JPH0564975B2 - - Google Patents

Info

Publication number
JPH0564975B2
JPH0564975B2 JP63272275A JP27227588A JPH0564975B2 JP H0564975 B2 JPH0564975 B2 JP H0564975B2 JP 63272275 A JP63272275 A JP 63272275A JP 27227588 A JP27227588 A JP 27227588A JP H0564975 B2 JPH0564975 B2 JP H0564975B2
Authority
JP
Japan
Prior art keywords
resin
aluminum hydroxide
laminate
impregnated
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63272275A
Other languages
Japanese (ja)
Other versions
JPH02120330A (en
Inventor
Masaru Ogata
Mitsutoshi Kamata
Kenichi Karya
Yukihiro Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63272275A priority Critical patent/JPH02120330A/en
Publication of JPH02120330A publication Critical patent/JPH02120330A/en
Publication of JPH0564975B2 publication Critical patent/JPH0564975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気絶縁用途に適した、ガラス不織
布を基材とする積層板の製造法に関する。 従来の技術 近年、特に民生用電気機器等も、安全性の面よ
りこれに組込んで使用する絶縁板及びプリント回
路基板の難燃化の要求が非常に高くなつてきてい
る。同時に、多岐にわたる性能向上の要求もあ
り、特に寸法精度の点より低温打抜き加工性及び
部品の高密度化を図るスルホール信頼性(厚さ方
向寸法変化小)の向上要求等があり、且つ価格面
でも安価なものが求められている。 従来、上記絶縁板やプリント回路基板として用
いられている難燃性の積層板としては、 (1) 紙基材難燃性フエノール樹脂積層板
(NEMA規格XPC−FR) (2) 中心層紙−表面層ガラス織布基材コンポジツ
トエポキシ樹脂積層板(同規格CEM−1) (3) 中心層ガラス不織布−表面層ガラス織布基材
コンポジツトエポキシ樹脂積層板(同規格
CEN−3) (4) ガラス織布基材エポキシ樹脂積層板(同規格
FR−4) 等がある。 しかし、紙基材難燃性フエノール樹脂積層板に
於いては、厚さ方向の寸法変化が大きく又打抜加
工性についても完全常温打抜可能な域までは到達
していない。 又、FR−4、CEM−3、CEM−1等に於い
ては、基材としてガラス織布のみあるいは表面材
にガラス織布を用いているので、打抜加工性がも
う一つ不足している(金型摩耗が大きく打抜穴の
仕上がりが良くない)。さらに、ガラス織布を使
用しているので価格が高い等の問題がある。 このようなことから、ガラス不織布基材を用い
たプリプレグのみを積層成形することが考えられ
る。しかし、ガラス不織布基材は、ヨコ方向の強
度が弱い為、高圧成形(80Kg/mm2以上)すると基
材切れが発生する。そこで、低圧成形がなされる
ことになり、低圧でも成形できるエポキシ樹脂を
使用することになる。 発明が解決しようとする課題 しかし、ガラス不織布のみを基材として使用し
た前記エポキシ樹脂積層板は、耐熱性、電気特性
が不十分であり、これを向上させるためには、エ
ポキシ樹脂にフエノール樹脂を混合して使用する
のが適当である。ところが、フエノール樹脂は、
成形時の硬化反応の過程で縮合水を生成し、これ
を外へ除くために高圧成形が必要であり、強度の
弱いガラス不織布を基材とする積層板の製造には
適さない。 本発明は、ガラス不織布を基材とし、エポキシ
樹脂とフエノール樹脂の混合樹脂を使用して、基
材切れを起こすことなく電気特性、耐熱性の優れ
た積層板を提供することを目的とする。 課題を解決するための手段 上記目的を達成するために、本発明は、フエノ
ール樹脂とエポキシ樹脂の混合樹脂に水酸化アル
ミニウムと混合した樹脂組成物を用いる。 これを、ガラス不織布に、水酸化アルミニウム
を含む樹脂量が50〜75重量%となるように含浸
し、含浸樹脂が加熱加圧成形おにいて流動しなく
なる状態まで乾燥する(第1工程)。 次いで、前記樹脂組成物を、水酸化アルミニウ
ムを含む総樹脂量が87〜93%重量%となるように
再度含浸し乾燥してプリプレグを得る(第2工
程)。これを加熱加圧成形するものである。 作 用 本発明は、上記第1工程で、含浸樹脂が流動し
なくなる状態まで乾燥することにより、ガラス不
織布の繊維同士を結着し、加熱加圧成形における
基材切れを防止する。しかし、流動しなくても完
全には硬化していないため、高圧成形すると押し
広げられ、基材切れを起こしてしまう。そこで水
酸化アルミニウムを存在させることにより、前記
押し広げに対する補強をし、第2工程で含浸した
樹脂の加熱加圧成形における流動を抑制して、基
材切れを防止するものである。 尚、第1工程とで含浸樹脂量が50重量%に満た
ないと基材強度が不足して基材切れを起こし、75
重量%を越えると第2工程での含浸樹脂量が少な
くならざるを得ず、積層板の電気特性、耐熱特性
の低下を生じる。 また、第2工程後の総樹脂量が87%未満である
と第2工程での含浸樹脂量が必然的に少なくな
り、積層板の電気特性、耐熱性等が低下する。一
方、93重量%を越えると第2工程での含浸樹脂量
が多くなり、プリプレグ同士のブロツキングを生
じ、積層成形前の組込みにおいて非常に工数がか
かり生産上大きな問題である。 水酸化アルミニウムを使用することは、上記の
他に積層板の加熱時の厚さ方向の膨脹率を小さく
し、且つ難燃効果があり従来使用している高価な
臭素系難燃剤を減らせる効果がある。 実施例 本発明の実施例を説明する。 実施例に使用する樹脂組成物の配合及び基材を
第1表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for manufacturing a laminate based on a nonwoven glass fabric, suitable for electrical insulation applications. BACKGROUND OF THE INVENTION In recent years, there has been an extremely high demand for flame retardant insulation boards and printed circuit boards used in consumer electric appliances and the like from the standpoint of safety. At the same time, there are demands for a wide range of performance improvements, particularly from the viewpoint of dimensional accuracy, including demands for improvements in low-temperature punching processability and through-hole reliability (small dimensional changes in the thickness direction) to increase the density of parts. But something cheap is needed. Conventionally, the flame-retardant laminates used as the above-mentioned insulating boards and printed circuit boards include: (1) Paper-based flame-retardant phenolic resin laminate (NEMA standard XPC-FR) (2) Center layer paper- Surface layer glass woven fabric base composite epoxy resin laminate (same standard CEM-1) (3) Center layer glass non-woven fabric - surface layer glass woven fabric base composite epoxy resin laminate (same standard CEM-1)
CEN-3) (4) Glass woven fabric base epoxy resin laminate (same standard)
FR-4) etc. However, in the paper-based flame-retardant phenolic resin laminate, the dimensional change in the thickness direction is large, and the punching workability has not reached the level where it can be completely punched at room temperature. In addition, FR-4, CEM-3, CEM-1, etc. use only glass woven fabric as the base material or glass woven fabric as the surface material, so there is another lack of punching workability. (Mold wear is large and the finish of the punched hole is poor.) Furthermore, since woven glass fabric is used, there are problems such as high price. For this reason, it is conceivable to laminate and mold only prepregs using glass nonwoven fabric base materials. However, glass nonwoven fabric base materials have low strength in the horizontal direction, so when high-pressure molding (80 kg/mm 2 or more) is performed, the base material breaks. Therefore, low-pressure molding is performed, and an epoxy resin that can be molded at low pressure is used. Problems to be Solved by the Invention However, the epoxy resin laminate using only glass nonwoven fabric as a base material has insufficient heat resistance and electrical properties.In order to improve this, phenol resin is added to the epoxy resin. It is appropriate to use them in combination. However, phenolic resin
Condensation water is generated during the curing reaction during molding, and high-pressure molding is required to remove this water, making it unsuitable for manufacturing laminates based on weak glass nonwoven fabric. An object of the present invention is to provide a laminate that uses glass nonwoven fabric as a base material and uses a mixed resin of epoxy resin and phenol resin to have excellent electrical properties and heat resistance without causing the base material to break. Means for Solving the Problems In order to achieve the above object, the present invention uses a resin composition in which a mixed resin of a phenol resin and an epoxy resin is mixed with aluminum hydroxide. This is impregnated into a glass nonwoven fabric so that the amount of resin containing aluminum hydroxide is 50 to 75% by weight, and the impregnated resin is dried until it no longer flows when heated and pressed (first step). Next, the resin composition is impregnated again so that the total resin amount including aluminum hydroxide is 87 to 93% by weight and dried to obtain a prepreg (second step). This is molded under heat and pressure. Function The present invention, in the first step, binds the fibers of the glass nonwoven fabric to each other by drying the impregnated resin to a state where it no longer flows, thereby preventing the base material from breaking during hot and pressure molding. However, even if it does not flow, it is not completely cured, so when it is molded under high pressure, it is pushed out and the base material breaks. Therefore, the presence of aluminum hydroxide provides reinforcement against the above-mentioned spreading, suppresses the flow of the resin impregnated in the second step during heating and pressure molding, and prevents the base material from breaking. In addition, if the amount of impregnated resin in the first step is less than 50% by weight, the strength of the base material will be insufficient and the base material will break.
If it exceeds % by weight, the amount of impregnated resin in the second step must be reduced, resulting in a decrease in the electrical properties and heat resistance properties of the laminate. Furthermore, if the total amount of resin after the second step is less than 87%, the amount of resin impregnated in the second step will inevitably be small, and the electrical properties, heat resistance, etc. of the laminate will deteriorate. On the other hand, if it exceeds 93% by weight, the amount of impregnated resin in the second step increases, causing blocking between the prepregs, which requires a large number of man-hours to assemble before lamination molding, and is a major problem in production. In addition to the above, the use of aluminum hydroxide has the effect of reducing the expansion rate in the thickness direction when the laminate is heated, and has a flame retardant effect, reducing the need for expensive brominated flame retardants that are conventionally used. There is. Examples Examples of the present invention will be described. Table 1 shows the formulations and base materials of the resin compositions used in the examples.

【表】 上記実施例及び比較例1の樹脂組成物の第1工
程での含浸樹脂量(重量%)及び第2工程後の総
樹脂量を第2表に示す(水酸化アルミニウムを含
む)。
[Table] Table 2 shows the amount of impregnated resin (wt%) in the first step and the total resin amount after the second step of the resin compositions of Examples and Comparative Example 1 (including aluminum hydroxide).

【表】 それぞれの工程での樹脂の含浸は次のように行
なつた。100%ガラス不織布に第1表の樹脂組成
物を含浸し、加熱加圧成形において流動性がなく
なるまで乾燥する。次いで、同じ樹脂組成物を含
浸乾燥してプリプレグとする。 前記プリプレグを所定枚数重ね、両面に銅箔を
載置して、圧力100Kg/cm2、温度160℃で60分間積
層成形した。尚、比較例1は、圧力80〜100Kg/
cm2、温度160℃で30分間積層成形した。 実施例1及び比較例1は基栄材切れがひどく、
板厚バラツキも大きく製品としての価値がないも
のであつた。他の積層板の特性をNEMA規格品
の特性と共に第3表に示す。
[Table] Resin impregnation in each step was performed as follows. A 100% glass nonwoven fabric is impregnated with the resin composition shown in Table 1, and dried under heat and pressure molding until it loses fluidity. Next, the same resin composition is impregnated and dried to obtain a prepreg. A predetermined number of the prepregs were stacked, copper foil was placed on both sides, and lamination molding was performed at a pressure of 100 Kg/cm 2 and a temperature of 160° C. for 60 minutes. In addition, in Comparative Example 1, the pressure was 80 to 100 kg/
cm 2 and a temperature of 160°C for 30 minutes. In Example 1 and Comparative Example 1, the base material was severely cut,
There were large variations in plate thickness and the product was of no value as a product. The properties of other laminates are shown in Table 3 along with the properties of NEMA standard products.

【表】 発明の効果 上述のように本発明は、ガラス不織布に含浸し
た樹脂を加熱加圧成形において流動しなくなる状
態まで乾燥すること、水酸化アルミニウムを配合
することにより、エポキジ樹脂にフエノール樹脂
を配合して高圧成形するガラス不織布基材積層板
の製造において、基材切れを起こすことなく、耐
熱性、電気特性の優れた積層板を得ることができ
る。さらに、水酸化アルミニウムの存在で厚さ方
向の膨脹が小さく、難燃性の優れた、打抜き加工
性のよい積層板を得られる点、この工業的価値は
極めて大である。
[Table] Effects of the Invention As described above, the present invention allows the phenolic resin to be added to the epoxy resin by drying the resin impregnated into a glass non-woven fabric to a state where it no longer flows through heat and pressure molding, and by blending aluminum hydroxide. In manufacturing a glass nonwoven fabric base laminate by blending and high-pressure molding, a laminate with excellent heat resistance and electrical properties can be obtained without causing the base material to break. Furthermore, due to the presence of aluminum hydroxide, it is possible to obtain a laminate with small expansion in the thickness direction, excellent flame retardancy, and good punching workability, which is of extremely great industrial value.

Claims (1)

【特許請求の範囲】 1 フエノール樹脂とエポキシ樹脂の混合樹脂に
水酸化アルミニウム配合した樹脂組成物を用意
し、 これをガラス不織布基材に水酸化アルミニウム
を含む樹脂量が50〜75重量%となるように含浸
し、含浸した樹脂が加熱加圧成形において流動し
なくなる状態まで乾燥する工程、 次いで前記樹脂組成物を水酸化アルミニウムを
含む総樹脂量が87〜93重量%となるように再度含
浸し乾燥する工程を経てプリプレグを作製し、 前記プリプレグを加熱加圧成形する積層板の製
造法。
[Claims] 1. Prepare a resin composition in which aluminum hydroxide is added to a mixed resin of phenolic resin and epoxy resin, and apply this to a glass nonwoven fabric base material such that the amount of resin containing aluminum hydroxide is 50 to 75% by weight. A step of impregnating the resin composition as described above and drying it to a state where the impregnated resin does not flow during hot-pressure molding, and then impregnating the resin composition again so that the total amount of resin including aluminum hydroxide is 87 to 93% by weight. A method for manufacturing a laminate, in which a prepreg is produced through a drying step, and the prepreg is heated and press-molded.
JP63272275A 1988-10-28 1988-10-28 Production of laminate Granted JPH02120330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272275A JPH02120330A (en) 1988-10-28 1988-10-28 Production of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272275A JPH02120330A (en) 1988-10-28 1988-10-28 Production of laminate

Publications (2)

Publication Number Publication Date
JPH02120330A JPH02120330A (en) 1990-05-08
JPH0564975B2 true JPH0564975B2 (en) 1993-09-16

Family

ID=17511581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272275A Granted JPH02120330A (en) 1988-10-28 1988-10-28 Production of laminate

Country Status (1)

Country Link
JP (1) JPH02120330A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT396240B (en) * 1990-06-13 1993-07-26 Isovolta PREPREG PROCESS FOR ITS PRODUCTION AND USE
AT395432B (en) * 1990-06-13 1992-12-28 Isovolta MAT IMPREGNATED WITH PLASTIC AND METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
IE80526B1 (en) * 1994-02-10 1998-08-26 Belfield Mfg Ltd A process for producing limited fire hazard epoxide glass laminates
US6187852B1 (en) 1996-03-22 2001-02-13 Isola Laminate Systems Corp. Fillers for improved epoxy laminates
JP6183743B2 (en) * 2013-05-29 2017-08-23 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board

Also Published As

Publication number Publication date
JPH02120330A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
CN106589748A (en) Resin composition for copper foil-clad base plate in high-frequency and high-speed field and application thereof
JP3011867B2 (en) Manufacturing method of laminated board
JPH0564975B2 (en)
JPH064310B2 (en) Electric laminate
JP3179145B2 (en) Phenolic resin composition
JPH0859860A (en) Production of flame-retardant phenol resin laminate
JP2604846B2 (en) Manufacturing method of laminated board
JP3129652B2 (en) Manufacturing method of laminated board
JPH05309789A (en) Production of composite copper clad laminated sheet
JPH0518711B2 (en)
JPS6364306B2 (en)
JPS63205229A (en) Manufacture of thermo-setting resin laminated board
JPS5845234A (en) Manufacture of epoxy resin laminated board
JPH04259543A (en) Manufacture of laminated board for printed circuit
JPS6039287B2 (en) Manufacturing method of paper-based phenolic resin laminate
JPH04215492A (en) Manufacture of laminated board for printed circuit
JPH04268785A (en) Copper plated laminated board
JP2001335651A (en) Epoxy resin composition for impregnation of organic fiber substrate, and prepreg, laminated sheet and printed wiring board using the same
JPH07162114A (en) Composite copper-clad laminated board
JPS6365092B2 (en)
JPH03211892A (en) Manufacture of laminated board for printed circuit
JPS61183325A (en) Laminated sheet and its production
JPH09164645A (en) Lamainated sheet
JPH0267310A (en) Non-flammable phenol resin composition and laminate
JPH01259018A (en) Production of flame-retarded and oil-modified phenolic resin