPS6449209A/en
Publication of JPS6449209A publication Critical patent/JPS6449209A/en
Publication of JPH0565042B2 publication Critical patent/JPH0565042B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、特に磁気ヘツドに用いるのに好適
な高透磁率、高磁束密度を有する軟磁性膜の製造
方法に係り、所謂センダスト合金薄膜と同等の軟
磁気特性を有し、センダスト合金薄膜より高い飽
和磁束密度を有する軟磁性膜が容易に得られる製
造方法に関する。 背景技術 近年、磁気記録における技術的発展は目覚まし
く、特に記録密度の向上は著しいものがある。 例えば、オーデイオテープレコーダやVTR(ビ
デオテープレコーダ)等の磁気記録再生装置にお
いては、記録信号の高密度化や高品質化等が進め
られており、この高記録密度化に対応して、磁気
記録媒体として磁性粉にFe、Co、Ni等の金属あ
るいは合金からなる粉末を用いた、所謂メタルテ
ープや、強磁性金属材料を真空薄膜形成技術によ
りベースフイルム上に直接被着した、所謂蒸着テ
ープ等が開発され、各分野で実用化されている。 ところで、このような高抗磁力を有する磁気記
録媒体の特性を発揮させるためには、磁気ヘツド
のコア材料の特性として、高い飽和磁束密度を有
するとともに、同一の磁気ヘツドで再生を行なお
うとする場合においては、高透磁率を併せて有す
ることが要求される。 例えば、従来、磁気ヘツドのコア材料として多
用されているフエライト材では飽和磁束密度が低
く、また、パーマロイでは耐摩耗性に問題があ
る。 そこで上述の諸要求を満たすコア材料として、
Fe−Al−Si系合金からなる所謂センダスト合金
が好適であると考えられ、すでに実用に供されて
いる。 しかしながら、このセンダスト合金のように軟
磁気特性に優れた材料においては、磁歪λsと結
晶磁気異方性Kが共に零付近であることが望まし
く、磁気ヘツドに使用可能な材料組成はこれら両
者の値を考慮して決められる。 従つて、飽和磁束密度もこの組成に対応して一
義的に決まり、センダスト合金の場合、10〜
11kGが限界である。 また、上記センダスト合金に代る材料として、
高周波数領域での透磁率の低下が少なく高飽和磁
束密度を有する非晶質、所謂アモルフアス磁性合
金材料が開発されている。 しかし、この非晶質磁性合金材料でも飽和磁束
密度は12kG程度であり、また、熱的に不安定で
結晶化の可能性が大きいため、500℃以上の温度
を長時間加えることはできず、例えば、ガラス融
着のように各種熱処理が必要な磁気ヘツドに使用
するには、製造工程上、種々の制限が生じてい
た。 これらの問題に対して、Fe−C膜やFe−Si膜
とパーマロイ膜との積層膜が提案(インターマグ
カンフアレンス1987ダイジエストDD−08)され
ているが、軟磁気特性が不十分である等の問題が
残されている。 発明の目的 この発明は、磁気記録における高品質化、高記
録密度化を図るための磁気記録媒体の高抗磁力化
の試みも、従来のコア材料を用いる限り飽和磁束
密度の限界から自ずと制約を受けている現状に鑑
み、センダスト合金と同程度の軟磁気特性(透磁
率や抗磁力等)を有し、センダストよりも高い飽
和磁束密度を有する軟磁性薄膜を提供することを
目的とする。 発明の概要 この発明は、すぐれた特性を有する軟磁性膜を
目的に種々検討した結果、基板上にbc.c.構造を有
する強磁性のFeまたはFe合金膜(ただし、Fe−
Si合金膜を除く)を成膜した後、該膜上に該膜に
対する膜厚比が1.5倍以上となるようにFe−Al−
Si合金膜を積層成膜し、少なくとも前記2層以上
の複合金属磁性膜とし、さらに適切な熱処理を施
すことにより、センダスト合金と同程度の軟磁気
特性(透磁率や抗磁力等)を有し、センダストよ
りも高い飽和磁束密度を有する軟磁性薄膜が得ら
れることを知見し、この発明を完成したものであ
る。 この発明は、 基板上に、bc.c.構造を有する強磁性のFeまた
はFe合金膜(ただし、Fe−Si合金膜を除く)を
成膜した後、該膜上にFe−Al−Si合金膜を積層
成膜し、あるいはさらに前記積層膜上にbc.c.構造
を有する強磁性のFeまたはFe合金膜とFe−Al−
Si合金膜を順次交互に積層し、前記FeまたはFe
合金膜に対するFe−Al−Si合金膜の膜厚比が1.5
倍以上となるように積層成膜して少なくとも前記
2層以上の複合金属磁性膜となした後、300℃〜
800℃、1分〜100時間の熱処理を行なうことを特
徴とする軟磁性膜の製造方法である。 詳述すれば、この発明は、スパツタ法、蒸着
法、イオンプレーテイング法等、公知の薄膜形成
法を用いて、各種の基板上に、まずbcc構造を有
する強磁性のFeまたはFe合金膜(ただし、以下
の記載において特別の指示がない限りFe−Si合
金膜はFe合金膜から除くこととする)を成膜し、
その膜上にFe−Al−Si合金膜を成膜積層し、さ
らに必要に応じ前記積層膜上にbcc構造を有する
強磁性のFeまたはFe合金膜とFe−Al−Si合金膜
を順次交互に成膜積層するとともに、前記Feま
たはFe合金膜に対するFe−Al−Si合金膜の膜厚
比を1.5倍以上となるようにかつ所要の厚みで少
なくとも2層以上の複合金属磁性膜となした後、
用途、膜厚み、積層構造及び厚み比率等に応じて
適宜選定した300℃〜800℃、1分〜100時間の熱
処理を行なうことにより、センダスト合金と同程
度の軟磁気特性(透磁率や抗磁力等)を有し、セ
ンダストよりも高い飽和磁束密度を有する軟磁性
薄膜を得ることを要旨とする。 この発明による軟磁性膜は、積層構造の金属磁
性体を特徴とするもので、bcc構造を有する強磁
性のFeまたはFe合金膜とFe−Al−Si系合金膜と
からなる二層以上の多層構造膜はもちろんのこ
と、成膜時または成膜後の熱処理により生成され
る各膜間の拡散層を有する膜構造の場合も含む。 この発明において、軟磁性薄膜を積層成膜する
基板には、用途に応じて、Ni−Znフエライトや
Mn−Znフエライトなどの単結晶フエライト、
HIP処理された焼結フエライトの他、Al2O3
TiC複合セラミツクスや、ZrO2、Si3N4等の各種
セラミツクス並びにガラス、結晶化ガラス等の公
知のあらゆる基板が利用できる。 かかる基板表面に、bcc構造を有する強磁性の
FeまたはFe系合金薄膜とさらにその上にFe−Al
−Si系合金薄膜を成膜するが、その被着方法とし
ては、各種スパツタリング法、真空蒸着、イオン
プレーテイング等の公知の気相成膜方法が利用で
きる。 この発明において、軟磁性膜の積層構成は、金
属磁性体が基板表面に被着されるbcc構造を有す
る強磁性のFeまたはFe系合金薄膜とさらにその
上に被着されるFe−Al−Si系合金薄膜との二層
以上の積層構成であり、かつFeまたはFe合金膜
に対するFe−Al−Si合金膜の各膜厚比を1.5倍以
上とすれば、いかなる積層数、積層厚み比の積層
構成も利用できる。従つて、多層構造の場合の各
層の積層厚み比を一定にする必要もなく、また、
最上層の膜は必ずしもFe−Al−Si系合金薄膜で
ある必要もない。 積層構成中の全Fe−Al−Si系合金薄膜のFeま
たはFe合金膜に対する膜厚比が、1.5倍未満であ
ると、高透磁率、低保磁力が得られないため、少
なくとも1.5倍の厚みが必要で、好ましくは2倍
以上である。 熱処理温度は300℃以上、800℃以下が好まし
く、さらに400℃以上、600℃以下がより好まし
い。処理時間は1分以上、100時間以下が好まし
く、さらには10分以上、10時間以下がより好まし
い。 発明の効果 この発明方法により、所要の基板上に、Fe−
Al−Si合金膜と同等またはそれ以上の軟磁気特
性(透磁率、保磁力)を有し、かつFe−Al−Si
合金膜以上の飽和磁束密度を有する軟磁性膜が得
られる。 従つて、この発明による軟磁性膜を、MIGヘ
ツドの如き強磁性酸化物磁気コアの磁気ギヤツプ
面に形成したり、あるいは薄膜ヘツドの磁極等各
種磁気ヘツドに用いることにより、高保磁力の媒
体に適用でき、高記録密度が得られる。 かかる効果が得られる理由を詳述する。 前述した如く、Fe−Al−Si合金膜において優
れた軟磁気特性を得るためには、磁歪λsと結晶
磁気異方性Kが共に零付近であることが望まし
い。従つて、軟磁性膜として使用される組成範囲
がλsとKから限られるために、得られる飽和磁
束密度は高々10〜11kG以下であつた。 一方、bcc構造を有する強磁性のFeまたはFe合
金においては、飽和磁束密度が10kG以上のもの
は容易に得られる。 例えば、純Fe膜は約22kG、Fe−50%Co合金膜
では12kGの高い飽和磁束密度が得られる。また、
Fe−N合金膜では28kGもの高い飽和磁束密度が
得られることが知られ、その他、Fe−Si、Fe−
Ni合金等の膜でも15〜18kGの飽和磁束密度が得
られることが知られている。 しかし、これらの合金膜はいずれも単層膜では
十分に高い透磁率、低い保磁力が得られない。例
えば、スパツタ法で得られたbcc構造を有する強
磁性のFe膜は、保磁力が約10Oeと高く、透磁率
も数百以下である。 これでは磁気ヘツド等に用いる軟磁性膜として
は不十分であるため、従来はbcc構造を有する強
磁性のFeまたはFe合金を、そのまま軟磁性膜と
して用いる試みは行なわれておらず、パーマロイ
やSiO2の膜との積層構造によりFeの軟磁気特性
を向上させる試みが行なわれているにすぎなかつ
た。 また、Fe−Al−Si合金膜も、1〜数μm程度
の厚みでは優れた軟磁気特性が得られるが、数千
Å以下になると磁気特性が著しく劣化することが
知られている。 従つて、Fe−Al−Si系合金膜とFeまたはFe系
合金膜を組み合わせることも、従来全く考えられ
ていなかつた。 そこで、数千Å以下のFe−Al−Si合金膜につ
いて、本発明者らが種々検討した結果、すぐれた
軟磁気特性が得られないのは、成膜初期において
結晶配向が乱れ易くなり、熱処理を行なつても結
晶面の配向が十分起り難いためであると想定し
た。 一方、Fe−Al−Si合金膜をbcc構造を有するFe
またはFe合金膜の上に所定の膜厚比(Fe−Al−
Si合金膜の膜厚/FeまたはFe合金膜の膜厚≧
1.5)で成膜した場合、Fe−Al−Si合金膜が下地
となるFeまたはFe合金膜の結晶配向に沿つて成
膜され、結晶配向の乱れが少なくなり、所要の熱
処理によつて容易に難磁気特性が向上すると考え
られる。 また、前記FeまたはFe合金膜は、Fe−Al−Si
合金膜との磁気的相互作用により従来得られなか
つたようなすぐれた軟磁気特性を発揮する。 従つて、かかるbcc構造を有するFeまたはFe合
金膜上に該Fe又はFe合金膜に対して膜厚比が1.5
倍以上のFe−Al−Si合金膜を積層し適切な熱処
理を施せば、Fe−Al−Si合金膜と同等またはそ
れ以上の軟磁気特性とFe−Al−Si系合金膜以上
の飽和磁束密度を有する軟磁性膜が容易に得られ
るのである。 発明の好ましい実施態様 組成等 この発明において、FeまたはFe合金膜は、前
述の如く、Fe−Al−Si系合金膜の成膜初期層の
結晶配向を促す目的のために、まず、bcc構造で
あること、そしてFeまたはFe合金膜自体が強磁
性であることが必要である。 また、その飽和磁束密度Bsは、膜全体の飽和
磁束密度をセンダストより高くするためには少な
くとも10kG以上必要であり、望ましくは14kG以
上、さらに望ましくは18kG以上が良い。 保磁力は、数10Oe以下であれば使用可能であ
るが、好ましくは数Oe以下が良い。 このFeまたはFe系合金膜の組成としては、Fe
と不可避な不純物からなるいわゆる純Feでも良
く、また、主成分をFeとし、副成分としてCo、
Ni、Cu、Mn、Cr、V、Mo、Nb、Zr、W、
Ta、Hf、Y、B、C、Al、Ru、Rh、Pd、Pt、
希土類元素の少なくとも1種以上と、不可避な不
純物を含有するFe合金膜でも良い。 しかし、これら副成分の濃度は、前記のbcc構
造と強磁性の条件を満足する範囲を適宜選定する
必要がある。例えば、Feを添加したFe−Ni合金
の場合、Niを約50%以上含有し、fcc構造を有す
る所謂パーマロイといわれる合金膜は、センダス
ト膜の初期層の結晶配向を促すことができないた
め不適当である。 また、B、Zr、Hf等の非晶質形成元素を、お
よそ10原子%〜20原子%添加すると非晶質Fe合
金膜が形成されるので、これも不適当である。 また、Cr、V、Mo、Nb、Zr、W、等の元素
は、Fe合金膜の飽和磁束密度を著しく低下させ
るため、飽和磁束密度が10kG以下にならないよ
うに濃度を定める必要がある。 従つて、前記の副成分の元素は各元素毎に、あ
るいは組み合わせて添加する際に、前述の条件を
満足するFeまたはFe合金膜が形成されるか否か、
公知の技術及び知見によりその濃度を決定すれば
良い。 また、Fe−Ai−Si系合金薄膜は、所謂センダ
スト合金であり、従来より複合型及び薄膜磁気ヘ
ツドに多用されており、磁気ヘツドの用途等に応
じて、公知の組成が適宜選定し得るが、3〜
10wt%Al、6〜15wt%Si、80〜90wt%Feの範囲
の合金を用いることができ、また、必要に応じ
て、Cr、Ti、Ta、Ni、Co、Mo、Zr、希土類元
素などを添加するのも良い。 製造条件 基板表面に、bcc構造を有する強磁性のFeまた
はFe系合金薄膜とさらにその上にFe−Al−Si系
合金薄膜を積層成膜するが、その被着方法として
は、前述の如く各種スパツタリング法、真空蒸
着、イオンプレーテイング、等の公知の気相成膜
方法が利用できる。 好ましい被着条件としては、いずれの方法にお
いても、到達真空度は高い程好ましく、少なくと
も10-6Torr台以下の高真空にする必要があり、
望ましくは2×10-6Torr以下、さに望ましくは
1×10-6Torr以下が良い。 スパツタリング法を用いる場合には、アルゴン
ガス等の不活性ガスをスパツタリングガスとして
用いるが、この圧力はスパツタ装置の構造によつ
て適宜選定すれば良い。 例えば、マグネトロン式スパツタ装置の場合、
ガス圧は1×10-3Torr〜20×10-3Torrが好まし
く、さらに好ましくは2×10-3Torr〜10×
10-3Torrがよい。 また、対向ターゲツト式スパツタ装置の場合ガ
ス圧は0.3×10-3Torr〜8×10-3Torrが好まし
い。 また、基板温度は400℃以下が良いが、望まし
くは300℃以下が良い。 さらに、被着形成するbcc構造を有する強磁性
のFeまたはFe系合金薄膜の膜厚は数Å〜数千Å
と薄いために、基板の表面状態、例えば、残留歪
応力や粗度等に強く影響され、磁気特性が悪化す
る可能性があるため、bcc構造を有する強磁性の
FeまたはFe系合金薄膜を被着する基板粗度を40
Å以下とすることが望ましい。 この発明において、bcc構造有する強磁性のFe
またはFe合金膜とFe−Al−Si合金膜とからなる
金属磁性体厚みは、数百Å以上あれば所定の軟磁
性は得られるが、その用途に応じて適宜選定すれ
ば良い。 例えば、垂直磁気記録用の薄膜ヘツド主磁極で
は0.1〜0.2μm、コンピユータ用長手記録の薄膜
ヘツド、あるいはMIGヘツドでは1〜数μm、
映像用ヘツドでは10〜20μmである。 さらに、この発明の特徴であるbcc構造を有す
るFeまたはFe系合金膜の1層当りの被着厚みは、
Fe−Al−Si合金膜の結晶配向を促す目的のため
には0.001μm以上必要で、好ましくは0.01μm以
上、さらに望ましくは0.03μm以上が好ましい。
しかし2μm以上の厚さになると金属磁性膜全体
の磁気特性が劣化するので2μm以下、望ましく
は1μm以下、さらに望ましくは0.5μm以下が良
い。 また、Fe−Al−Si系合金膜の厚みは、高透磁
率、低保磁力を得るためには前記bcc構造を有す
るFeまたはFe系合金膜の1倍以上の厚さが必要
であり、望ましくは1.5倍以上、さらに望ましく
は2倍以上が良い。 しかし、Fe−Al−Si合金膜がFeまたはFe合金
膜に比べて厚くすればする程、膜全体の飽和磁束
密度がFe−Al−Si合金膜のそれに近づく結果に
なるので、必要な飽和磁束密度に応じてFe−Al
−Si合金膜の膜厚を決める必要がある。 複合金属磁性膜の好ましい積層構成としては、
基板−Fe−センダスト−Fe−センダスト(以下
Fe−センダストの繰り返し)の順である。しか
し、必ずしもセンダストを最上層とする必要はな
い。 このようにして二層以上の多層に被着された金
属磁性膜の磁気特性を向上させる目的で必要に応
じた熱処理を行なう。 熱処理は、成膜後所要の加工前に行なつても良
く、例えば、磁気ヘツド等の部品の形状に加工し
てから行なつても良い。さらにまた、磁気ヘツド
コアの半体対のボンデイング加工を行なう際にガ
ラス溶着のための加熱を熱処理と併用しても良
い。 熱処理の温度と時間は、複合金属磁性膜の磁気
特性を向上させるのに十分な温度と時間を適宜選
定すると同時に、基板との熱膨張係数差、基板耐
熱性、各膜の厚さ、基板とFeまたはFe系合金膜
と、Fe−Al−Si系合金間との3者間の相互拡散
を同時に考慮して選定すべきであつて、使用した
基板及び金属磁性膜の組成によつて適宜選定する
必要がある。 熱処理温度は、300℃未満では、応力の緩和が
不十分で十分に高い透磁率が得られないため好ま
しくなく、また800℃を越えると、基板と膜及び
膜間の相互拡散等により返つて磁気特性が劣化し
たり、膜の剥離が生じ安いため、300℃〜800℃が
好ましく、さらに400℃以上、600℃以下がより好
ましい。 処理時間は、1分未満では、十分に高い透磁率
が得られないため好ましくなく、また100時間を
越えると、返つて磁気特性が劣化するため、1分
〜100時間が好ましく、さらには10分以上、10時
間以下がより好ましい。 冷却速度は、熱処理温度、時間と同様に使用し
た基板及び複合金属磁性膜の組成や構成によつて
適宜選定する必要があるが、通常、1℃/hr以
上、10000℃/hr以下が好ましいが、50℃/hr〜
600℃/hrの範囲が好ましい。 雰囲気は、金属磁性膜及び強磁性酸化物の磁気
特性を著しく劣化させるものでなければどのよう
な雰囲気でも良いが、真空または不活性ガスまた
は窒素ガス中が好ましく、特に10-4Torr以上の
真空が好ましい。 このようにして熱処理を行なつた場合、熱処理
温度及び時間との兼ね合いにより、分析機器で検
出し得る程度の相互拡散層が出来る場合がある。 そして、熱処理条件によつては、FeまたはFe
合金膜とFe−Al−Si系合金膜との間で、ほとん
ど単層膜に近い状態にまで相互拡散が進行して
も、各膜の組成の選択によつてはすぐれた軟磁性
を有する場合もある。 このような場合、この発明による軟磁性膜は、
基板とbcc構造を有する強磁性のFeまたはFe合金
及びFe−Al−Si系合金膜のそれぞれの境界面の
少なくとも一方における拡散層を含む構成とな
る。 実施例 実施例 1 基板に熱膨張係数110×10-7の結晶化ガラスと、
熱膨張係数79×10-7のAl2O3−TiC複合セラミツ
クスを用い、前記基板の主面上に、RF2極マグネ
トロンスパツタリング装置によつて、Al2O3膜を
10〜15μm厚みで被着形成した。 各基板の一主面上のAl2O3膜を、メカノケミカ
ルポリツシユ法により高精度な平坦無歪面に仕上
げた。 この際、タリステツプ表面段差測定器による測
定では、粗度20Å以下であつた。また、表面歪層
の除去状態は、エリプソメトリーによつて確認し
た。 上記の無歪加工された各基板のAl2O3膜上に、
スパツタリング装置によつて、99.3%Fe膜を300
Å厚みで被着形成し、さらにFe−Al−Si膜を900
Å厚みに被着形成し、これを3回繰り返して、複
合金属磁性膜を積層成膜した。 その後、複合金属磁性膜に450℃、1時間の熱
処理を施し、約50℃/Hrの炉冷を行つた。 また、比較のため、結晶化ガラス基板のAl2O3
膜上に、スパツタリング装置によつて、Fe−Al
−Si膜を3600Å厚みに被着形成して単層の金属磁
性膜を設けた。 得られた金属磁性膜の磁気特性は第1表のとお
りであつた。 上記のスパツタ条件は下記のとおりである。 ターゲツト=Fe(0.6%Cr−0.1%Mn−Fe)セン
ダスト(Fe−6Al−10Si) 真空度=1×10-6Torr Ar圧=4.5mTorr 基板温度=約70℃ パワー(RF)=Fe;300w(2極スパツタ) =Fe−Al−Si;500w(2極プレーナーマグネト
ロンスパツタ)
Field of Application This invention relates to a method for producing a soft magnetic film having high magnetic permeability and high magnetic flux density, which is particularly suitable for use in magnetic heads, and which has soft magnetic properties equivalent to so-called Sendust alloy thin films. The present invention relates to a manufacturing method by which a soft magnetic film having a higher saturation magnetic flux density than a thin film can be easily obtained. BACKGROUND ART In recent years, technological developments in magnetic recording have been remarkable, with particularly remarkable improvements in recording density. For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the density and quality of recording signals are increasing, and in response to this increase in recording density, magnetic recording So-called metal tapes that use powders made of metals or alloys such as Fe, Co, Ni, etc. as magnetic powders as media, and so-called vapor-deposited tapes that use ferromagnetic metal materials directly deposited on a base film using vacuum thin film formation technology. has been developed and put into practical use in various fields. By the way, in order to take advantage of the characteristics of a magnetic recording medium with such high coercive force, the core material of the magnetic head must have a high saturation magnetic flux density, and the same magnetic head must be used for reproduction. In some cases, it is also required to have high magnetic permeability. For example, ferrite materials, which have conventionally been widely used as core materials for magnetic heads, have a low saturation magnetic flux density, and permalloy has problems in wear resistance. Therefore, as a core material that meets the above requirements,
A so-called sendust alloy made of an Fe-Al-Si alloy is considered suitable and has already been put into practical use. However, for materials with excellent soft magnetic properties such as this Sendust alloy, it is desirable that both the magnetostriction λs and the magnetocrystalline anisotropy K be around zero, and the material composition that can be used for the magnetic head is based on these two values. It can be decided taking into account. Therefore, the saturation magnetic flux density is also uniquely determined according to this composition, and in the case of Sendust alloy, it is 10~
The limit is 11kG. In addition, as an alternative material to the above Sendust alloy,
Amorphous, so-called amorphous magnetic alloy materials have been developed that have a high saturation magnetic flux density with little decrease in magnetic permeability in a high frequency region. However, even this amorphous magnetic alloy material has a saturation magnetic flux density of about 12kG, and is thermally unstable and has a high possibility of crystallization, so it is not possible to apply temperatures over 500℃ for a long time. For example, various limitations have arisen in the manufacturing process for use in magnetic heads that require various heat treatments such as glass fusing. To solve these problems, laminated films of Fe-C film or Fe-Si film and permalloy film have been proposed (Intermag Conference 1987 Digest DD-08), but the soft magnetic properties are insufficient, etc. The problem remains. Purpose of the Invention This invention aims to improve the quality and recording density of magnetic recording by increasing the coercive force of magnetic recording media, but as long as conventional core materials are used, the limit of saturation magnetic flux density naturally limits the efforts. In view of the current situation, the objective is to provide a soft magnetic thin film that has soft magnetic properties (magnetic permeability, coercive force, etc.) comparable to Sendust alloy, and has a higher saturation magnetic flux density than Sendust alloy. Summary of the Invention As a result of various studies aimed at creating a soft magnetic film with excellent properties, the present invention was developed to form a ferromagnetic Fe or Fe alloy film having a bc.c.
After forming a film (excluding Si alloy film), Fe-Al-
By laminating Si alloy films to form a composite metal magnetic film with at least two or more layers, and further applying appropriate heat treatment, it has soft magnetic properties (magnetic permeability, coercive force, etc.) comparable to that of Sendust alloy. , discovered that a soft magnetic thin film having a higher saturation magnetic flux density than Sendust could be obtained, and completed this invention. In this invention, after forming a ferromagnetic Fe or Fe alloy film (excluding Fe-Si alloy film) having a bc.c. structure on a substrate, a Fe-Al-Si alloy film is formed on the film. A ferromagnetic Fe or Fe alloy film having a bc.c. structure and an Fe-Al-
Si alloy films are sequentially and alternately stacked, and the Fe or Fe
Thickness ratio of Fe-Al-Si alloy film to alloy film is 1.5
After forming a composite metal magnetic film of at least two or more layers by laminating the film so that the thickness is more than double, the film is heated at 300°C to
This method of manufacturing a soft magnetic film is characterized by heat treatment at 800°C for 1 minute to 100 hours. Specifically, this invention first forms a ferromagnetic Fe or Fe alloy film ( However, unless otherwise specified in the following description, the Fe-Si alloy film is excluded from the Fe alloy film).
A Fe-Al-Si alloy film is formed and laminated on the film, and if necessary, a ferromagnetic Fe or Fe alloy film having a bcc structure and a Fe-Al-Si alloy film are sequentially alternately deposited on the laminated film. After film formation and lamination, the film thickness ratio of the Fe-Al-Si alloy film to the Fe or Fe alloy film is 1.5 times or more, and after forming a composite metal magnetic film of at least two layers with the required thickness. ,
By performing heat treatment at 300°C to 800°C for 1 minute to 100 hours at a temperature appropriately selected depending on the application, film thickness, laminated structure, thickness ratio, etc., soft magnetic properties (magnetic permeability and coercive force) comparable to those of Sendust alloy can be achieved. etc.) and has a higher saturation magnetic flux density than Sendust. The soft magnetic film according to the present invention is characterized by a metal magnetic material with a laminated structure, and is a multilayer of two or more layers consisting of a ferromagnetic Fe or Fe alloy film having a bcc structure and a Fe-Al-Si alloy film. It includes not only structural films but also film structures having diffusion layers between films generated during film formation or by heat treatment after film formation. In this invention, the substrate on which the soft magnetic thin film is laminated may be Ni-Zn ferrite or
Single crystal ferrite such as Mn-Zn ferrite,
In addition to HIP-treated sintered ferrite, Al 2 O 3
All known substrates such as TiC composite ceramics, various ceramics such as ZrO 2 and Si 3 N 4 , glass, and crystallized glass can be used. A ferromagnetic material having a bcc structure is placed on the surface of such a substrate.
Fe or Fe-based alloy thin film and Fe-Al on top
- A Si-based alloy thin film is formed, and various known vapor phase film forming methods such as various sputtering methods, vacuum evaporation, and ion plating can be used as a deposition method. In this invention, the laminated structure of the soft magnetic film consists of a ferromagnetic Fe or Fe-based alloy thin film having a bcc structure in which a metal magnetic material is deposited on the substrate surface, and an Fe-Al-Si film further deposited thereon. If it has a laminated structure of two or more layers with a thin alloy film and the thickness ratio of each Fe-Al-Si alloy film to Fe or Fe alloy film is 1.5 times or more, any number of laminated layers and any laminated thickness ratio can be used. Configurations are also available. Therefore, in the case of a multilayer structure, there is no need to keep the stacking thickness ratio of each layer constant, and
The top layer film does not necessarily have to be a Fe-Al-Si alloy thin film. If the thickness ratio of the total Fe-Al-Si alloy thin film to the Fe or Fe alloy film in the laminated structure is less than 1.5 times, high magnetic permeability and low coercive force cannot be obtained. is required, preferably twice or more. The heat treatment temperature is preferably 300°C or higher and 800°C or lower, more preferably 400°C or higher and 600°C or lower. The treatment time is preferably 1 minute or more and 100 hours or less, more preferably 10 minutes or more and 10 hours or less. Effects of the Invention By the method of this invention, Fe-
It has soft magnetic properties (magnetic permeability, coercive force) equal to or better than Al-Si alloy film, and Fe-Al-Si
A soft magnetic film having a saturation magnetic flux density higher than that of an alloy film can be obtained. Therefore, the soft magnetic film of the present invention can be applied to high coercive force media by forming it on the magnetic gap surface of a ferromagnetic oxide magnetic core such as an MIG head, or by using it in various magnetic heads such as the magnetic pole of a thin film head. High recording density can be obtained. The reason why such an effect can be obtained will be explained in detail. As mentioned above, in order to obtain excellent soft magnetic properties in the Fe-Al-Si alloy film, it is desirable that both the magnetostriction λs and the magnetocrystalline anisotropy K be around zero. Therefore, since the composition range used as a soft magnetic film is limited by λs and K, the obtained saturation magnetic flux density is at most 10 to 11 kG or less. On the other hand, in ferromagnetic Fe or Fe alloy having a bcc structure, a saturation magnetic flux density of 10 kG or more can be easily obtained. For example, a high saturation magnetic flux density of approximately 22 kG can be obtained for a pure Fe film and 12 kG for an Fe-50% Co alloy film. Also,
It is known that a saturation magnetic flux density as high as 28kG can be obtained with the Fe-N alloy film, and other films such as Fe-Si, Fe-
It is known that a saturation magnetic flux density of 15 to 18 kG can be obtained even with films such as Ni alloys. However, in any of these alloy films, a sufficiently high magnetic permeability and low coercive force cannot be obtained as a single layer film. For example, a ferromagnetic Fe film with a bcc structure obtained by the sputtering method has a high coercive force of about 10 Oe and a magnetic permeability of several hundred or less. Since this is insufficient as a soft magnetic film for use in magnetic heads, etc., no attempts have been made to use ferromagnetic Fe or Fe alloys with a bcc structure as soft magnetic films as they are, and permalloy, SiO Attempts have only been made to improve the soft magnetic properties of Fe using a laminated structure with 2 films. It is also known that Fe--Al--Si alloy films have excellent soft magnetic properties when the thickness is about 1 to several micrometers, but when the thickness is less than several thousand angstroms, the magnetic properties deteriorate significantly. Therefore, the combination of Fe--Al--Si based alloy film and Fe or Fe-based alloy film has not been considered at all in the past. Therefore, as a result of various studies conducted by the present inventors on Fe-Al-Si alloy films with a thickness of several thousand Å or less, we found that the reason why excellent soft magnetic properties cannot be obtained is that the crystal orientation is easily disturbed in the initial stage of film formation, and heat treatment It was assumed that this was because the orientation of the crystal planes was sufficiently difficult to occur even if this was done. On the other hand, the Fe-Al-Si alloy film has a bcc structure.
Or, a predetermined film thickness ratio (Fe−Al−
Film thickness of Si alloy film / Film thickness of Fe or Fe alloy film ≧
When deposited in step 1.5), the Fe-Al-Si alloy film is deposited along the crystal orientation of the underlying Fe or Fe alloy film, resulting in less disordered crystal orientation, and can be easily formed by the required heat treatment. It is thought that the difficult-to-magnetic properties are improved. Further, the Fe or Fe alloy film is Fe-Al-Si
Through magnetic interaction with the alloy film, it exhibits excellent soft magnetic properties that were previously unobtainable. Therefore, on the Fe or Fe alloy film having such a bcc structure, the film thickness ratio is 1.5 to the Fe or Fe alloy film.
If more than twice as many Fe-Al-Si alloy films are laminated and subjected to appropriate heat treatment, soft magnetic properties equivalent to or better than Fe-Al-Si alloy films and saturation magnetic flux density higher than Fe-Al-Si alloy films can be obtained. Therefore, a soft magnetic film having the following properties can be easily obtained. Preferred Embodiments of the Invention Composition, etc. In this invention, as described above, the Fe or Fe alloy film is first formed with a bcc structure in order to promote crystal orientation in the initial layer of the Fe-Al-Si alloy film. In addition, the Fe or Fe alloy film itself must be ferromagnetic. Further, the saturation magnetic flux density Bs is required to be at least 10 kG or more in order to make the saturation magnetic flux density of the entire film higher than that of Sendust, preferably 14 kG or more, and more preferably 18 kG or more. A coercive force of several tens of Oe or less can be used, but it is preferably several Oe or less. The composition of this Fe or Fe-based alloy film is Fe
So-called pure Fe consisting of unavoidable impurities may also be used, or the main component may be Fe and the subcomponents may be Co,
Ni, Cu, Mn, Cr, V, Mo, Nb, Zr, W,
Ta, Hf, Y, B, C, Al, Ru, Rh, Pd, Pt,
An Fe alloy film containing at least one rare earth element and unavoidable impurities may also be used. However, the concentration of these subcomponents needs to be appropriately selected within a range that satisfies the conditions for the bcc structure and ferromagnetism. For example, in the case of a Fe-Ni alloy containing Fe, an alloy film called permalloy, which contains about 50% or more of Ni and has an fcc structure, is not suitable because it cannot promote crystal orientation in the initial layer of the sendust film. It is. Further, if an amorphous-forming element such as B, Zr, or Hf is added in an amount of about 10 to 20 atom %, an amorphous Fe alloy film is formed, which is also inappropriate. Further, since elements such as Cr, V, Mo, Nb, Zr, W, etc. significantly lower the saturation magnetic flux density of the Fe alloy film, it is necessary to determine the concentration so that the saturation magnetic flux density does not become less than 10 kG. Therefore, when the above-mentioned sub-component elements are added individually or in combination, whether an Fe or Fe alloy film satisfying the above-mentioned conditions is formed or not is a question.
The concentration may be determined using known techniques and knowledge. In addition, the Fe-Ai-Si alloy thin film is a so-called sendust alloy, which has been widely used in composite type and thin film magnetic heads, and a known composition can be selected as appropriate depending on the purpose of the magnetic head. , 3~
An alloy in the range of 10wt%Al, 6~15wt%Si, 80~90wt%Fe can be used, and if necessary, Cr, Ti, Ta, Ni, Co, Mo, Zr, rare earth elements, etc. can be used. It is also good to add. Manufacturing conditions A ferromagnetic Fe or Fe-based alloy thin film having a bcc structure and a Fe-Al-Si based alloy thin film are deposited on the surface of the substrate. Known vapor phase film forming methods such as sputtering, vacuum evaporation, and ion plating can be used. As for preferable deposition conditions, in any method, the higher the degree of vacuum achieved, the better, and it is necessary to maintain a high vacuum of at least 10 -6 Torr or less.
It is preferably 2×10 -6 Torr or less, more preferably 1×10 -6 Torr or less. When using the sputtering method, an inert gas such as argon gas is used as the sputtering gas, and the pressure may be appropriately selected depending on the structure of the sputtering device. For example, in the case of magnetron sputtering equipment,
The gas pressure is preferably 1×10 -3 Torr to 20×10 -3 Torr, more preferably 2×10 -3 Torr to 10×
10 -3 Torr is good. In the case of a facing target type sputtering device, the gas pressure is preferably 0.3 x 10 -3 Torr to 8 x 10 -3 Torr. Further, the substrate temperature is preferably 400°C or lower, preferably 300°C or lower. Furthermore, the thickness of the deposited ferromagnetic Fe or Fe-based alloy thin film with a bcc structure ranges from several Å to several thousand Å.
ferromagnetic materials with a bcc structure are
The roughness of the substrate to be coated with Fe or Fe-based alloy thin film is 40
It is desirable that it be less than Å. In this invention, ferromagnetic Fe with bcc structure
Alternatively, the thickness of the metal magnetic material consisting of the Fe alloy film and the Fe-Al-Si alloy film can be appropriately selected depending on the application, although a desired soft magnetism can be obtained if the thickness is several hundred angstroms or more. For example, the main pole of a thin film head for perpendicular magnetic recording is 0.1 to 0.2 μm, and the main pole of a thin film head for longitudinal recording for a computer or an MIG head is 1 to several μm.
For video heads, it is 10 to 20 μm. Furthermore, the deposition thickness per layer of the Fe or Fe-based alloy film having the bcc structure, which is a feature of this invention, is
For the purpose of promoting crystal orientation of the Fe-Al-Si alloy film, the thickness is required to be 0.001 μm or more, preferably 0.01 μm or more, and more preferably 0.03 μm or more.
However, if the thickness exceeds 2 .mu.m, the magnetic properties of the entire metal magnetic film deteriorate, so the thickness is preferably 2 .mu.m or less, preferably 1 .mu.m or less, and more preferably 0.5 .mu.m or less. In addition, the thickness of the Fe-Al-Si alloy film needs to be at least one times that of the Fe or Fe-based alloy film having the bcc structure in order to obtain high magnetic permeability and low coercive force. is 1.5 times or more, more preferably 2 times or more. However, the thicker the Fe-Al-Si alloy film is compared to the Fe or Fe alloy film, the closer the saturation magnetic flux density of the entire film is to that of the Fe-Al-Si alloy film. Fe−Al depending on density
-It is necessary to determine the thickness of the Si alloy film. The preferred laminated structure of the composite metal magnetic film is as follows:
Substrate - Fe - Sendust - Fe - Sendust (hereinafter
The order is Fe - Sendust repeat). However, it is not necessary to use sendust as the top layer. In order to improve the magnetic properties of the metal magnetic film deposited in two or more layers in this way, heat treatment is performed as necessary. The heat treatment may be performed after film formation and before required processing, or may be performed, for example, after processing into the shape of a component such as a magnetic head. Furthermore, when bonding the pair of magnetic head core halves, heating for glass welding may be used in combination with heat treatment. The temperature and time of the heat treatment should be selected appropriately to improve the magnetic properties of the composite metal magnetic film, while also taking into account the difference in coefficient of thermal expansion with the substrate, the heat resistance of the substrate, the thickness of each film, and the temperature and time that are sufficient to improve the magnetic properties of the composite metal magnetic film. The selection should be made by simultaneously considering mutual diffusion between the Fe or Fe-based alloy film and the Fe-Al-Si alloy, and should be selected appropriately depending on the composition of the substrate used and the metal magnetic film. There is a need to. A heat treatment temperature of less than 300°C is undesirable because stress relaxation is insufficient and a sufficiently high magnetic permeability cannot be obtained, and a heat treatment temperature of more than 800°C is undesirable due to mutual diffusion between the substrate, the film, and the film. The temperature is preferably 300°C to 800°C, and more preferably 400°C or more and 600°C or less, since properties are likely to deteriorate or the film may peel off. If the treatment time is less than 1 minute, it is not preferable because a sufficiently high magnetic permeability cannot be obtained, and if it exceeds 100 hours, the magnetic properties will deteriorate, so 1 minute to 100 hours is preferable, and more preferably 10 minutes. More preferably, the time is 10 hours or less. The cooling rate needs to be appropriately selected depending on the composition and structure of the substrate and composite metal magnetic film used as well as the heat treatment temperature and time, but it is usually preferably 1°C/hr or more and 10000°C/hr or less. , 50℃/hr~
A range of 600°C/hr is preferred. The atmosphere may be any atmosphere as long as it does not significantly deteriorate the magnetic properties of the metal magnetic film and the ferromagnetic oxide, but vacuum, inert gas, or nitrogen gas is preferable, especially a vacuum of 10 -4 Torr or higher. is preferred. When heat treatment is performed in this manner, depending on the heat treatment temperature and time, an interdiffusion layer may be formed to a degree that can be detected by an analytical instrument. Depending on the heat treatment conditions, Fe or Fe
Even if mutual diffusion progresses between the alloy film and the Fe-Al-Si alloy film to the point where it becomes almost a single layer film, excellent soft magnetic properties may be obtained depending on the selection of the composition of each film. There is also. In such a case, the soft magnetic film according to the present invention
The structure includes a diffusion layer at at least one of the interfaces between the substrate and the ferromagnetic Fe or Fe alloy having a bcc structure and the Fe-Al-Si alloy film. Examples Example 1 A substrate made of crystallized glass with a thermal expansion coefficient of 110×10 -7 ,
Using Al 2 O 3 -TiC composite ceramics with a thermal expansion coefficient of 79×10 -7 , an Al 2 O 3 film was formed on the main surface of the substrate using an RF2-pole magnetron sputtering device.
It was deposited to a thickness of 10 to 15 μm. The Al 2 O 3 film on one main surface of each substrate was finished into a highly precise, flat, distortion-free surface using a mechanochemical polishing method. At this time, the roughness was 20 Å or less when measured using a Talystep surface step measuring device. Further, the state of removal of the surface strain layer was confirmed by ellipsometry. On the Al 2 O 3 film of each substrate processed without strain,
300% 99.3% Fe film by sputtering equipment
A Fe-Al-Si film is deposited to a thickness of 900 Å.
The composite metal magnetic film was deposited to a thickness of Å, and this process was repeated three times to form a composite metal magnetic film. Thereafter, the composite metal magnetic film was heat treated at 450°C for 1 hour, and then cooled in a furnace at about 50°C/hr. Also, for comparison, Al 2 O 3 of crystallized glass substrate
Fe-Al is deposited on the film using a sputtering device.
A single-layer metal magnetic film was provided by depositing a -Si film to a thickness of 3600 Å. The magnetic properties of the obtained metal magnetic film were as shown in Table 1. The above sputtering conditions are as follows. Target = Fe (0.6%Cr-0.1%Mn-Fe) Sendust (Fe-6Al-10Si) Vacuum level = 1 x 10 -6 Torr Ar pressure = 4.5mTorr Substrate temperature = Approx. 70℃ Power (RF) = Fe; 300w (2-pole sputter) =Fe-Al-Si; 500w (2-pole planar magnetron sputter)

【表】 実施例 2 基板に熱膨張係数93×10-7の結晶化ガラスと、
実施例1と同一のAl2O3膜を設けた結晶化ガラス
を用い、実施例1と同一条件にて、上記の無歪加
工された結晶化ガラス上あるいは同基板のAl2O3
膜上に、スパツタリング装置によつて、99.3%Fe
膜を500Å厚みで被着形成し、さらにFe−Al−Si
膜を1300Å厚みに被着形成し、これを4回繰り返
して、複合金属磁性膜を積層成膜した。 その後、複合金属磁性膜に450℃、1時間の熱
処理を施し、約50℃/Hrの炉冷を行つた。 また、比較のため、実施例1と同様のAl2O3
を形成した結晶化ガラス基板上に、スパツタリン
グ装置によつて、Fe−al−Si膜を1.1μm厚みに被
着形成して単層の金属磁性膜を設けた。 得られた金属磁性膜の磁気特性は第2表のとお
りであつた。
[Table] Example 2 Crystallized glass with a thermal expansion coefficient of 93×10 -7 on the substrate,
Using crystallized glass provided with the same Al 2 O 3 film as in Example 1, Al 2 O 3 on the strain-free processed crystallized glass or on the same substrate under the same conditions as in Example 1 was used.
99.3% Fe was added onto the film using a sputtering device.
A film was deposited to a thickness of 500 Å, and then Fe-Al-Si was deposited.
A film was deposited to a thickness of 1300 Å, and this process was repeated four times to form a composite metal magnetic film in layers. Thereafter, the composite metal magnetic film was heat treated at 450°C for 1 hour, and then cooled in a furnace at about 50°C/hr. For comparison, a Fe-al-Si film was deposited to a thickness of 1.1 μm using a sputtering device on a crystallized glass substrate on which the same Al 2 O 3 film as in Example 1 was formed. A layer of metal magnetic film was provided. The magnetic properties of the obtained metal magnetic film were as shown in Table 2.

【表】 実施例 3 Mn−Zn単結晶フエライトからなる磁性基板の
一主面を、ダイヤモンドパウダーを用いて、鏡面
したのち、逆スパツタリングを施し、前記主面を
高精度な無歪面を仕上げた。 この際、タリステツプ表面段差測定器による測
定では、粗度40Å以下であつた。また、表面歪層
の除去状態は、エリプソメトリーによつて確認し
た。 上記の無歪加工された磁性基板の主面上に、
RF2極マグネトロンスパツタリング装置によつ
て、99.3%Fe膜を500Å厚みで被着形成し、さら
にFe−6Al−10Si膜を1500Å厚みに被着形成し、
これを8回繰り返して、1.6μm厚みの複合金属磁
性膜を積層成膜した。 複合金属磁性膜の被着形成後、500℃×1時間
の熱処理を施し、100℃/Hrの炉冷を行つた。 なお、前記のスパツタリング条件は、それぞれ
投入電力1kW、Arガス圧力5×10-3Torrであつ
た。 次に、前記基板上に磁気ギヤツプを形成するた
めのAl2O3膜をRF2極マグネトロンスパツタリン
グ装置にて、0.1μm厚みに被着形成した複合磁性
基板を得る。さらに、トラツクを形成するための
トラツク溝及び記録再生のための巻線用巻線溝を
多数形成した。 さらに、複合磁性基板を所定寸法の複数の半体
状態に切り出し、巻線溝を有する半体と巻線溝を
有しない半体を、真空熱処理によつてガラスボン
デイングし、同時に、金属磁性膜の磁気特性を向
上させた後、スライシングし、所定寸法、形状と
なるように外形加工を施し、チツプ化した。 次に、コンポジツトヘツド化し、電磁変換特性
を測定した。 また、比較のために、従来法のFe−Al−Si膜
のみによるコンポジツトヘツドも作製し、電磁変
換特性を測定した。 第1図は従来法およびこの発明によるコンポジ
ツトヘツドの再生波形の模式図であり、(a)は磁気
ギヤツプからの出力で、(b)はセンダスト膜と磁気
コア半体の間の磁気的不連続による疑似ギヤツプ
による出力である。 出力比b/aの測定の結果、本発明のb/aは
0.02、従来法のb/aは0.2であり、この発明に
よるヘツドの場合の方は、疑似ギヤツプの効果は
実質的に問題とならない程度に著しく減少し、良
好な記録再生特性を有することが確認できた。 また、この発明によるコンポジツトヘツドの再
生周波数特性のうねりは大幅に改善され、1dB以
下であつた。 実施例 4 実施例1と同様の熱膨張係数110×10-7の結晶
化ガラスにAl2O3膜を10〜15μm厚みで形成し、
表面を無歪加工した基板を用い、90%Fe−10%
Co膜をRF2極スパツタにより0.05μm厚みに被着
形成し、さらにFe−Al−Si膜を1.45μm厚みに形
成した。 その後、この複合金属磁性膜に500℃、1時間
の熱処理を施し、約100℃/Hrの炉冷を行つた。 また、比較のため、同等結晶化ガラス基板上
に、スパツタリング装置によつて、Fe−Al−Si
膜のみを1.5μm厚みに被着形成し、前記複合金属
磁性膜と同一条件で熱処理を行つた。 なお、スパツタ条件は強磁性Fe合金膜用ター
ゲツトが異なる以外は実施例1と同一である。第
3表に透磁率を示す如く、Fe−Al−Si膜のみの
場合に比べ、倍以上の高い透磁率を示すことが分
かる。
[Table] Example 3 One main surface of a magnetic substrate made of Mn-Zn single-crystal ferrite was polished to a mirror surface using diamond powder, and then reverse sputtering was performed to finish the main surface into a highly accurate distortion-free surface. . At this time, the roughness was 40 Å or less as measured by a Talystep surface step measuring device. Further, the state of removal of the surface strain layer was confirmed by ellipsometry. On the main surface of the above strain-free processed magnetic substrate,
Using an RF two-pole magnetron sputtering device, a 99.3% Fe film was deposited to a thickness of 500 Å, and an Fe-6Al-10Si film was deposited to a thickness of 1500 Å.
This process was repeated eight times to form a composite metal magnetic film with a thickness of 1.6 μm. After the composite metal magnetic film was deposited, heat treatment was performed at 500°C for 1 hour, followed by furnace cooling at 100°C/hr. The sputtering conditions described above were an input power of 1 kW and an Ar gas pressure of 5 x 10 -3 Torr. Next, an Al 2 O 3 film for forming a magnetic gap was deposited on the substrate to a thickness of 0.1 μm using an RF two-pole magnetron sputtering device to obtain a composite magnetic substrate. Furthermore, a large number of track grooves for forming tracks and winding grooves for winding wires for recording and reproduction were formed. Furthermore, the composite magnetic substrate is cut into multiple halves with predetermined dimensions, and the halves with and without winding grooves are glass bonded by vacuum heat treatment, and at the same time, the metal magnetic film is After improving its magnetic properties, it was sliced, processed to have a predetermined size and shape, and made into chips. Next, we made a composite head and measured its electromagnetic conversion characteristics. For comparison, a composite head using only a conventional Fe--Al--Si film was also fabricated and its electromagnetic conversion characteristics were measured. FIG. 1 is a schematic diagram of reproduction waveforms of composite heads according to the conventional method and the present invention, where (a) is the output from the magnetic gap, and (b) is the magnetic impurity between the sendust film and the magnetic core half. This is the output due to a pseudo gap caused by continuity. As a result of measuring the output ratio b/a, the b/a of the present invention is
0.02, b/a of the conventional method is 0.2, and in the case of the head according to the present invention, the effect of the pseudo gap is significantly reduced to the extent that it is practically no problem, and it is confirmed that it has good recording and reproducing characteristics. did it. Furthermore, the waviness of the reproduction frequency characteristics of the composite head according to the present invention was significantly improved and was less than 1 dB. Example 4 An Al 2 O 3 film was formed to a thickness of 10 to 15 μm on crystallized glass with a thermal expansion coefficient of 110 × 10 -7 similar to Example 1,
Using a substrate with a stress-free surface, 90%Fe-10%
A Co film was deposited to a thickness of 0.05 μm using an RF two-pole sputter, and an Fe-Al-Si film was further formed to a thickness of 1.45 μm. Thereafter, this composite metal magnetic film was heat treated at 500°C for 1 hour, and then cooled in a furnace at about 100°C/hr. For comparison, Fe-Al-Si was deposited on an equivalent crystallized glass substrate using a sputtering device.
A film alone was deposited to a thickness of 1.5 μm and heat treated under the same conditions as the composite metal magnetic film. The sputtering conditions were the same as in Example 1 except that the target for the ferromagnetic Fe alloy film was different. As shown in Table 3, the magnetic permeability is more than double that of the Fe-Al-Si film alone.

【表】 実施例 5 実施例4で用いた基板と同一基板に、Fe及び
Fe−Al−Si合金膜を種々の膜厚比にて被着形成
した後、450℃〜500℃、0.5〜1時間の熱処理を
施し、約50℃/Hrの炉冷を行つた。 なお、スパツタ条件はFe膜形成用に99.9%Fe
ターゲツトを用いた以外は実施例1と同一であ
る。 得られた複合磁性膜の磁気特性は第4表のとお
りであつた。 第4表の結果から明らかなように、複合磁性膜
はFe−Al−Si膜のみに比較して、倍以上の高い
透磁率を示すことがわかる。
[Table] Example 5 Fe and
After Fe-Al-Si alloy films were deposited at various film thickness ratios, heat treatment was performed at 450°C to 500°C for 0.5 to 1 hour, followed by furnace cooling at about 50°C/Hr. The sputtering conditions are 99.9% Fe for Fe film formation.
This is the same as Example 1 except that a target is used. The magnetic properties of the obtained composite magnetic film were as shown in Table 4. As is clear from the results in Table 4, it can be seen that the composite magnetic film exhibits a magnetic permeability more than double that of the Fe-Al-Si film alone.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気ヘツドの出力周波数特性の模式図
である。
FIG. 1 is a schematic diagram of the output frequency characteristics of a magnetic head.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、bcc構造を有する強磁性のFeまた
はFe合金膜(ただし、Fe−Si合金膜を除く)を
成膜した後、該膜上にFe−Al−Si合金膜を積層
成膜し、あるいはさらに前記積層膜上にbcc構造
を有する強磁性のFeまたはFe合金膜とFe−Al−
Si合金膜を順次交互に積層し、前記FeまたはFe
合金膜に対するFe−Al−Si合金膜の膜厚化が1.5
倍以上となるように積層成膜して少なくとも前記
2層以上の複合金属磁性膜となした後、300℃〜
800℃、1分〜100時間の熱処理を行なうことを特
徴とする軟磁性膜の製造方法。
1 After forming a ferromagnetic Fe or Fe alloy film (excluding Fe-Si alloy film) having a bcc structure on a substrate, a Fe-Al-Si alloy film is laminated on top of the film. , or further, a ferromagnetic Fe or Fe alloy film having a bcc structure and Fe-Al-
Si alloy films are sequentially and alternately stacked, and the Fe or Fe
Thickness of Fe-Al-Si alloy film relative to alloy film is 1.5
After forming a composite metal magnetic film of at least two or more layers by laminating the film so that the thickness is more than double, the film is heated at 300°C to
A method for producing a soft magnetic film, characterized by heat treatment at 800°C for 1 minute to 100 hours.
JP20606487A 1987-08-19 1987-08-19 Manufacture of soft magnetic film Granted JPS6449209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20606487A JPS6449209A (en) 1987-08-19 1987-08-19 Manufacture of soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20606487A JPS6449209A (en) 1987-08-19 1987-08-19 Manufacture of soft magnetic film

Publications (2)

Publication Number Publication Date
JPS6449209A JPS6449209A (en) 1989-02-23
JPH0565042B2 true JPH0565042B2 (en) 1993-09-16

Family

ID=16517247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20606487A Granted JPS6449209A (en) 1987-08-19 1987-08-19 Manufacture of soft magnetic film

Country Status (1)

Country Link
JP (1) JPS6449209A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129105A (en) * 1984-07-19 1986-02-10 Sony Corp Magnetic alloy thin film
JPS62274607A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Superlattice magnetic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129105A (en) * 1984-07-19 1986-02-10 Sony Corp Magnetic alloy thin film
JPS62274607A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Superlattice magnetic material

Also Published As

Publication number Publication date
JPS6449209A (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US4608297A (en) Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
US5585984A (en) Magnetic head
US5537278A (en) Thin film laminate magnetic head with reaction prevention layers
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH0624044B2 (en) Composite type magnetic head
JPH0565042B2 (en)
JP2519554B2 (en) MIG type magnetic head
JPS6236283B2 (en)
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP2570337B2 (en) Soft magnetic laminated film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH0917632A (en) Soft magnetic film and magnetic head using the same
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JPS63311611A (en) Composite type magnetic head
JP2882927B2 (en) Magnetic head and method of manufacturing magnetic head
JP3211295B2 (en) Stacked magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH03266207A (en) Production of mig type magnetic head
JP3452594B2 (en) Manufacturing method of magnetic head
JPS63112809A (en) Magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH02185707A (en) Composite type magnetic head and production thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees