JPH0559778B2 - - Google Patents

Info

Publication number
JPH0559778B2
JPH0559778B2 JP60110526A JP11052685A JPH0559778B2 JP H0559778 B2 JPH0559778 B2 JP H0559778B2 JP 60110526 A JP60110526 A JP 60110526A JP 11052685 A JP11052685 A JP 11052685A JP H0559778 B2 JPH0559778 B2 JP H0559778B2
Authority
JP
Japan
Prior art keywords
nozzle
gas
liquid
jet
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60110526A
Other languages
Japanese (ja)
Other versions
JPS61270321A (en
Inventor
Masanori Tokuda
Saburo Kobayashi
Kimihisa Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60110526A priority Critical patent/JPS61270321A/en
Publication of JPS61270321A publication Critical patent/JPS61270321A/en
Publication of JPH0559778B2 publication Critical patent/JPH0559778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3122Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof the material flowing at a supersonic velocity thereby creating shock waves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体中に音速に近い気体を吹込むに
あたり、底たたき現象がなく、ジエツトを安定化
することを可能にする気体の吹込み方法であり、
鉄鋼業、化学工業等における気液反応を極めて有
利に行うことを可能とするものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is a method for blowing gas into a liquid at a speed close to sonic speed, which eliminates the bottom-struck phenomenon and makes it possible to stabilize the jet. can be,
This makes it possible to carry out gas-liquid reactions extremely advantageously in the steel industry, chemical industry, etc.

従来の技術 気体の液体への吸収、気体の液体との反応(以
下合わせて単に気液反応という)や気体による液
体の撹拌は鉄鋼業や化学工業において、屡々行わ
れているプロセスである。このためには気体を液
体中へノズルを介して吹込む方法がよく知られて
いる。
BACKGROUND ART Absorption of gas into liquid, reaction of gas with liquid (hereinafter simply referred to as gas-liquid reaction), and stirring of liquid by gas are processes that are frequently performed in the steel industry and the chemical industry. For this purpose, it is well known to blow gas into the liquid through a nozzle.

発明が解決しようとする問題点 気体を液体中へノズルを介して吹込む方法にあ
たつては、反応効率の向上や操業時間の短縮のた
め、なるべく高速で大量のガス吹込みが好まし
い。
Problems to be Solved by the Invention In the method of blowing gas into a liquid through a nozzle, in order to improve reaction efficiency and shorten operating time, it is preferable to blow a large amount of gas at as high a speed as possible.

しかしながら、ノズルの管路面積が一定のスト
レートノズルにあつては、圧力を大にすれば大量
のガス吹込みが可能となり、かつノズル出口部で
の静圧を高く維持することができるが、音速に近
い流速にするには、管路摩擦抵抗によるチヨーキ
ング現象のため、大きさ元圧を要することになる
ため、低圧で大流量を流すことは困難である。
However, in the case of a straight nozzle with a fixed nozzle pipe area, increasing the pressure makes it possible to inject a large amount of gas and maintain a high static pressure at the nozzle outlet, but the speed of sound In order to achieve a flow velocity close to , a large original pressure is required due to the choke phenomenon caused by pipe friction resistance, so it is difficult to flow a large flow rate at low pressure.

一方、中細ノズル又は先細末広ノズル(以下、
ラバルノズルという)を使用すれば容易に音速に
近いあるいは超音速のジエツト流を得ることがで
き、低圧で大量の気体吹込みも可能であるが、出
口静圧が小さくなるため、ジエツトが不安定で、
バツクアタツク(底たたき現象)も起り易く、バ
ツクアタツクによるノズル先端部の損傷が著しく
なる。
On the other hand, a medium-fine nozzle or a tapered-to-widespread nozzle (hereinafter referred to as
If a Laval nozzle is used, it is possible to easily obtain a jet flow close to or supersonic, and it is also possible to blow a large amount of gas at low pressure, but the static pressure at the outlet is small, making the jet unstable. ,
Back attack (bottom hitting phenomenon) is also likely to occur, and the nozzle tip is seriously damaged due to back attack.

又、極めて浅い浴においては、吹抜けの懸念も
生じる。
Furthermore, in extremely shallow baths, there is also the concern of blow-through.

本発明は、液体中へノズルを介し、気体をジエ
ツト流で吹込むにあたり、ノズル先端部の損傷が
少く、且つ高速大量のガス吹込みが可能となる気
体吹込方法を提供するものである。
The present invention provides a method for blowing gas into a liquid through a nozzle in a jet flow, which causes less damage to the tip of the nozzle and enables high-speed, large-volume blowing of gas.

問題点を解決するための手段 本発明は、液体中に気体をその音速の90%以上
の高速度でノズルを介して吹込む方法において、
浴中ジエツト流の先端方向にジエツト流にほぼ直
交して邪魔板又はそれに相当する固体面(以下単
に邪魔板という。)を置くことを特徴とする液体
中に音速に近いあるいは超音速の気体を吹込む方
法である。
Means for Solving the Problems The present invention provides a method for blowing gas into a liquid through a nozzle at a high velocity of 90% or more of the sonic velocity.
A baffle plate or an equivalent solid surface (hereinafter simply referred to as a baffle plate) is placed in the direction of the tip of the jet flow in the bath, substantially perpendicular to the jet flow. This is a method of instilling.

以下図面(第1〜2図)を用いて説明する。 This will be explained below using the drawings (Figs. 1 and 2).

液体中へノズル1を通して気体2を吹込むと、
流速の小さい間は気泡がノズル先端で生成し、離
脱するという過程が繰返される。
When gas 2 is blown into the liquid through nozzle 1,
While the flow velocity is low, bubbles are generated at the tip of the nozzle and then separated, which is a repeated process.

流速を上げると、気泡の生成離脱の頻度は大き
くなり、流速が音速の90%以上の高速度となる
と、遂には、ノズル先端より気相が連続的に気体
中へ侵入する状態となる。この時は、気相連続相
は液体をまきこむために、実質的には二相流3を
形成している(一部、気相のみのコア部4が存在
する)。
As the flow rate increases, the frequency of bubble formation and separation increases, and when the flow rate reaches a high velocity of 90% or more of the sound speed, the gas phase finally enters the gas continuously from the nozzle tip. At this time, the continuous gas phase incorporates the liquid, so that it substantially forms a two-phase flow 3 (there is a core portion 4 containing only the gas phase).

この領域を浴中ジエツト領域と定義すると、浴
中ジエツト自身、浴中で絶えず長さと形状が変動
しており、本質的に非定常つまり不安定であり、
第1図に示す如く、液内及び液面は上下に激しい
動きを見せている。
If we define this region as the in-bath jet region, the in-bath jet itself is constantly changing in length and shape in the bath, and is essentially unsteady or unstable.
As shown in Fig. 1, the inside of the liquid and the liquid surface are exhibiting violent movements up and down.

この不安定をもたらす最大の要因は周囲液体と
の相互作用であると考えられる。すなわち、浴中
ジエツトはノズルからの気体の流入により、液中
へ成長、侵入するが、先端部で運動エネルギーを
失なうにつれ、周辺液体の運動に支配されて変動
すると共に、分裂を起こす。また、しばしば気泡
のくびれた所5から切断される様子が高速写真な
どにより観察されるが、それはまだ運動エネルギ
ーの高い領域でも、圧力が低下した部分に当り、
気泡のくびれから切断に至ることを示すと考えら
れる。
The biggest factor causing this instability is thought to be interaction with the surrounding liquid. That is, the jet in the bath grows and penetrates into the liquid due to the inflow of gas from the nozzle, but as it loses kinetic energy at the tip, it fluctuates under the influence of the movement of the surrounding liquid and also breaks up. In addition, it is often observed in high-speed photographs that the bubble is cut off from the constricted part 5, but this occurs in a region where the pressure has decreased even though the kinetic energy is still high.
This is thought to indicate that the constriction of the bubble leads to cutting.

ジエツト前方での切断は、気相あるいは混相の
不連続的、突発的体積減少をもたらすため、一定
速度で大量の気相が供給されている場合は、急激
な圧力増加とそれにともない体積膨張がノズル出
口部で集中的に生起し、その結果、いわゆる底た
たき現象6が観測されるものと考えられる、 この底たたきの頻度を小さくするためには、ジ
エツト(コア)内の気相静圧を高くして、液体運
動による乱れを少なくすることが有効である。
Cutting in front of the jet causes a discontinuous and sudden volume reduction of the gas phase or mixed phase. Therefore, if a large amount of gas phase is supplied at a constant speed, a sudden pressure increase and accompanying volume expansion will cause the nozzle to It is thought that this phenomenon occurs intensively at the outlet, and as a result, the so-called bottom-striking phenomenon 6 is observed.In order to reduce the frequency of this bottom-striking, the static pressure of the gas phase in the jet (core) must be increased. It is effective to reduce turbulence caused by liquid movement.

一方、容易に高速大流量を流し得るラバルノズ
ルは液体への気体吹込みにおいて実用されていな
いがその理由の1つは、圧力が容易に運動エネル
ギーに転換され超音速となつてしまうため、出口
静圧を高く維持するのが困難なためと考えられ
る。これに反して、一般に広く用いられるストレ
ートノズルにおいては、音速に近い吹込み速度を
採用するが、そのことはこのタイプのノズルでは
原理的に音速を超えることができないため、音速
に近づくにつれいわるゆチヨーキング現象が生
じ、ノズル出口の気相静圧も急激に上昇すること
により、ジエツトが相対的に安定化することを利
用していると理解できる。
On the other hand, the Laval nozzle, which can easily flow a large amount of gas at high speed, has not been put into practical use for blowing gas into liquid. One of the reasons for this is that the pressure is easily converted into kinetic energy and becomes supersonic, so the exit static This is thought to be because it is difficult to maintain high pressure. On the other hand, the commonly used straight nozzle uses a blowing speed close to the speed of sound; however, this type of nozzle cannot theoretically exceed the speed of sound, so the blowing speed increases as it approaches the speed of sound. It can be understood that this method takes advantage of the fact that the jet is relatively stabilized due to the occurrence of the yawking phenomenon and the sudden rise in the gas phase static pressure at the nozzle outlet.

しかし、それでもジエツト前方での液体運動に
よる切断とそれに基く非定常性による乱れを免れ
ることはできない。
However, it is still not possible to avoid disconnection due to liquid movement in front of the jet and disturbances due to unsteadiness caused by it.

そこで、この切断の起こるべき位置より下部
(ノズルより)に固体の壁7を設け、ジエツトが
この壁に沿つて流れるようにすれば、ジエツト流
の定常性が保証され、ジエツト流は連続的かつ固
定した場所で気泡に変化して、ジエツト領域全体
が安定化する。
Therefore, if a solid wall 7 is provided below the position where this cutting should occur (from the nozzle) and the jet is made to flow along this wall, the steadiness of the jet flow is guaranteed, and the jet flow is continuous and It transforms into bubbles at fixed locations, stabilizing the entire jet area.

本発明の「邪魔板」7はこの役割を任つてお
り、ジエツトに対する上方からの静水圧を負担す
ると同時に、ジエツト流が連続的に変化するため
の流路と場所を提供している。
The "baffle" 7 of the present invention assumes this role, bearing the hydrostatic pressure on the jet from above, while at the same time providing a flow path and a location for continuous variation of the jet flow.

したがつて、比較的低圧、低流速でも安定なジ
エツトの形成を可能とする上に、邪魔板周辺部か
ら離脱する気泡は通常のジエツト気泡に比べ極め
て小さい。
Therefore, it is possible to form a stable jet even at relatively low pressures and low flow rates, and the bubbles that separate from the periphery of the baffle plate are extremely small compared to ordinary jet bubbles.

このことは、化学的には反応界面積と滞留時間
増大による反応速度の増大、物理的には、ガスホ
ールドアツプ増による撹拌力の増加をもたらす結
果となる。
Chemically, this results in an increase in the reaction rate due to an increase in the reaction interface area and residence time, and physically, an increase in stirring power due to an increase in gas hold-up.

これを第2図で示すと、ノズル1より噴出した
ガス2はノズルの真上に位置した邪魔板7に衝突
し、拡がりを持つた上方へ向う気泡流8と下方へ
向う理想的な循環流9を形成する。浴上部は一面
に微細な気泡10が生じ、ホールドアツプし、浴
面11は静かである。
This is shown in Figure 2, where the gas 2 ejected from the nozzle 1 collides with the baffle plate 7 located directly above the nozzle, creating an expanding upward bubble flow 8 and a downward ideal circulating flow. form 9. Fine air bubbles 10 are generated on one side of the upper part of the bath and hold up, and the bath surface 11 is quiet.

なお、邪魔板の形状は、ジエツト流の拡がりを
ほぼ覆う面(平面、曲面)を有する大きさとす
る。過大な面積では効果は変らないが、拡がり面
積よりも小さくなる程効果は弱くなる。
The shape of the baffle plate is such that it has a surface (flat or curved) that substantially covers the spread of the jet flow. The effect remains the same if the area is too large, but the effect becomes weaker as the area becomes smaller than the spread area.

邪魔板の位置は、ジエツト流の拡がりをほぼ覆
うものとし、ノズル直径をD、邪魔板面のノズル
からの高さをHとしたとき、10D≧H≧2Dとす
る。前述のように、連続気相の切断面よりもノズ
ル側に接近させることを目安とする。
The position of the baffle plate should be such that it almost covers the spread of the jet flow, and when the nozzle diameter is D and the height of the baffle plate surface from the nozzle is H, 10D≧H≧2D. As mentioned above, the guideline is to bring it closer to the nozzle side than the cut surface of the continuous gas phase.

なお、邪魔板設置の具体的方法としては、 (1) ノズルとは独立に上方より設置(第3図)。 The specific method for installing baffle boards is as follows: (1) Installed from above independently of the nozzle (Figure 3).

(2) 支持枠12をもつてノズルと一体構造とする
(第4図)。
(2) The support frame 12 is integrated with the nozzle (Fig. 4).

(3) ノズル内部にさしこむ(第5図)。(3) Insert it inside the nozzle (Fig. 5).

等の方法がある。There are other methods.

実施例 1 内容積1.25×104cm3の水槽に水を満し、槽底の
ノズル(4mmφ)から、約3〜7Kg/cm2の吐出圧
で空気を噴出せしめた。この際の流速は音速に近
いものであり、ジエツト領域の体積は2.87×102
cm3、ガスホールドアツプは吐出圧に余り依存せず
約0.022であつた。又、バツクアタツクが激しか
つた。
Example 1 A water tank with an internal volume of 1.25×10 4 cm 3 was filled with water, and air was blown out from a nozzle (4 mmφ) at the bottom of the tank at a discharge pressure of about 3 to 7 kg/cm 2 . The flow velocity at this time is close to the speed of sound, and the volume of the jet region is 2.87×10 2
cm 3 , the gas hold-up was approximately 0.022 and did not depend much on the discharge pressure. Also, the back attack was intense.

次に、ノズル上部10mmの箇所へジエツト流の拡
がりをほぼ覆う面を有する邪魔板を上方より設置
した所、空気吐出圧を3〜7Kg/cm2へと増大され
るに伴い、ガスホールドアツプは0.024から0.11
に増加した、 又、邪魔板をノズルに近づけるにつれ、又、空
気の吐出圧を増加させるにつれバツクアタツクの
減少が認められた(第6図)。
Next, a baffle plate with a surface that almost covers the spread of the jet flow was installed from above at a location 10 mm above the nozzle, and as the air discharge pressure was increased to 3 to 7 kg/cm 2 , the gas hold up 0.024 to 0.11
In addition, as the baffle plate was moved closer to the nozzle, and as the air discharge pressure was increased, the back attack was observed to decrease (Figure 6).

実施例 2 炉内容積80Nm3、炉頂から炉底レンガ表面まで
の距離が6.3mの転炉状反応容器の炉底中心に2
重管羽口(内管内径16mm、内管外径16mm、外管内
径20mm)を1ケ備え、内管には酸素ガスあるいは
Arガス、内管と外管のすき間にはプロパンガス
あるいはN2を供給できるようにする。
Example 2 At the center of the bottom of a converter-like reaction vessel, the inner volume of the furnace was 80 Nm 3 and the distance from the top of the furnace to the bottom brick surface was 6.3 m.
Equipped with one heavy pipe tuyere (inner pipe inner diameter 16 mm, inner pipe outer diameter 16 mm, outer pipe inner diameter 20 mm), and the inner pipe is filled with oxygen gas or
Ar gas, propane gas or N 2 can be supplied to the gap between the inner and outer tubes.

また、上方からは吹酸用のランス(先端ノズル
形状4mmφ、6孔)と、先端部5.3mmが耐火物で
被覆された(被覆部の径200mm)鉄製の筒(先端
から6mより上は内部は水冷されている)のいず
れか一つが炉内に装入されるようになつている。
In addition, from above, there is a lance for blowing acid (tip nozzle shape: 4 mmφ, 6 holes) and an iron cylinder whose tip is coated with refractory (coated portion diameter: 200 mm) 5.3 mm (the area above 6 m from the tip is inside). is water-cooled) is charged into the furnace.

炉を傾動して、溶銑(C:4.3%、Si:0.3%、
1430℃)を60t装入して、上吹ランスを装入して
酸素を12000Nm3/hr、底吹ランスから、酸素を
3000Nm3/hr、プロパンを50Nm3/hrで吹いて脱
炭を主体とする酸化精錬を行い、C:0.3%まで
低下する。次いで上吹ランスを引きあげて吹酸を
とめるとともに、先端部を耐火物で被覆した鉄製
の筒を炉内に装入して、先端部が底吹羽口真上ま
で降下させて、前述の条件で酸素−プロパンを続
けてC:0.1%まで低下し、ついで鉄製の筒の装
入条件を同一のままに保つて、吹込ガスを両方と
もArに切換えて(Ar吹込量2000Nm3/hr)5分
間吹錬を行う。最終的にC:0.0015%、O:0.08
%、N:12ppm、H:2ppm、1580℃の溶鋼が得
られ、取鍋に出鋼して、成分調整を行つた後、注
入する。
By tilting the furnace, hot metal (C: 4.3%, Si: 0.3%,
1430℃), 12000Nm 3 /hr of oxygen was charged from the top blowing lance, and oxygen was fed from the bottom blowing lance.
By blowing propane at 3000Nm 3 /hr and 50Nm 3 /hr, oxidation refining is carried out, mainly decarburization, and the C content is reduced to 0.3%. Next, the top blowing lance was pulled up to stop the blowing acid, and an iron cylinder whose tip was covered with a refractory was inserted into the furnace, and the tip was lowered to just above the bottom blowing tuyere, under the conditions described above. Continue to use oxygen-propane to reduce C to 0.1%, then keep the charging conditions of the iron cylinder the same and switch both injection gases to Ar (Ar injection amount 2000Nm 3 /hr). Perform blowing for a minute. Final C: 0.0015%, O: 0.08
%, N: 12ppm, H: 2ppm, molten steel at 1580°C is obtained, tapped into a ladle, and after adjusting the composition, is poured.

底吹羽口真上に上記耐火物被覆筒(邪魔板相当
物)がおかれたことにより、羽口から吹き込まれ
たO2ガス、プロパンガスの分散が促進されて、
低炭域での脱炭促進(およびその結果として、1
本羽口でも強撹拌が維持できて、スラグのFeO%
を低下できる)脱ガス促進が実現された。
By placing the refractory-coated tube (equivalent to a baffle plate) directly above the bottom blowing tuyere, the dispersion of O 2 gas and propane gas blown from the tuyere is promoted.
Promotion of decarburization in the low coal region (and as a result, 1
Strong stirring can be maintained even with this tuyere, and the FeO% of the slag
degassing was realized.

またAr吹込時には、同様に気泡分散が促進さ
れることによつて、Arと溶鋼の接触効果が増加
し、脱ガス反応(CO反応による、及び脱水素)
が促進され、全吹錬所要時間の短縮(7分)、Ar
ガス原単位の低下(約40%低下)が可能となつ
た。
In addition, during Ar injection, bubble dispersion is similarly promoted, which increases the contact effect between Ar and molten steel, resulting in degassing reactions (due to CO reaction and dehydrogenation).
is promoted, the total blowing time is shortened (7 minutes), Ar
It has become possible to reduce gas consumption per unit of production (approximately 40% reduction).

実施例 3 幅1.5m、長さ12mの樋状の耐火物を内張した
容器において、容器の底に容器端から2mおきに
二重管羽口(内管内径10mm、内管外径12mm、外管
内径14mm)を5ケ設ける。また、各羽口の位置に
対応して真上から、先端部1.3mを耐火物で被覆
した鉄製の筒(被覆した部分の径が200mm、鉄製
の内の径が100mm、耐火物被覆した部分の先端か
ら1.5mより上の部分は水冷されている)が装入
されるようになつている。
Example 3 In a container lined with a gutter-like refractory with a width of 1.5 m and a length of 12 m, double pipe tuyeres (inner pipe inner diameter 10 mm, inner pipe outer diameter 12 mm, inner pipe outer diameter 12 mm, Provide 5 outer tubes with an inner diameter of 14 mm. In addition, from directly above corresponding to the position of each tuyere, an iron cylinder with a 1.3 m tip covered with refractory (the diameter of the covered part is 200 mm, the inner diameter of the iron tube is 100 mm, the part covered with refractory) The area above 1.5m from the tip of the pipe is water-cooled).

この炉の一端からC:1.5%の溶鋼を3t/minの
割合で連続的に装入するとともに、各底吹羽口か
ら酸素(内管から)、プロパン(内管と外管のす
き間から)を100:7の割合で供給し、かつ、各
羽口の真上に、先端を耐火物被覆した鉄製の筒
を、邪魔板として装入した。
C:1.5% molten steel is continuously charged from one end of this furnace at a rate of 3t/min, and oxygen (from the inner tube) and propane (from the gap between the inner and outer tubes) are fed from each bottom blowing tuyere. were supplied at a ratio of 100:7, and an iron cylinder whose tip was coated with a refractory material was placed directly above each tuyere as a baffle plate.

この方法により、溶鋼深さが小さいにもかかわ
らず、安定して底吹精錬を起い、C:0.1%以下
の低炭溶鋼を、スラグの過酸化度を小さく保ちな
がら溶製することができた。
With this method, bottom-blowing refining can occur stably even though the molten steel depth is small, and low-coal molten steel with C: 0.1% or less can be produced while keeping the degree of peroxidation of the slag low. Ta.

発明の効果 以下詳述したごとく、本発明においては、浴中
ジエツトの先端部分に邪魔板又はそれに相当する
固体面を置くことによつて、ジエツト流はこの面
に衝突し、この面に沿つて流れるが、このことは
ジエツト流にとつて、(固定した)流れの場が確
保されることを意味し、そのことによりジエツト
が安定化する。
Effects of the Invention As described in detail below, in the present invention, by placing a baffle plate or a solid surface equivalent to the baffle plate at the tip of the jet in the bath, the jet flow collides with this surface and flows along this surface. This means that a (fixed) flow field is ensured for the jet flow, which stabilizes the jet.

ジエツトの安定化により下記するごとき、顕著
な効果が得られる。
The stabilization of the jet produces significant effects as described below.

(1) 底たたき現象が稀有となり、ノズル先端部の
損傷が大巾に軽減される。
(1) The bottom-striking phenomenon becomes rare, and damage to the nozzle tip is greatly reduced.

(2) 吹抜けの懸念が無くなるために、極めて浅い
浴においても、高速大量のガス吹込みが可能と
なる。
(2) Since there is no concern about blow-through, it is possible to blow a large amount of gas at high speed even in an extremely shallow bath.

(3) 通常のストレートノズルに採用されるよりも
低圧においても大量の気体を安定して吹込むこ
とが可能となる。
(3) It is possible to stably blow a large amount of gas even at a lower pressure than that used with ordinary straight nozzles.

(4) 気泡が細粒化する。(4) Air bubbles become finer.

その結果、 気液界面積が増大し、気液反応に極めて有
利となる。
As a result, the gas-liquid interfacial area increases, which is extremely advantageous for gas-liquid reactions.

ホールド・アツプ量の増大、気泡の液内滞
留時間が増加し、気−液反応に有利となる。
The hold-up amount increases and the residence time of bubbles in the liquid increases, which is advantageous for the gas-liquid reaction.

とくに浅い浴での撹拌効果を増大させる。 Increases the stirring effect, especially in shallow baths.

したがつて、本発明は製鋼炉、製鋼炉における
底吹羽口、高炉鋳床処理、連続製鋼炉、樋型連続
製鋼炉の如き比較的浅い溶融金属流れへのガス吹
込み、取鍋精錬における多量ガス吹込みによる脱
酸、脱窒、脱水素、タンデイツシユにおける介在
物分離、などに適用性があり、産業上の価値は大
きい。
Therefore, the present invention is applicable to steelmaking furnaces, bottom blowing tuyere in steelmaking furnaces, blast furnace casting bed treatment, continuous steelmaking furnaces, gas injection into relatively shallow molten metal flows such as trough-type continuous steelmaking furnaces, and ladle refining. It is applicable to deoxidation, denitrification, dehydrogenation by blowing a large amount of gas, separation of inclusions in tundish, etc., and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び2図は、本発明の作用を説明する説明
図である。第3〜5図は邪魔板設置の具体的方法
を説明する立面図である。第6図はノズル径、レ
ベル、気体吐出圧とバツクアタツク発生頻度の関
係図である。 1……ノズル、2……ガス、3……二相流、4
……コア、5……くびれ、6……底たたき、7…
…邪魔板、8……気泡流、9……循環流、10…
…微細気泡、11……浴面、12……支持枠。
FIGS. 1 and 2 are explanatory diagrams for explaining the operation of the present invention. 3 to 5 are elevational views illustrating a specific method of installing baffle plates. FIG. 6 is a diagram showing the relationship between nozzle diameter, level, gas discharge pressure, and back attack frequency. 1...Nozzle, 2...Gas, 3...Two-phase flow, 4
...Core, 5...constriction, 6...bottom tapping, 7...
...Baffle plate, 8...Bubble flow, 9...Circulating flow, 10...
...Fine bubbles, 11...Bath surface, 12...Support frame.

Claims (1)

【特許請求の範囲】 1 液体中に気体をその音速の90%以上の高速度
でノズルを介して吹込む方法において、浴中ジエ
ツト流の先端方向にジエツト流にほぼ直交して邪
魔板又はそれに相当する固体面(以下単に邪魔板
という。)を置くことを特徴とする液体中に音速
に近いあるいは超音速の気体を吹込む方法。 2 吹込みノズルの直径をDとしたとき、邪魔板
又はそれに相当する固体面をノズル出口より2D
以上かつほぼ10D以下の先端方向に設置した特許
請求の範囲第1項記載の液体中に気体を吹込む方
法。 3 液体が溶融金属である特許請求の範囲第1項
記載の液体中に気体を吹込む方法。
[Claims] 1. In a method of blowing gas into a liquid through a nozzle at a high velocity of 90% or more of the sonic velocity, a baffle plate or a A method of blowing gas at near or supersonic speed into a liquid, which is characterized by placing a corresponding solid surface (hereinafter simply referred to as a baffle plate). 2 When the diameter of the blow nozzle is D, the baffle plate or equivalent solid surface is 2D from the nozzle outlet.
2. A method for blowing gas into a liquid according to claim 1, which is disposed in a distal direction of 10D or more and approximately 10D or less. 3. The method of blowing gas into a liquid according to claim 1, wherein the liquid is a molten metal.
JP60110526A 1985-05-24 1985-05-24 Method for blowing gas to liquid Granted JPS61270321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110526A JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110526A JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Publications (2)

Publication Number Publication Date
JPS61270321A JPS61270321A (en) 1986-11-29
JPH0559778B2 true JPH0559778B2 (en) 1993-08-31

Family

ID=14538038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110526A Granted JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Country Status (1)

Country Link
JP (1) JPS61270321A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036324A1 (en) 2006-08-04 2008-02-07 Messer France S.A.S Method and device for introducing a gas into a liquid
KR101706567B1 (en) * 2015-11-24 2017-02-15 주식회사 포스코 Molten metal refining apparatus
KR101715168B1 (en) * 2016-02-26 2017-03-22 정재억 Atomizing apparatus and fluid treatment equipment using the same

Also Published As

Publication number Publication date
JPS61270321A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
CA2201364C (en) Vacuum refining method for molten steel
EP1749109A2 (en) Refining molten metal
JPH0559778B2 (en)
JP5544807B2 (en) Top blowing lance for refining and converter refining method
JP2008138271A (en) Refining method in converter-type refining furnace
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2012082492A (en) Converter refining method
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP2767674B2 (en) Refining method of high purity stainless steel
JPH1112633A (en) Lance for refining molten metal and refining method
JP4980175B2 (en) Lance for molten iron refining and molten iron refining method
JP3293023B2 (en) Vacuum blowing method for molten steel
JP2012082491A (en) Converter refining method
JP2773883B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
KR940011416B1 (en) Control method of tapping
JP2648769B2 (en) Vacuum refining method for molten steel
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH08199223A (en) Gas blowing tuyere
JP2819440B2 (en) Method for decarburizing molten steel containing extremely low carbon chromium
JPH10158725A (en) Reduced pressure decarburizing method of high chromium steel
JPH04136113A (en) Method for melting iron-contained cold material
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JPH04168214A (en) Method and apparatus for melting extremely low carbon steel
JPH07173518A (en) Melting method of extra-low carbon steel or low oxygen steel under the atmosphere

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term