JPH0564878B2 - - Google Patents

Info

Publication number
JPH0564878B2
JPH0564878B2 JP16401785A JP16401785A JPH0564878B2 JP H0564878 B2 JPH0564878 B2 JP H0564878B2 JP 16401785 A JP16401785 A JP 16401785A JP 16401785 A JP16401785 A JP 16401785A JP H0564878 B2 JPH0564878 B2 JP H0564878B2
Authority
JP
Japan
Prior art keywords
steel plate
protective layer
silicon steel
synthetic resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16401785A
Other languages
Japanese (ja)
Other versions
JPS6225488A (en
Inventor
Takeo Iguchi
Shinichiro Asai
Chiharu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP16401785A priority Critical patent/JPS6225488A/en
Publication of JPS6225488A publication Critical patent/JPS6225488A/en
Publication of JPH0564878B2 publication Critical patent/JPH0564878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電子機器等に用いられるモーター用プ
リント回路基板に係り、特に珪素鋼板基板を用い
た金属箔張金属基板とその製造方法に関するもの
である。 (従来の技術) 電子機器は近年、小型、軽量化、薄型化、高密
度実装化が急速に進んでいる。この様な影響は、
プリント回路基板にも、現われており、同様な要
求が強くなつている。 モーター用ステータ基板としては、従来別々の
鋼板とプリント配線板を重ね合せていたものが使
用されていたが、最近は鋼板上にプリント配線を
直接に施した鉄板基板が普及してきた。また、さ
らに磁束密度や、ヒステリシスの特性を要求する
モータの場合には、珪素含有量の多い珪素鋼板を
用いた基板が使用されている。 この珪素鋼板は耐食性、耐侯性が著しく悪いた
めに、通常、板の両面にコーテイングによる防錆
処理が施こされて入手される。 従来、珪素鋼板の用いてこの上に絶縁層を介し
て金属箔を貼着してプリント配線板を製作するに
は、珪素鋼板の表面処理保護層(以下保護層とい
う)は、亜鉛等の無機質のメツキやコーテイング
処理したものが用いられていた。この場合に、無
機質処理保護層に直接に合成樹脂の絶縁剤を施こ
すと、無機質処理保護層と絶縁層の接着力は十分
でなく、かつ切断時や打ち抜き加工時に、珪素鋼
板と無機質処理保護層の界面で、剥れやクラツク
の発生がみられた。そのために、絶縁剤を施す面
の無機質処理保護層を全面的に除去してから、無
機質処理保護層の無い珪素鋼板面に、絶縁剤を施
す必要があつた。しかしながらこの無機質処理保
護層を除去するためには、特殊な方法を用いると
か、サンドブラスト、羽布研磨等の通常の研磨方
法では、工程を数回繰返したりするか設備を長く
大型化したりする必要があつた。 (発明が解決しようとする問題点) 本発明はかかる欠点を解決したものであり、合
成樹脂と無機物との混合物からなる保護層を両面
に有する珪素鋼板を用いることにより、通常のサ
ンドブラストや羽布研磨等の研削法の工程で容易
に保護層が剥離でき、珪素鋼板に絶縁層が密着性
よく接着して切断時や打ち抜き加工時の衝撃によ
る剥れやクラツクの発生が防止できる金属箔張金
属基板とその製造方法を提供するものである。 (問題点を解決するための手段) すなわち本発明は、 1 合成樹脂と無機物との混合物保護層、珪素鋼
板層、合成樹脂と無機物との混合物部分保護
層、絶縁層および金属箔層を順々に積層してな
る基板 2 珪素鋼板の両面に合成樹脂と無機物との混合
物からなる保護層を設け、該保護層の片面を少
なくとも部分的に研磨して無機物充填剤を含有
する合成樹脂を塗布して絶縁層となし、さらに
上面に金属箔を貼着する製造方法を特徴とする
ものである。 以下図面により本発明の詳細に説明する。 第1図は本発明の基板を示す断面図であり、珪
素鋼板1の底面には保護層2が貼着されている。
また珪素鋼板1の上面にも保護層2が貼着され、
この上面の保護層2は部分的に研磨され、珪素鋼
板1が露出している。さらに絶縁層3は、上面保
護層2を被覆すると同時に露出された珪素鋼板1
と強固な状態で接着し、他方の面に銅箔4を密着
させている。 絶縁層3の絶縁剤は合成樹脂と無機物充填剤と
の混合物とからなり、合成樹脂は例えばエポキシ
樹脂、フエノール樹脂、ポリイミド樹脂、不飽和
ポリエステル樹脂およびエポキシ変性シリコーン
樹脂などの熱硬化性樹脂を用いることができ、無
機物充填剤としては、例えばシリカ、クレー、ア
ルミナ、酸化マグネシウム、窒化アルミニウム、
炭化珪素およびボロンナイトライドなどを用いる
ことができる。これら合成樹脂から選ばれた一種
または二種以上と、これら無機物充填剤から選ば
れた一種または二種以上に、合成樹脂の硬化剤を
添加後、混合、混練して絶縁剤を調合した。 一方、珪素鋼板1は、保護層2として合成樹脂
と無機物との混合物とから成り、かつ、珪素鋼板
1とその保護層2が切断時や打ち抜き時の衝撃に
耐える特性をもつ、例えば、新日鉄(株)品、電磁鋼
板L−コーテイングやL2−コーテイングあるい
は川崎製鉄(株)品、電気鋼帯A1コーテイング品が
好ましい。そして、この保護層2を有する珪素鋼
板1を必要に応じ、界面活性剤水溶液あるいはト
ルエン、トリクレン等の有機溶剤で洗浄し、次い
で絶縁層3を形成する片面のみを、サンドブラス
ト、羽布研磨、サンドペーパー等を用いて研削、
表面粗化を行つた。この場合、珪素鋼板1の保護
層2は、部分的に残つていてよく珪素鋼板1の元
板が現われるほど、保護層2を全面的に取り除く
必要は、必ずしもない。 この珪素鋼板1の研削面に、無機物充填剤を含
んだ合成樹脂から成る絶縁剤を40μm〜200μmの
範囲で塗布して絶縁層3を形成し、この上面に金
属箔4を貼着するものである。金属箔4として
は、通常0.009〜0.15mmの厚さの、銅箔、アルミ
ニウム箔、ニツケル箔などを用いることができ
る。 (実施例) 以下本発明の実施例を示す。 実施例 1 エポキシ樹脂の50容量%にアルミナ粉50容量%
とアミン系硬化剤を添加し混合、混練し、絶縁剤
を調合した。一方、両面に形成された保護層が、
合成樹脂と無機物からなる珪素鋼板(新日鉄(株)
製、商品名電磁鋼板L−コーテイング)をトリク
レンで脱脂洗浄後、片面を羽布研磨機にて保護層
を研磨した。この時、研磨面は、まだら状に80%
ほど珪素鋼板の地肌が見えており20%は保護層が
残つていた。 この研磨面に調合した絶縁剤をロールコーター
にて、厚さ80μmを塗布して絶縁層とした。この
後35μmの電解銅箔を貼合せてオーブンにて加熱
硬化後、銅張珪素鋼板基板を作成した。 物性評価を表に示す。 実施例 2 フエノール樹脂の60容量%にシリカ40容量%と
アミン系硬化剤を添加し、混合、混練し、絶縁剤
を調合した。一方、両面に形成された保護層が合
成樹脂と無機物からなる珪素鋼板(川崎製鉄(株)
製、商品名A1−コーテイング)をアルカリ性界
面活性剤にて脱脂洗浄後、片面をサンドブラスト
にて保護層を研磨した。この時、研磨面は、斑点
状に60%ほど珪素鋼板の地肌が見え残りは保護層
であつた。 この研磨面に調合した絶縁剤をロールコーター
にて、厚さ100μmを塗布して絶縁層とした。こ
の後、35μmの電解銅箔を貼合せて、オーブンに
て加熱硬化後、銅張珪素鋼板基板を作成した。 物性評価を表に示す。 比較例 1 エポキシ樹脂にアミン系硬化剤を添加し、混
合、混練し、絶縁剤を調合した。一方、両面に亜
鉛メツキの無機質層を有する珪素鋼板を、トリク
レンで脱脂洗浄後、片面の亜鉛メツキの無機質層
を完全に除去するために、羽布研磨機に3回通し
て研磨した。 この研磨面に調合した絶縁剤をロールコーター
にて厚さ80μmを塗布して絶縁層とした。この後
35μmの電解銅箔を貼合せて、オーブンにて加熱
硬化後、銅張珪素鋼板基板を作成した。 物性評価を表に示す。 比較例 2 エポキシ樹脂にアミン系硬化剤を添加し、混
合、混練し、絶縁剤を調合した。一方、両面に亜
鉛メツキの無機質層を有する珪素鋼板を、トリク
レンで脱脂洗浄後、この片面に調合した絶縁剤を
ロールコータにて厚さ80μmを塗布して絶縁層と
した。この後、35μmの電解銅箔を貼合せて、オ
ーブンにて加熱硬化後、銅張珪素鋼板基板を作成
した。 物性評価を表に示す。
(Industrial Application Field) The present invention relates to a printed circuit board for a motor used in electronic equipment and the like, and particularly to a metal foil-clad metal board using a silicon steel board and a method for manufacturing the same. (Prior Art) In recent years, electronic devices have rapidly become smaller, lighter, thinner, and more densely packaged. This kind of influence is
Similar requirements are also becoming stronger for printed circuit boards. Conventionally, stator boards for motors have been made by laminating separate steel plates and printed wiring boards, but recently iron plate boards, in which printed wiring is directly applied to the steel plates, have become popular. Furthermore, in the case of a motor that requires higher magnetic flux density and hysteresis characteristics, a substrate using a silicon steel plate with a high silicon content is used. Since this silicon steel plate has extremely poor corrosion resistance and weather resistance, it is usually obtained with anti-rust coating applied to both sides of the plate. Conventionally, when manufacturing a printed wiring board by using a silicon steel plate and pasting a metal foil on the silicon steel plate through an insulating layer, the surface treatment protective layer (hereinafter referred to as the protective layer) of the silicon steel plate is made of an inorganic material such as zinc. Those treated with glazing or coating were used. In this case, if a synthetic resin insulating agent is applied directly to the mineral-treated protective layer, the adhesive strength between the mineral-treated protective layer and the insulating layer will not be sufficient, and when cutting or punching, the silicon steel plate and the mineral-treated protective Peeling and cracks were observed at the interface between the layers. For this reason, it was necessary to completely remove the inorganic-treated protective layer on the surface to which the insulating agent was applied, and then apply the insulating agent to the surface of the silicon steel plate that did not have the inorganic-treated protective layer. However, in order to remove this inorganic treated protective layer, it is necessary to use a special method, or with normal polishing methods such as sandblasting and cloth polishing, it is necessary to repeat the process several times or to make the equipment longer and larger. It was hot. (Problems to be Solved by the Invention) The present invention solves these drawbacks, and by using a silicon steel plate that has a protective layer on both sides made of a mixture of synthetic resin and inorganic material, Metal foil-clad metal whose protective layer can be easily peeled off during grinding processes such as polishing, and whose insulating layer adheres well to the silicon steel plate to prevent peeling or cracking caused by impact during cutting or punching. The present invention provides a substrate and a method for manufacturing the same. (Means for Solving the Problems) That is, the present invention has the following features: 1. A synthetic resin and inorganic mixture protective layer, a silicon steel plate layer, a synthetic resin and inorganic mixture partial protective layer, an insulating layer, and a metal foil layer are sequentially formed. A protective layer made of a mixture of a synthetic resin and an inorganic substance is provided on both sides of a silicon steel plate, and one side of the protective layer is at least partially polished and a synthetic resin containing an inorganic filler is applied. This method is characterized by a manufacturing method in which a metal foil is attached to the top surface of the insulating layer. The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a sectional view showing a substrate of the present invention, in which a protective layer 2 is adhered to the bottom surface of a silicon steel plate 1. As shown in FIG.
A protective layer 2 is also attached to the upper surface of the silicon steel plate 1,
The protective layer 2 on the upper surface is partially polished, and the silicon steel plate 1 is exposed. Further, the insulating layer 3 covers the exposed silicon steel plate 1 at the same time as covering the upper surface protective layer 2.
The copper foil 4 is firmly attached to the other surface. The insulating material of the insulating layer 3 is made of a mixture of synthetic resin and inorganic filler, and the synthetic resin is a thermosetting resin such as epoxy resin, phenolic resin, polyimide resin, unsaturated polyester resin, and epoxy-modified silicone resin. Examples of inorganic fillers include silica, clay, alumina, magnesium oxide, aluminum nitride,
Silicon carbide, boron nitride, etc. can be used. A curing agent for the synthetic resin was added to one or more selected from these synthetic resins and one or more selected from these inorganic fillers, and then mixed and kneaded to prepare an insulating agent. On the other hand, the silicon steel plate 1 is made of a mixture of synthetic resin and inorganic material as the protective layer 2, and the silicon steel plate 1 and its protective layer 2 have characteristics that can withstand impact during cutting or punching. A product manufactured by Kawasaki Steel Corporation, electrical steel sheet L-coating or L2-coating, or a product manufactured by Kawasaki Steel Corporation, electrical steel strip A1 coating product are preferred. Then, the silicon steel plate 1 having the protective layer 2 is cleaned with an aqueous surfactant solution or an organic solvent such as toluene or trichloride as necessary, and then only one side on which the insulating layer 3 will be formed is sandblasted, cloth polished, sanded, etc. Grind using paper etc.
The surface was roughened. In this case, the protective layer 2 of the silicon steel plate 1 may remain partially and it is not necessarily necessary to completely remove the protective layer 2 to the extent that the original plate of the silicon steel plate 1 is exposed. An insulating agent made of a synthetic resin containing an inorganic filler is applied to the ground surface of the silicon steel plate 1 to a thickness of 40 μm to 200 μm to form an insulating layer 3, and a metal foil 4 is pasted on the top surface of the insulating layer 3. be. As the metal foil 4, copper foil, aluminum foil, nickel foil, etc., which usually have a thickness of 0.009 to 0.15 mm, can be used. (Example) Examples of the present invention will be shown below. Example 1 50% by volume of epoxy resin and 50% by volume of alumina powder
and an amine curing agent were added and mixed and kneaded to prepare an insulating agent. On the other hand, the protective layer formed on both sides
Silicon steel plate made of synthetic resin and inorganic materials (Nippon Steel Corporation)
After degreasing and cleaning a piece of electrical steel sheet (trade name: L-Coating, manufactured by Manufacturer, Inc.) with Triclean, the protective layer was polished on one side using a cloth polisher. At this time, the polished surface is 80% mottled.
The bare surface of the silicon steel plate was clearly visible, with 20% of the protective layer remaining. The prepared insulating agent was applied to the polished surface using a roll coater to a thickness of 80 μm to form an insulating layer. Thereafter, a 35 μm electrolytic copper foil was laminated and cured by heating in an oven to create a copper-clad silicon steel plate substrate. The physical property evaluation is shown in the table. Example 2 40% by volume of silica and an amine curing agent were added to 60% by volume of phenolic resin, mixed and kneaded to prepare an insulating agent. On the other hand, the protective layer formed on both sides is a silicon steel plate made of synthetic resin and inorganic material (Kawasaki Steel Co., Ltd.).
After degreasing and washing with an alkaline surfactant, the protective layer was polished by sandblasting on one side. At this time, on the polished surface, about 60% of the bare surface of the silicon steel plate was visible in spots, and the rest was a protective layer. The prepared insulating agent was applied to the polished surface using a roll coater to a thickness of 100 μm to form an insulating layer. Thereafter, a 35 μm electrolytic copper foil was laminated, and after heating and curing in an oven, a copper-clad silicon steel plate substrate was created. Physical property evaluation is shown in the table. Comparative Example 1 An amine curing agent was added to an epoxy resin, mixed and kneaded to prepare an insulating agent. On the other hand, a silicon steel plate having a galvanized inorganic layer on both sides was degreased and cleaned with trichloride, and then polished by passing it through a cloth polisher three times to completely remove the galvanized inorganic layer on one side. The prepared insulating agent was applied to the polished surface using a roll coater to a thickness of 80 μm to form an insulating layer. After this
A 35 μm electrolytic copper foil was laminated and cured by heating in an oven to create a copper-clad silicon steel plate substrate. Physical property evaluation is shown in the table. Comparative Example 2 An amine curing agent was added to an epoxy resin, mixed and kneaded to prepare an insulating agent. On the other hand, a silicon steel plate having galvanized inorganic layers on both sides was degreased and cleaned with trichloride, and then the prepared insulating agent was coated on one side with a roll coater to a thickness of 80 μm to form an insulating layer. Thereafter, a 35 μm electrolytic copper foil was laminated, and after heating and curing in an oven, a copper-clad silicon steel plate substrate was created. Physical property evaluation is shown in the table.

【表】 1 落下衝撃テスト測定方法 試験方法は実施例と比較例で得た44mm×68mm
の基板上に13mm×13mm×2mmの銅のブロツクを
半田で4個取り付け75cmの高さより厚さ30mmの
樫の木の平板上に平面を下にして落下し、銅の
ブロツクの剥がれより評価した。 2 打ち抜き加工性 実施例と比較例で得た銅張珪素鋼板基板をシ
ヤーにて切断し、その切断部分の絶縁層及び保
護層を剥れやクラツク発生をみた。 (発明の効果) 上記の結果より本発明による実施例では、保護
層面の表面研磨工程が、少なくてすみ、通常のラ
インにそのまま適用できる。かつ、耐落下衝撃性
が良好であり、切断加工性にも優れていることか
ら、絶縁層と珪素鋼板及び保護層の三者間の密着
性、接着性が、良いことを示している。 以上により、本発明により通常の生産工程を利
用して、信頼性の高い金属箔張珪素鋼板基板が製
造でき、基板の加工時やモーター用等の複雑な形
状の回路配線珪素鋼板基板をダメージなく打ち抜
き加工出来るものである。
[Table] 1. Drop impact test measurement method The test method is 44mm x 68mm obtained in the example and comparative example.
Four copper blocks of 13 mm x 13 mm x 2 mm were attached to a board with solder and dropped from a height of 75 cm onto a 30 mm thick oak wooden board, and evaluated based on the peeling of the copper blocks. . 2. Punching workability The copper-clad silicon steel plate substrates obtained in Examples and Comparative Examples were cut with a shear, and peeling and cracking of the insulating layer and protective layer at the cut portions was observed. (Effects of the Invention) From the above results, the embodiments of the present invention require less surface polishing steps on the surface of the protective layer, and can be applied to ordinary lines as they are. In addition, the drop impact resistance is good and the cutting workability is also excellent, indicating that the adhesion and adhesion between the insulating layer, the silicon steel plate, and the protective layer are good. As described above, according to the present invention, a highly reliable metal foil-clad silicon steel plate substrate can be manufactured using a normal production process, and complex-shaped circuit wiring silicon steel plate substrates for use in board processing or motors can be manufactured without damage. It can be punched out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の金属基板の断面図であり、
第2図a,bは、落下衝撃テスト用サンプルの断
面図および平面図である。 符号1……珪素鋼板、2……本発明における保
護層、3……絶縁層、4……銅箔、5……珪素鋼
板基板、6……銅回路と半田付したセートシン
ク。
FIG. 1 is a cross-sectional view of the metal substrate of the present invention,
FIGS. 2a and 2b are a cross-sectional view and a plan view of a drop impact test sample. Reference numeral 1: Silicon steel plate, 2: Protective layer according to the present invention, 3: Insulating layer, 4: Copper foil, 5: Silicon steel plate substrate, 6: Sate sink soldered to a copper circuit.

Claims (1)

【特許請求の範囲】 1 合成樹脂と無機物との混合物保護層、珪素鋼
板層、合成樹脂と無機物との混合物部分保護層、
絶縁層および金属箔層を順々に積層してなること
を特徴とする金属箔張金属基板。 2 珪素鋼板の両面に合成樹脂と無機物との混合
物からなる保護層を設け、該保護層の片面を少な
くとも部分的に研磨して無機物充填剤を含有する
合成樹脂を塗布して絶縁層となし、さらにその上
面に金属箔を貼着することを特徴とする金属箔張
金属基板の製造方法。
[Claims] 1. A protective layer containing a mixture of a synthetic resin and an inorganic substance, a silicon steel plate layer, a partial protective layer containing a mixture of a synthetic resin and an inorganic substance,
A metal foil-clad metal substrate characterized by being formed by sequentially laminating an insulating layer and a metal foil layer. 2. A protective layer made of a mixture of a synthetic resin and an inorganic substance is provided on both sides of a silicon steel plate, and one side of the protective layer is at least partially polished and a synthetic resin containing an inorganic filler is applied to form an insulating layer. A method for manufacturing a metal foil-clad metal substrate, further comprising pasting metal foil on the top surface.
JP16401785A 1985-07-26 1985-07-26 Metal foilled metal substrate and manufacture thereof Granted JPS6225488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16401785A JPS6225488A (en) 1985-07-26 1985-07-26 Metal foilled metal substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16401785A JPS6225488A (en) 1985-07-26 1985-07-26 Metal foilled metal substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6225488A JPS6225488A (en) 1987-02-03
JPH0564878B2 true JPH0564878B2 (en) 1993-09-16

Family

ID=15785201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16401785A Granted JPS6225488A (en) 1985-07-26 1985-07-26 Metal foilled metal substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6225488A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224391A (en) * 1987-03-13 1988-09-19 株式会社アルメックス Printed wiring board and manufacture of the same
JP3496801B2 (en) * 1997-06-24 2004-02-16 日本ビクター株式会社 Stator core and coil winding method for stator core

Also Published As

Publication number Publication date
JPS6225488A (en) 1987-02-03

Similar Documents

Publication Publication Date Title
JPH0564878B2 (en)
EP0087551A2 (en) Method for stripping peel-apart conductive structure
EP0135674B1 (en) Production of metal surface-laminated sheet
JPH0528517B2 (en)
JP2708821B2 (en) Electric laminate
JPH06334287A (en) Aluminum-based printed wiring board and manufacture thereof
JPS6191998A (en) Antirusting of metal-based printed circuit board
JPS59148390A (en) Method of producing silicon steel plate base copper-lined laminated board
JP3615968B2 (en) Metal plate material for printed circuit board and metal base printed circuit board
JPS61193843A (en) Manufacture of silica steel plate base copper lined laminated board
JPH0441236A (en) Treatment of copper or copper alloy plate and metal base board and metal base wiring board using same metal plate
JPS6191999A (en) Antirusting of metal-based printed circuit board
JPS62116682A (en) Metal foil adhesive for laminate
JPS58180084A (en) Method of producing conductive foil-lined laminated board
JPS60214953A (en) Metallic base printed wiring substrate
JP2520429C (en)
JPH05283821A (en) Metal base wiring board
JPH0636461B2 (en) Metal base wiring board
JPH0557754B2 (en)
JPS60263698A (en) Method of processing metallic-base laminated board
JPH01112739A (en) Printed circuit board for mounting electronic component
JPS61208891A (en) Rust prevention for metal base printed circuit board
JPS61127345A (en) Manufacture of silicon steel plate base copper-lined laminated board
JPH05116248A (en) On-base copper-clad laminated board using uv resin
JPH07245457A (en) Metal wiring board and its manufacture