JPS61270321A - Method for blowing gas to liquid - Google Patents

Method for blowing gas to liquid

Info

Publication number
JPS61270321A
JPS61270321A JP60110526A JP11052685A JPS61270321A JP S61270321 A JPS61270321 A JP S61270321A JP 60110526 A JP60110526 A JP 60110526A JP 11052685 A JP11052685 A JP 11052685A JP S61270321 A JPS61270321 A JP S61270321A
Authority
JP
Japan
Prior art keywords
gas
nozzle
liquid
baffle plate
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60110526A
Other languages
Japanese (ja)
Other versions
JPH0559778B2 (en
Inventor
Masanori Tokuda
徳田 昌則
Saburo Kobayashi
三郎 小林
Kimihisa Ito
伊藤 公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60110526A priority Critical patent/JPS61270321A/en
Publication of JPS61270321A publication Critical patent/JPS61270321A/en
Publication of JPH0559778B2 publication Critical patent/JPH0559778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3122Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof the material flowing at a supersonic velocity thereby creating shock waves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To stabilize jet flow and to make possible the blowing a large amt. of gas at a high speed by blowing the gas of nearly the sonic velocity or the supersonic velocity into the liquid and placing a baffle plate approximately orthogonaly with the top end direction of the jet flow in a bath. CONSTITUTION:The gas 2 is blown into the liquid at the high velocity of >=90% of the sonic velocity thereof and the baffle plate or the solid surface 7 corresponding thereto is placed in the top end direction of the jet flow in the bath orthogonally with the jet flow. Then the gas 2 spouting from a nozzle 1 collides against the baffle plate 7 and forms the foam flow 8 having a spread and heading upward and the circulating flow 9 heading downward. Fine foam 10 is generated over the entire surface in the upper part of the bath and is held up so that the bath surface remains still. The baffle plate or the like 7 is preferably installed in the top end direction 2D-10D from the nozzle outlet when the diameter of the nozzle 1 is designated as D. Bottom beating is thereby prevented and the damage at the nozzle tip is decreased. Blow-by is also prevented and the blowing of a large amt. of the gas at the high velocity is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液体中に音速に近い気体を吹込むにあたり、
底たたき現象がなく、ジェットを安定化することを可能
にする気体の吹込み方法であり、鉄鋼業、化学工業等に
おける気液反応を極めて有利に行うことを可能とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for blowing gas close to the speed of sound into a liquid.
This is a method of blowing gas that makes it possible to stabilize the jet without the bottom-struck phenomenon, and makes it possible to carry out gas-liquid reactions in the steel industry, chemical industry, etc. extremely advantageously.

従来の技術 気体の液体への吸収、気体の液体との反応(以下合わせ
て単に気液反応という)や気体による液体の攪拌は鉄鋼
業や化学工業において、14行われているプロセスであ
る。このためには気体を液体中へノズルを介し吹込む方
法がよく知られている。
BACKGROUND OF THE INVENTION Absorption of a gas into a liquid, reaction of a gas with a liquid (hereinafter simply referred to as gas-liquid reaction), and stirring of a liquid with a gas are 14 processes that are carried out in the steel industry and the chemical industry. For this purpose, it is well known to blow gas into the liquid through a nozzle.

発明が解決しようとする問題点 気体を液体中へノズルを介して吹込む方法にあたっては
1反応効率の向上や操業時間の短縮のため、なるべく高
速で大量のガス吹込みが好ましい。
Problems to be Solved by the Invention Regarding the method of blowing gas into a liquid through a nozzle, it is preferable to blow a large amount of gas at as high a speed as possible in order to improve reaction efficiency and shorten operating time.

しかしながら、ノズルの管路面積が一定のストレートノ
ズルにあっては、圧力を大にすれば大量のガス吹込みが
可能となり、かつノズル出口部での静圧を高く維持する
ことができるが、音速に近い流速にするには、管路摩擦
抵抗によるチョーキング現象のため、大きな元圧を要す
ることになるため、低圧で大流量を流すことは困難であ
る。
However, with a straight nozzle where the pipe area of the nozzle is constant, increasing the pressure makes it possible to inject a large amount of gas and maintain a high static pressure at the nozzle outlet, but the speed of sound In order to achieve a flow velocity close to , a large source pressure is required due to the choking phenomenon caused by pipe friction resistance, so it is difficult to flow a large flow rate at low pressure.

一方、中細ノズル又は先細末広ノズル(以下、ラバルノ
ズルという)を使用すれば容易に音速に近いあるいは超
音速のジェット流を得ることができ、低圧で大量の気体
吹込みも可能であるが、出口静圧が小さくなるため、ジ
ェットが不安定で。
On the other hand, if a medium-narrow nozzle or a tapered-wide nozzle (hereinafter referred to as a Laval nozzle) is used, it is possible to easily obtain a jet flow close to sonic speed or supersonic speed, and it is also possible to blow a large amount of gas at low pressure. The jet becomes unstable because the static pressure decreases.

バックアタック(底たたき現象)も起り易く、バックア
タックによるノズル先端部の損傷が著しくなる。
Back attack (bottom hitting phenomenon) is also likely to occur, and damage to the nozzle tip due to back attack becomes significant.

又、極めて浅い浴においては、吹抜けの懸念も生じる。Furthermore, in extremely shallow baths, there is also the concern of blow-through.

本発明は、液体中へノズルを介し、気体をジェット流で
吹込むにあたり、ノズル先端部の損傷が少く、且つ高速
大量のガス吹込みが可能となる気体吹込み方法を提供す
るものである。
The present invention provides a gas blowing method that causes less damage to the nozzle tip and enables high-speed, large-volume gas blowing when blowing gas into a liquid in a jet stream through a nozzle.

問題点を解決するための手段 本発明は、液体中に気体をその音速の90%以上の高速
度でノズルを介して吹込む方法において、浴中ジェット
流の先端方向にジェット流にほぼ直交して邪魔板又はそ
れに相当する固体面(以下単に邪魔板という。)を置く
ことを特徴とする液体中に音速に近いあるいは超音速の
気体を吹込む方法である。
Means for Solving the Problems The present invention provides a method for blowing gas into a liquid through a nozzle at a high velocity of 90% or more of the sonic speed, in which a gas is blown into a liquid at a high speed of 90% or more of the sonic speed, and a jet flow is blown in the direction of the tip of the jet flow in the bath, substantially perpendicular to the jet flow. This is a method of blowing gas at near or supersonic speed into a liquid, which is characterized by placing a baffle plate or an equivalent solid surface (hereinafter simply referred to as a baffle plate).

以下図面(第1〜2図)を用いて説明する。This will be explained below using the drawings (Figs. 1 and 2).

液体中ヘノズルエを通して気体2を吹込むと、流速の小
さい間は気泡がノズル先端で生成し、離脱するという過
程が繰返される。
When the gas 2 is blown into the liquid through the nozzle, the process in which bubbles are generated at the tip of the nozzle and then separated is repeated while the flow rate is low.

流速を上げると、気泡の生成離脱の頻度は大きくなり、
流速が音速の90%以上の高速度となると、遂には、ノ
ズル先端より気相が連続的に液体中へ侵入する状態とな
る。この時は、気相連続相は液体をまきこむために、実
質的には二相流3を形成している(一部、気相のみのコ
ア部4が存在する)。
As the flow rate increases, the frequency of bubble formation and separation increases.
When the flow velocity reaches a high velocity of 90% or more of the sound velocity, the gas phase finally enters the liquid continuously from the nozzle tip. At this time, since the continuous gas phase incorporates liquid, it substantially forms a two-phase flow 3 (there is a core portion 4 containing only the gas phase).

この領域を浴中ジェット領域と定義すると、浴中ジェッ
ト自身、浴中で絶えず長さと形状が変動しており、本質
的に非定常つまり不安定であり、第1図に示す如く、液
内及び液面は上下に激しい動きを見せている。
If this region is defined as the bath jet region, the bath jet itself constantly changes its length and shape in the bath, and is essentially unsteady or unstable. The liquid level is showing violent movement up and down.

この不安定をもたらす最大の要因は周囲液体との相互作
用であると考えられる。すなわち、浴中ジェットはノズ
ルからの気体の流入により、液中へ成長、侵入するが、
先端部で運動エネルギーを失なうにつれ、周辺液体の運
動に支配されて変動すると共に、分裂を起こす、また、
しばしば気泡のくびれた所5から切断される様子が高速
写真などにより観察されるが、それはまだ運動エネルギ
ーの高い領域でも、圧力が低下した部分に当り、気泡の
くびれから切断に至ることを示すと考えられる。
The biggest factor causing this instability is thought to be interaction with the surrounding liquid. In other words, the jet in the bath grows and invades the liquid due to the inflow of gas from the nozzle, but
As it loses kinetic energy at the tip, it fluctuates under the influence of the movement of the surrounding liquid and causes splitting.
It is often observed in high-speed photographs that the bubble is cut from the constriction 5, but this indicates that even in an area where kinetic energy is still high, the pressure is reduced and the bubble breaks off from the constriction. Conceivable.

ジェット前方での切断は、気相あるいは混和の不連続的
、突発的体積減少をもたらすため、一定速度で大量の気
相が供給されている場合は、急激な圧力増加とそれにと
もなう体積膨張がノズル出口部で集中的に生起し、その
結果、いわゆる底たたき現象6が観測されるものと考え
られる。
Cutting in front of the jet causes a discontinuous and sudden volume reduction of the gas phase or mixture, so if a large amount of gas phase is supplied at a constant speed, a sudden pressure increase and accompanying volume expansion will cause the nozzle to It is thought that this occurs intensively at the outlet, and as a result, the so-called bottom-hitting phenomenon 6 is observed.

この底たたきの頻度を小さくするためには、ジェー、ト
(コア)内の気相静圧を高くして、液体運動による乱れ
を少なくすることが有効である。
In order to reduce the frequency of this bottom tapping, it is effective to increase the gas phase static pressure within the jet (core) to reduce disturbances caused by liquid movement.

一方、容易に高速大流量を澄し得るラバルノズルは液体
への気体吹込みにおいて実用されていないがその理由の
1つは、圧力が容易に運動エネルギーに転換され超音速
となってしまうため、出口静圧を高く維持するのが困難
なためと考えられる。これに反して、一般に広く用いら
れるストレートノズルにおいては、音速に近い吹込み速
度を採用するが、そのことはこのタイプのノズルでは原
理的に音速を超えることができないため、音速に近づく
につれいわゆるチョーキング現象が生じ、ノズル出口の
気相静圧も急激に上昇することにより、ジェットが相対
的に安定化することを利用していると理解できる。
On the other hand, the Laval nozzle, which can easily produce high-speed, large-flow gas, has not been put into practical use for blowing gas into liquids.One of the reasons for this is that the pressure at the exit is easily converted into kinetic energy, resulting in supersonic speed. This is thought to be because it is difficult to maintain high static pressure. On the other hand, the generally widely used straight nozzle adopts a blowing speed close to the speed of sound, but this means that this type of nozzle cannot theoretically exceed the speed of sound, so as it approaches the speed of sound, so-called choking occurs. It can be understood that this phenomenon takes advantage of the fact that the gas phase static pressure at the nozzle outlet also rises rapidly, thereby making the jet relatively stable.

しかし、それでもジェット前方での液体運動による切断
とそれに基く非定常性による乱れを免れることはできな
い。
However, it is still not possible to avoid disruption due to the unsteadiness caused by the cutting caused by the liquid motion in front of the jet.

そこで、この切断の起こるべき位置より下部(ノズルよ
り)に固体の壁7を設け、ジェットがこの壁に沿って流
れるようにすれば、ジェット流の定常性が保証され、ジ
ェット流は連続的かつ固定した場所で気泡に変化して、
ジェット領域全体が安定化する。
Therefore, if a solid wall 7 is provided below the position where this cutting should occur (from the nozzle) and the jet flows along this wall, the steadiness of the jet flow is guaranteed, and the jet flow is continuous and Changes into bubbles at a fixed place,
The entire jet region is stabilized.

本発明の「邪魔板」7はこの役割を任っており、ジェッ
トに対する上方からの静水圧を負担すると同時に、ジェ
ット流が連続的に変化するための流路と場所を提供して
いる。
The "baffle" 7 of the present invention takes on this role, bearing the hydrostatic pressure on the jet from above, while at the same time providing a flow path and a location for the jet flow to vary continuously.

したがって、比較的低圧、低流速でも安定なジェットの
形成を可能とする上に、邪魔板周辺部から離脱する気泡
は通常のジェット気泡に比べ極めて小さい。
Therefore, it is possible to form a stable jet even at relatively low pressure and low flow rate, and the bubbles that separate from the periphery of the baffle plate are extremely small compared to normal jet bubbles.

このことは、化学的には反応界面積と滞留時間増大によ
る反応速度の増大、物理的には、ガスホールドアツプ増
による攪拌力の増加をもたらす結果となる。
Chemically, this results in an increase in the reaction rate due to an increase in the reaction interface area and residence time, and physically, an increase in stirring power due to an increase in gas hold-up.

これを第2図で示すと、ノズル1より噴出したガス2は
ノズルの真上に位置した邪魔板7に衝突し、拡がりを持
った上方へ向う気泡流8と下方へ向う理想的な循環流9
を形成する。浴上部は一面に微細な気@10が生じ、ホ
ールドアツプし、浴面11は静かである。
This is shown in Fig. 2. The gas 2 ejected from the nozzle 1 collides with the baffle plate 7 located directly above the nozzle, creating an expanding upward bubble flow 8 and a downward ideal circulating flow. 9
form. A fine air @10 is generated all over the upper part of the bath and holds up, and the bath surface 11 is quiet.

なお、邪魔板の形状は、ジェット流の拡がりをほぼ覆う
面(平面、曲面)を有する大きさとする。過大な面積で
は効果は変らないが、拡がり面請よりも小さくなる程効
果は弱くなる。
Note that the shape of the baffle plate is such that it has a surface (flat surface, curved surface) that substantially covers the spread of the jet flow. The effect does not change if the area is too large, but the effect becomes weaker as the area becomes smaller than the area of the area.

邪魔板の位aは、ジェット流の拡がりをほぼ覆うものと
し、ノズル直径をD、邪魔板面のノズルからの高さをH
としたとき、10D≧H≧2Dとする。前述のように、
連続気相の切断面よりもノズル側に接近させることを目
安とする。
The position a of the baffle plate should be such that it almost covers the spread of the jet stream, the nozzle diameter is D, and the height of the baffle plate surface from the nozzle is H.
Then, 10D≧H≧2D. As aforementioned,
As a guideline, it should be closer to the nozzle side than the cut surface of the continuous gas phase.

なお、邪魔板設置の具体的方法としては、(1)ノズル
とは独立に上方より設置(第3図)。
The specific method of installing the baffle plate is as follows: (1) Install it from above independently of the nozzle (Figure 3).

(2)支持枠12をもってノズルと一体構造とする(第
4図)。
(2) The support frame 12 is integrated with the nozzle (FIG. 4).

(3)ノズル内部にさしこむ(第5図)。(3) Insert it inside the nozzle (Figure 5).

等の方法がある。There are other methods.

実施例1 内容@ 1.25X to’ c+a3の水槽に水を満
し、槽底のノズル(4mmφ)から、約3〜7kg/c
m2の吐出圧で空気を噴出せしめた。この際の流速は音
速に近いものであり、ジエー7ト領域の体積は2.87
X102c+a3.ガスホールドアツプは吐出圧に余り
依存せず約0.022であった。又、バックアタックが
激しかった。
Example 1 Contents @ Fill a 1.25X to' c+a3 water tank with water, and from the nozzle (4 mmφ) at the bottom of the tank, about 3 to 7 kg/c
Air was blown out at a discharge pressure of m2. The flow velocity at this time is close to the speed of sound, and the volume of the jet region is 2.87
X102c+a3. The gas hold up was approximately 0.022 without depending much on the discharge pressure. Also, the back attack was intense.

次に、ノズル上部10+osの箇所へジェット流の拡が
りをほぼ覆う面を有する邪魔板を上方より設置した所、
空気吐出圧を3〜7 kg/ cm2へと増大されるに
伴い、ガスホールドアツプは0.024から0.11に
増加した。
Next, a baffle plate having a surface that almost covers the spread of the jet stream was installed from above at a location 10+os above the nozzle.
As the air discharge pressure was increased from 3 to 7 kg/cm2, the gas hold up increased from 0.024 to 0.11.

又、邪魔板をノズルに近づけるにつれ、又、空気の吐出
圧を増加させるにつれバックアタックの減少が認められ
た(第6図)。
Furthermore, as the baffle plate was brought closer to the nozzle, and as the air discharge pressure was increased, the back attack was observed to decrease (Figure 6).

実施例2 炉内容fi8ONm’、炉頂から炉底レンガ表面までの
距離が6.3mの転炉状反応容器の炉底中心に2重管羽
口(内管内径18mm、内管外径17+am、外管内径
20+*m)を1ヶ備え、内管には酸素ガスあるいはA
rガス、内管と外管のすき間にはプロパンガスあるいは
N、を供給できるようにする。
Example 2 A double tube tuyere (inner tube inner diameter 18 mm, inner tube outer diameter 17 + am, The outer tube has an inner diameter of 20+*m), and the inner tube is filled with oxygen gas or A
Propane gas or N can be supplied to the gap between the r gas and the inner and outer tubes.

また、上方からは吹酸用のランス(先端ノズル形状4m
mφ、6孔)と、先端部5.3■が耐火物で被覆された
(被覆部の径200mm)鉄製の筒(先端から6mより
上は内部は水冷されている)のいずれか一つが炉内に装
入されるようになっている。
In addition, from above, a lance for blowing acid (tip nozzle shape 4m)
mφ, 6 holes) and an iron cylinder whose tip 5.3 mm is coated with refractory (coated portion diameter 200 mm) (the interior is water-cooled above 6 m from the tip). It is designed to be charged inside.

炉を傾動して、溶銑(C:4.3%、Si:0゜3%、
 1.430℃)を90tl入して、上吹ランスを装入
して酸素を12000 N m’ / hr、底吹ラン
スから、酸素を3000 N mJ/ hr、プロパン
を50 N rn’ / hrテ吹いて脱炭を主体とす
る酸化精錬を行い、C:0.3%まで低下する。次いで
上吹ランスを引きあげて吹酸をとめるとともに、先端部
を耐火物で被覆した鉄製の筒を炉内に装入して、先端部
が底吹羽口真上まで降下させて、前述の条件で酸素−プ
ロパンを続けてC:0.1%まで低下し、ついで鉄製の
筒の装入条件を同一のままに保って、吹込ガスを両方と
もArニ切換えテ(Ar吹込量200ONrn”/ h
r) 5分間吹錬を行う。最終的にC: 0.0015
%、0:0.08%、N : 12ppm 、 H: 
2ppm 、 1590℃の溶鋼が得られ、取鍋に出鋼
して、成分調整を行った後、注入する。
By tilting the furnace, hot metal (C: 4.3%, Si: 0°3%,
1.430℃), and the top blowing lance was charged with oxygen at 12000 N m'/hr, and the bottom blowing lance was charged with oxygen at 3000 N mJ/hr and propane at 50 Nrn'/hr. By blowing, oxidation refining mainly consists of decarburization, and the C content is reduced to 0.3%. Next, the top blowing lance was pulled up to stop the blowing acid, and an iron cylinder whose tip was covered with a refractory was inserted into the furnace, and the tip was lowered to just above the bottom blowing tuyere, under the conditions described above. Then, while keeping the charging conditions of the iron cylinder the same, both gases were switched to Ar (Ar injection amount 200ONrn"/h).
r) Perform blowing for 5 minutes. Finally C: 0.0015
%, 0:0.08%, N: 12ppm, H:
Molten steel with a concentration of 2 ppm and a temperature of 1590° C. is obtained, tapped into a ladle, and after the composition is adjusted, it is poured.

底吹羽口真上に上記耐火物被覆筒(邪魔仮相当物)がお
かれたことにより1羽口から吹ざ込まれた02ガス、プ
ロパンガスの分散が促進されて。
By placing the refractory-coated cylinder (equivalent to a temporary obstruction) directly above the bottom blowing tuyeres, the dispersion of the 02 gas and propane gas blown from one tuyere was promoted.

低度域での脱炭促進(およびその結果として、1本羽口
でも強攪拌が維持できて、スラグのFe0%を低下でき
る)脱ガス促進が実現された。
It was possible to promote decarburization in the low temperature range (and as a result, even with a single tuyere, strong stirring could be maintained and the 0% Fe content of the slag could be reduced) and degassing was promoted.

また^r吹込時には、同様に気泡分散が促進されること
によって、Arと溶鋼の接触効果が増加し、脱ガス反応
(CO反応による、及び脱水素)が促進され、全吹錬所
要時間の短縮(7分)、Arガス原単位の低下(約40
%低下)が可能となった。
In addition, during blowing, bubble dispersion is similarly promoted, which increases the contact effect between Ar and molten steel, promotes degassing reactions (by CO reaction and dehydrogenation), and shortens the total blowing time. (7 minutes), reduction in Ar gas consumption rate (approximately 40 minutes)
% reduction).

実施例3 幅1.5m、長さ12mの樋状の耐火物を内張した容器
において、容器の底に容器端から2 m 13 &に二
重管用口(内管内径10m1、内管外径12層組外管内
径14mm)を5ヶ設ける。また、各羽口の位置に対応
して真上から、先端部1.3mを耐火物で被覆した鉄製
の筒(被覆した部分の径が200腸■、鉄製の筒の径が
100m1、耐火物被覆した部分の先端から1.5mよ
り上の部分は水冷されている)が装入されるようになっ
ている。
Example 3 In a container lined with a gutter-like refractory with a width of 1.5 m and a length of 12 m, a double pipe opening (inner pipe inner diameter 10 m1, inner pipe outer diameter Five 12-layer outer tubes with an inner diameter of 14 mm are provided. In addition, from directly above corresponding to the position of each tuyere, we placed an iron cylinder whose tip part was 1.3 m covered with refractory material (the diameter of the covered part was 200 m2, the diameter of the iron cylinder was 100 m1, the refractory The portion above 1.5 m from the tip of the coated portion is water-cooled).

この炉の一端からC::1.5%の溶鋼を3 t/wi
nの割合で連続的に装入するとともに、各底吹羽口から
酸素(内管から)、プロパン(内管と外管のすき間から
)を100ニアの割合で供給し、かつ。
From one end of this furnace, C::1.5% molten steel is poured at 3 t/wi.
At the same time, oxygen (from the inner tube) and propane (from the gap between the inner tube and the outer tube) are supplied at a rate of 100 nia from each bottom blowing tuyere.

各羽口の真上に、先端を耐火物被覆した鉄製の筒を、邪
魔板として装入した。
An iron cylinder with a refractory-coated tip was placed directly above each tuyere as a baffle plate.

この方法により、溶鋼深さが小さいにもかかわらず、安
定して底吹精錬を行い、C:0.1%以下の低度溶鋼を
、スラグの過酸化度を小さく保ちながら溶製することが
できた。
With this method, even though the molten steel depth is small, bottom-blowing refining can be performed stably and low-grade molten steel with C: 0.1% or less can be produced while keeping the degree of peroxidation of the slag small. did it.

発明の効果 以上詳述したごとく、本発明においては、浴中ジェット
の先端部分に邪魔板又はそれに相当する固体面を置くこ
とによって、ジェット流はこの面に衝突し、この面に沿
って流れるが、このことはジェット流にとって、(固定
した)流れの場が確保されることを意味し6、そのこと
によりジェットが安定化する。
Effects of the Invention As detailed above, in the present invention, by placing a baffle plate or an equivalent solid surface at the tip of the jet in the bath, the jet stream collides with this surface and flows along this surface. , which means that a (fixed) flow field is ensured for the jet flow6, thereby stabilizing the jet.

ジェットの安定化により下記するごとき、顕著な効果が
得られる。
By stabilizing the jet, the following remarkable effects can be obtained.

(1)底たたき現象が稀有となり、ノズル先端部の損傷
が大巾に軽減される。
(1) The bottom-slapping phenomenon becomes rare, and damage to the nozzle tip is greatly reduced.

(2)吹抜けの懸念が無くなるために、極めて浅い浴に
おいても、高速大量のガス吹込みが可能となる。
(2) Since there is no concern about blow-through, it is possible to blow a large amount of gas at high speed even in an extremely shallow bath.

(3) 通常ノストレートノズルに採用されるよりも低
圧においても大量の気体を安定して吹込むことが可能と
なる。
(3) It is possible to stably blow a large amount of gas even at a lower pressure than is normally employed in a no-straight nozzle.

(4)気泡が細粒化する。(4) Bubbles become fine particles.

その結果、 ■気液界面積が増大し、気液反応に極めて有利となる。the result, ■The gas-liquid interfacial area increases, which is extremely advantageous for gas-liquid reactions.

■ホールド・アップ量の増大、気泡の液内滞留時間が増
加し、気−液反応に有利となる。
■The hold-up amount increases and the residence time of bubbles in the liquid increases, which is advantageous for gas-liquid reactions.

■とくに浅い浴での攪拌効果を増大させる。■Increases the stirring effect, especially in shallow baths.

したがって1本発明は製鋼炉、製鋼炉における底吹羽口
、高炉鋳床処理、1!!続製鋼炉、樋型連続製鋼炉の如
き比較的浅い溶融金属流れへのガス吹込み、取鍋精錬に
おける多量ガス吹込みによる脱酸、脱窒、脱水素、タン
ディツシュにおける介在物分離、などに適用性があり、
産業上の価値は大きい。
Therefore, 1. The present invention provides a steelmaking furnace, a bottom blowing tuyere in a steelmaking furnace, a blast furnace casting bed treatment, and 1! ! Applicable to gas injection into relatively shallow molten metal flows such as continuous steelmaking furnaces and trough-type continuous steelmaking furnaces, deoxidation, denitrification, and dehydrogenation by large amounts of gas injection in ladle refining, inclusion separation in tundish, etc. sexual,
The industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び2図は、本発明の詳細な説明する説明図である
。第3〜5図は邪魔板設置の具体的方法を説明する立面
図である。第6図はノズル径、レベル、気体吐出圧とバ
ックアタック発生頻度の関係図である 111@・ノズル、2・・・ガス、3・・Φ二相流、4
・e11コア、5◆争・〈びれ、6・・・底たたき、7
・・・邪魔板、8・・・気泡流、9・so循環流、 1
0・・・微細気泡、 11φ・・浴面、12・・・支持
枠。
1 and 2 are explanatory diagrams for explaining the present invention in detail. 3 to 5 are elevational views illustrating a specific method of installing baffle plates. Figure 6 is a diagram showing the relationship between nozzle diameter, level, gas discharge pressure, and back attack frequency.
・e11 core, 5◆war・〈fin, 6...bottom slap, 7
...baffle plate, 8...bubble flow, 9.so circulation flow, 1
0...Fine bubbles, 11φ...Bath surface, 12...Support frame.

Claims (3)

【特許請求の範囲】[Claims] (1)液体中に気体をその音速の90%以上の高速度で
ノズルを介して吹込む方法において、浴中ジェット流の
先端方向にジェット流にほぼ直交して邪魔板又はそれに
相当する固体面(以下単に邪魔板という。)を置くこと
を特徴とする液体中に音速に近いあるいは超音速の気体
を吹込む方法。
(1) In a method in which gas is blown into a liquid through a nozzle at a high velocity of 90% or more of the sonic speed, a baffle plate or a solid surface equivalent to the baffle plate or a solid surface corresponding to the jet stream is placed approximately perpendicularly to the jet stream in the direction of the tip of the jet stream in the bath. (hereinafter simply referred to as a baffle plate) A method of blowing gas at near or supersonic speed into a liquid.
(2)吹込みノズルの直径をDとしたとき、邪魔板又は
それに相当する固体面をノズル出口より2D以上かつほ
ぼ10D以下の先端方向に設置した特許請求の範囲第(
1)項記載の液体中に気体を吹込む方法。
(2) When the diameter of the blowing nozzle is D, the baffle plate or an equivalent solid surface is installed in the distal direction at least 2D and approximately 10D or less from the nozzle outlet.
1) Method of blowing gas into the liquid described in section 1).
(3)液体が溶融金属である特許請求の範囲第(1)項
記載の液体中に気体を吹込む方法。
(3) A method for blowing gas into a liquid according to claim (1), wherein the liquid is a molten metal.
JP60110526A 1985-05-24 1985-05-24 Method for blowing gas to liquid Granted JPS61270321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110526A JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110526A JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Publications (2)

Publication Number Publication Date
JPS61270321A true JPS61270321A (en) 1986-11-29
JPH0559778B2 JPH0559778B2 (en) 1993-08-31

Family

ID=14538038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110526A Granted JPS61270321A (en) 1985-05-24 1985-05-24 Method for blowing gas to liquid

Country Status (1)

Country Link
JP (1) JPS61270321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884279A1 (en) 2006-08-04 2008-02-06 Messer France S.A.S. Method and device for feeding a gas into a fluid at supersonic velocity
KR101706567B1 (en) * 2015-11-24 2017-02-15 주식회사 포스코 Molten metal refining apparatus
JP2018509281A (en) * 2016-02-26 2018-04-05 ジュン ジャエ オウクJUNG, Jae Ouk Atomizing apparatus and fluid processing equipment using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884279A1 (en) 2006-08-04 2008-02-06 Messer France S.A.S. Method and device for feeding a gas into a fluid at supersonic velocity
KR101706567B1 (en) * 2015-11-24 2017-02-15 주식회사 포스코 Molten metal refining apparatus
CN106906334A (en) * 2015-11-24 2017-06-30 株式会社Posco Liquid steel refining equipment
JP2018509281A (en) * 2016-02-26 2018-04-05 ジュン ジャエ オウクJUNG, Jae Ouk Atomizing apparatus and fluid processing equipment using the same

Also Published As

Publication number Publication date
JPH0559778B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
CA2201364C (en) Vacuum refining method for molten steel
AU654307B2 (en) Jet flow device for injecting gas into molten metal
JP2003119509A (en) Method for pretreating pig iron, and impeller device
US20090229416A1 (en) Refining Molten Metal
JPS61270321A (en) Method for blowing gas to liquid
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP2573876B2 (en) RH vacuum degassing method and apparatus
JPS63140021A (en) Pretreatment of molten iron
JP2648769B2 (en) Vacuum refining method for molten steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JP2009052090A (en) Lance for refining molten iron and method for refining molten iron
EP0134351A1 (en) Recovery of vanadium oxide
JPH08199225A (en) Method for melting high cleanliness extremely low carbon steel
JP2889901B2 (en) Liquid steel bath reheating method
JP2000119725A (en) Converter steelmaking method with high productivity
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JPH1060518A (en) Production of high cleanliness molten steel
JP3720984B2 (en) Highly efficient vacuum refining method
JPH08199223A (en) Gas blowing tuyere
CN117126982A (en) Unsteady bottom blowing stirring method for ladle refining
JPH10259409A (en) Pressurized converter steelmaking method
KR20030054474A (en) Method For Decreasing the Wear Rate of Tuyere in Converter
JPS59104414A (en) Method for desiliconization of molten iron
JPS62235416A (en) Method for refining molten metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term