JPH0564867B2 - - Google Patents

Info

Publication number
JPH0564867B2
JPH0564867B2 JP60161400A JP16140085A JPH0564867B2 JP H0564867 B2 JPH0564867 B2 JP H0564867B2 JP 60161400 A JP60161400 A JP 60161400A JP 16140085 A JP16140085 A JP 16140085A JP H0564867 B2 JPH0564867 B2 JP H0564867B2
Authority
JP
Japan
Prior art keywords
type layer
solar cell
light
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60161400A
Other languages
Japanese (ja)
Other versions
JPS6222489A (en
Inventor
Akira Hanabusa
Koshiro Mori
Zenichiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60161400A priority Critical patent/JPS6222489A/en
Publication of JPS6222489A publication Critical patent/JPS6222489A/en
Publication of JPH0564867B2 publication Critical patent/JPH0564867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽およびその他の光源の下で起電
力を発生する非晶質太陽電池の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing amorphous solar cells that generate electromotive force under the sun and other light sources.

従来の技術 従来、この種の非晶質シリコン太陽電池(以
下、太陽電池と呼ぶ)。の半導体層は、原料とし
てシランSiH4等のガスを用いて成膜するが、ガ
ス中には、ドナーとして働く不純物が含まれてい
るため、i形非晶質シリコン層(以下、i形層と
呼ぶ)。中には、ドナー準位がわずかながら形成
される。
Conventional Technology Conventionally, this type of amorphous silicon solar cell (hereinafter referred to as a solar cell) has been used. The semiconductor layer is formed using a gas such as silane SiH 4 as a raw material, but since the gas contains impurities that act as donors, it is called an i-type amorphous silicon layer (hereinafter referred to as an i-type layer). ). A small number of donor levels are formed inside.

そこで、p形非晶質シリコン層(以下、p形層
と呼ぶ。)、i形層、n形非晶質シリコン層(以
下、n形層と呼ぶ。)を順次堆積すると、p形層
中のアクセプター不純物が、i形層中へ拡散し、
前述の、i形層中に形成されたドナ準位を補償す
るため、p形層とi形層との界面での拡散電位が
十分に得られ、i形層とn形層との界面での拡散
電位も十分得られるので、交換効率の高い太陽電
池が作製できる。
Therefore, if a p-type amorphous silicon layer (hereinafter referred to as the p-type layer), an i-type layer, and an n-type amorphous silicon layer (hereinafter referred to as the n-type layer) are sequentially deposited, acceptor impurity diffuses into the i-type layer,
In order to compensate for the aforementioned donor level formed in the i-type layer, a sufficient diffusion potential is obtained at the interface between the p-type layer and the i-type layer, and a sufficient diffusion potential is obtained at the interface between the i-type layer and the n-type layer. Since a sufficient diffusion potential can be obtained, a solar cell with high exchange efficiency can be produced.

しかしながら、この逆にn形層、i形層、p形
層と順次堆積すると、n形層中のドナー不純物
が、i形層中へ拡散し、前述のi形層中に形成さ
れたドナー準位密度を増加させてしまい、n形層
とi形層との界面での拡散電位が十分に得られな
い為、変換効率の高い太陽電池が作製できない。
However, if the n-type layer, i-type layer, and p-type layer are deposited in sequence, the donor impurity in the n-type layer will diffuse into the i-type layer, and the donor impurities formed in the i-type layer will This increases the potential density and makes it impossible to obtain a sufficient diffusion potential at the interface between the n-type layer and the i-type layer, making it impossible to produce a solar cell with high conversion efficiency.

そこで、通常太陽電池は、p形層、i形層、n
形層の順に堆積される。
Therefore, solar cells usually have a p-type layer, an i-type layer, an n-type layer, and
The layers are deposited in order.

さて、このようにして、作成された太陽電池
も、光の入射方向によつて、さらに2つのタイプ
に分けられる。
Now, the solar cells created in this way can be further divided into two types depending on the direction of incidence of light.

第1のタイプは、第2図aに示すように主に、
ガラスからなる透光性絶縁基板1を用いて、透明
導電膜2を電極として堆積し、以下、p形層3、
i形層4、n形層5、透過光面側電極6(主に、
アルミニウム)を順次堆積し、前記p側入光太陽
電池を作製していた。
The first type is mainly as shown in Figure 2a.
A transparent conductive film 2 is deposited as an electrode using a transparent insulating substrate 1 made of glass, and a p-type layer 3,
I-type layer 4, N-type layer 5, transmitted light surface side electrode 6 (mainly,
The p-side incident solar cell was manufactured by sequentially depositing aluminum (aluminum).

第2のタイプは、第2図bに示すように、非透
光性耐熱性基板11を用いて、その上に透過光面
側電極16を形成し、さらにp形層13、i形層
14、n形層15、透明導電膜12を順次堆積
し、前記n形層15側より入光させる太陽電池1
7(以下、n側入光太陽電池)を作製していた。
In the second type, as shown in FIG. 2b, a non-light-transmitting heat-resistant substrate 11 is used, a light-transmitting surface side electrode 16 is formed thereon, and a p-type layer 13 and an i-type layer 14 are formed. , an n-type layer 15 and a transparent conductive film 12 are sequentially deposited, and light enters from the n-type layer 15 side.
7 (hereinafter referred to as an n-side incident solar cell).

発明が解決しようとする課題 このような従来の構成では前記p側入光太陽電
池7では、前記i形層4のp形層3近傍で主に、
電子と正孔対が生成されるが、ライフタイムの短
かい正孔は、より近いp形層3へ収集され、ライ
フタイムの長い電子は、遠いn形層5へ収集され
るので、変換効率が高く、太陽光照射によるライ
フタイムの低下によつても、変換効率の低下は少
ないことが知られている。
Problems to be Solved by the Invention In such a conventional configuration, in the p-side incident solar cell 7, mainly in the vicinity of the p-type layer 3 of the i-type layer 4,
Pairs of electrons and holes are generated, but the holes with short lifetimes are collected in the closer p-type layer 3, and the electrons with longer lifetimes are collected in the far n-type layer 5, so that the conversion efficiency is lowered. It is known that the conversion efficiency decreases little even if the lifetime decreases due to sunlight irradiation.

しかしながら、200℃以上の耐熱性を有し、安
価でしかも高い光透過率を持つ透光性絶縁基板と
しては、ガラスしか無いために、加工性が悪く、
しかも割れ易く、可とう性が無いので、生産性が
良く、薄くて、割れない太陽電池を作製できない
といつた問題点があつた。
However, since glass is the only light-transmitting insulating substrate that has heat resistance of 200°C or higher, is inexpensive, and has high light transmittance, it has poor processability.
Furthermore, since it is easily broken and has no flexibility, it is difficult to produce solar cells that are highly productive, thin, and unbreakable.

前記n側入光太陽電池17では、前記非透光性
耐熱性基板11として、ステンレス鋼等の金属に
ポリイミドを塗布したもが利用できるので、可と
う性が有り、加工性が良いので、ロール状で、太
陽電池が作成できるために、高い生産性が得られ
る。
In the n-side incident solar cell 17, a metal such as stainless steel coated with polyimide can be used as the non-light-transmitting heat-resistant substrate 11, so it is flexible and has good workability, so it can be rolled. High productivity can be achieved because solar cells can be created in the same manner.

しかしながら、n側入光太陽電池17では、前
記i形層14のn形層15近傍で主に、電子正孔
対が生成されるが、ライフタイムの短かい正孔
が、より遠いp形層13へ収集され、ライフタイ
ムの長い電子が、より近いn形層15へ収集され
る為、正孔の収集効率が悪いので、変換効率が低
く、さらに太陽光照射によりライフタイムが低下
することにより、正孔の収集効率が更に低下する
為、変換効率が大きく低下するという問題があつ
た。
However, in the n-side incident solar cell 17, electron-hole pairs are mainly generated near the n-type layer 15 of the i-type layer 14, but holes with a short lifetime are generated in the p-type layer farther away. 13, which has a long lifetime, are collected into the closer n-type layer 15, which results in poor hole collection efficiency, resulting in low conversion efficiency, and furthermore, the lifetime decreases due to sunlight irradiation. However, since the hole collection efficiency is further reduced, there is a problem in that the conversion efficiency is significantly reduced.

本発明はこのような問題点を解決することを目
的とするものである。
The present invention aims to solve these problems.

課題を解決するための手段 本発明は耐熱正基板上に、透光性絶縁膜、透明
導電膜、p形層、i形層、n形層、透過光面側電
極を順に形成し、さらに保護用樹脂を塗布し、前
記耐熱性基板を除去することにより、p側入光太
陽電池を実現したものである。
Means for Solving the Problems The present invention sequentially forms a light-transmitting insulating film, a transparent conductive film, a p-type layer, an i-type layer, an n-type layer, and a light-transmitting side electrode on a heat-resistant positive substrate, and further protects the substrate. A p-side incident solar cell was realized by applying a coating resin and removing the heat-resistant substrate.

作 用 この技術的手段による作用は次のようになる。Effect The effect of this technical means is as follows.

すなわち、前記の透光性絶縁膜の屈折率と膜厚
を最適に選ぶことにより反射防止膜となり、さら
にp側入光太陽電池となる為、前述した理由によ
り、高効率で、太陽光照射によつても劣化の少な
い太陽電池となり、厚さとしても前記保護用樹脂
の厚さ分程度しかない超薄形で、可とう性のある
構造となる。
In other words, by optimally selecting the refractive index and film thickness of the above-mentioned translucent insulating film, it becomes an anti-reflection film and a p-side incident solar cell. This results in a solar cell with little deterioration even when it is twisted, and has an ultra-thin and flexible structure with a thickness that is only about the same as the thickness of the protective resin.

実施例 以下、本発明の一実施例を第1図にもとづいて
説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on FIG.

ステンレス鋼基板21上に、プラズマCVD装
置により、透光性絶縁膜であるSi3N4膜22を
700Å程度に堆積させ、その後、ITO膜23を蒸
着装置を使つてメタルマスクにより、700Å程度
の厚さに選択蒸着する。その後、プラズマCVD
装置を使い、メタルマスクにより、所定のパター
ンで、p形層24を100Å、i形層25を4000Å、
n形層26を300Åの各厚さに順次堆積させ、そ
の後蒸着装置を使つて、メタルマスクにより所定
のパターンで、透過光面側電極(チタン)27を
2000Å程度の厚さに形成する。この後、保護用樹
脂28を厚さ40μmで塗布し、ついでこれを塩酸
溶液中に浸漬し、前記ステンレス鋼基板21をエ
ツチングにより除去すると、厚み40μm程度の超
薄形で、p側入光太陽電池が、容易に実現でき
た。
A Si 3 N 4 film 22, which is a light-transmitting insulating film, is formed on a stainless steel substrate 21 using a plasma CVD device.
The ITO film 23 is deposited to a thickness of about 700 Å, and then an ITO film 23 is selectively deposited to a thickness of about 700 Å using a metal mask using a vapor deposition apparatus. Then plasma CVD
Using a metal mask, the p-type layer 24 is formed with a thickness of 100 Å, the i-type layer 25 is formed with a thickness of 4000 Å, and
The n-type layer 26 is sequentially deposited to a thickness of 300 Å, and then an electrode (titanium) 27 on the transmitted light side is formed in a predetermined pattern using a metal mask using a vapor deposition device.
Form to a thickness of about 2000 Å. After that, a protective resin 28 is applied to a thickness of 40 μm, and then this is immersed in a hydrochloric acid solution, and the stainless steel substrate 21 is removed by etching. Batteries were easily realized.

発明の効果 以上述べてきたように、本発明によれば、全て
の工程にロールツーロール方式が採用できる為
に、高い生産性が期待される。従つて、極めて安
価で、高性能、高信頼性の太陽電池が、極めて容
易に実現できる。
Effects of the Invention As described above, according to the present invention, high productivity is expected because a roll-to-roll method can be adopted in all processes. Therefore, extremely inexpensive, high performance, and highly reliable solar cells can be realized extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による太陽電池の製造法の一実
施例における工程図であり、aは平面図、bは断
面図、第2図aは従来のガラス基板を用いたp側
入光太陽電池の工程断面図であり、bは従来の非
透光性耐熱性基板を用いたn側入光太陽電池の工
程断面図である。 21……ステンレス鋼基板、22……Si3N4
膜、23……ITO膜、24……p形層、25……
i形層、26……n形層、27……透過光面側電
極、28……保護用樹脂。
FIG. 1 is a process diagram of an embodiment of the solar cell manufacturing method according to the present invention, in which a is a plan view, b is a cross-sectional view, and FIG. 2 a is a conventional p-side incident solar cell using a glass substrate. FIG. 2 is a process sectional view of FIG. 21...Stainless steel substrate, 22...Si 3 N 4
Film, 23... ITO film, 24... p-type layer, 25...
I-type layer, 26... N-type layer, 27... Transmitted light surface side electrode, 28... Protective resin.

Claims (1)

【特許請求の範囲】[Claims] 1 耐熱性基板上に、まず透光性絶縁膜を形成
し、その上に受光面側の電極として透明導電膜、
p形層、i形層、n形層からなる非晶質半導体
層、透過光面側の電極を順に形成し、さらに保護
用樹脂を形成した後に、前記耐熱性基板を除去
し、前記保護用樹脂を新たな基板とすることを特
徴とした非晶質太陽電池の製造法。
1. First, a transparent insulating film is formed on a heat-resistant substrate, and a transparent conductive film is placed on top of it as an electrode on the light-receiving surface side.
After sequentially forming an amorphous semiconductor layer consisting of a p-type layer, an i-type layer, and an n-type layer, and an electrode on the side of the transmitted light surface, and further forming a protective resin, the heat-resistant substrate is removed and the protective resin is formed. A method for manufacturing an amorphous solar cell characterized by using resin as a new substrate.
JP60161400A 1985-07-22 1985-07-22 Manufacture of amorphous solar cell Granted JPS6222489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161400A JPS6222489A (en) 1985-07-22 1985-07-22 Manufacture of amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161400A JPS6222489A (en) 1985-07-22 1985-07-22 Manufacture of amorphous solar cell

Publications (2)

Publication Number Publication Date
JPS6222489A JPS6222489A (en) 1987-01-30
JPH0564867B2 true JPH0564867B2 (en) 1993-09-16

Family

ID=15734372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161400A Granted JPS6222489A (en) 1985-07-22 1985-07-22 Manufacture of amorphous solar cell

Country Status (1)

Country Link
JP (1) JPS6222489A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517465B2 (en) * 2004-10-21 2009-04-14 United Solar Ovonic Llc Ultra lightweight photovoltaic device and method for its manufacture
JP4937077B2 (en) * 2007-10-17 2012-05-23 三菱電機株式会社 Frost detection device

Also Published As

Publication number Publication date
JPS6222489A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
US9793422B2 (en) Solar cell
US20100224241A1 (en) Solar Cell and Solar Cell Manufacturing Method
JP3469729B2 (en) Solar cell element
US8575472B2 (en) Photoelectric conversion device and method for producing same
JP2008124381A (en) Solar battery
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
CN114068731A (en) Back contact heterojunction solar cell characterized by low laser damage and manufacturing method thereof
CN114203833A (en) Manufacturing method of back contact heterojunction solar cell with low laser damage
JP2011009615A (en) Method for manufacturing solar cell
US4922218A (en) Photovoltaic device
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
CN111403551A (en) Preparation method of high-efficiency monocrystalline silicon PERC solar cell
JPH0564867B2 (en)
WO2019003769A1 (en) Solar cell module and method for manufacturing solar cell module
JP2692964B2 (en) Solar cell
WO2011057529A1 (en) Solar battery with amorphous silicon thin film and manufacturing method thereof
CN111628044A (en) Surface passivation treatment method and system for silicon solar cell
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JP3382141B2 (en) Photoelectric conversion element
JPS58111379A (en) Thin-film solar cell
CN115172522B (en) Solar cell, preparation method and photovoltaic module
CN114765234B (en) Annealing enhancement back passivation method for P-type crystalline silicon double-sided battery
JPH03160763A (en) Manufacture of photovoltaic device
KR930009596B1 (en) Silicon solar cell and manufacturing method thereof
CN113394309A (en) Solar cell and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees