JPH0559177B2 - - Google Patents

Info

Publication number
JPH0559177B2
JPH0559177B2 JP16054984A JP16054984A JPH0559177B2 JP H0559177 B2 JPH0559177 B2 JP H0559177B2 JP 16054984 A JP16054984 A JP 16054984A JP 16054984 A JP16054984 A JP 16054984A JP H0559177 B2 JPH0559177 B2 JP H0559177B2
Authority
JP
Japan
Prior art keywords
core
iron core
annealing
magnetic alloy
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16054984A
Other languages
Japanese (ja)
Other versions
JPS6137925A (en
Inventor
Eiji Shimomura
Kazuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16054984A priority Critical patent/JPS6137925A/en
Publication of JPS6137925A publication Critical patent/JPS6137925A/en
Publication of JPH0559177B2 publication Critical patent/JPH0559177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質磁性合金薄板からなる鉄心の熱
処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of heat treating an iron core made of an amorphous magnetic alloy thin plate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、変圧器などに用いられる鉄心では、鉄心
材料として従来からのけい素鋼板に代り非晶質磁
性合金薄板を用いることが検討されつつある。こ
の非晶質磁性合金薄板は磁性合金材料の溶湯を超
急冷して製作したもので、優れた低損失特性を有
している。
In recent years, consideration has been given to using amorphous magnetic alloy thin plates instead of conventional silicon steel plates as core materials for iron cores used in transformers and the like. This amorphous magnetic alloy thin plate is manufactured by ultra-quenching a molten magnetic alloy material, and has excellent low loss characteristics.

しかして、非晶質磁性合金薄板は超急冷法によ
り製作する時に内部歪みを生じ、このままでは材
料本来の優れた低損失特性を発揮させることがで
きない。このため、非晶質磁性合金薄板からなる
鉄心は歪取り焼鈍(熱処理)施して歪みを除去
し、良好な磁気特性を得るようにしている。
However, when an amorphous magnetic alloy thin plate is manufactured by an ultra-quenching method, internal distortion occurs, and if this state is maintained, the excellent low loss characteristics inherent to the material cannot be exhibited. For this reason, iron cores made of amorphous magnetic alloy thin plates are subjected to strain relief annealing (heat treatment) to remove strain and obtain good magnetic properties.

従来における歪取り焼鈍としては、鉄心を電気
炉に入れて加熱する外部加熱方法が行なわれてき
た。しかしこの焼鈍方法は、鉄心温度を上げるた
めに炉内雰囲気を加温しなければならないので熱
効率が悪く、また鉄心内部を均一に加熱すること
ができない欠点がある。このため最近では、鉄心
に高周波磁界を印加することにより、鉄心内部に
磁気的に発生する損失熱を利用して加熱を行なう
高周波焼鈍方法が考えられている。この焼鈍方法
は鉄心各部で発生する損失熱により加熱を行なう
ので熱効率か良く、また鉄心各部を均一できる効
果がある。
Conventional strain relief annealing has been carried out by an external heating method in which the iron core is placed in an electric furnace and heated. However, this annealing method has poor thermal efficiency because it is necessary to heat the atmosphere in the furnace to raise the core temperature, and has the disadvantage that the inside of the core cannot be heated uniformly. For this reason, recently, a high-frequency annealing method has been considered in which heating is performed by applying a high-frequency magnetic field to the core and utilizing loss heat generated magnetically inside the core. This annealing method performs heating using the heat loss generated in each part of the core, so it has good thermal efficiency and has the effect of making each part of the core uniform.

しかして、磁性体を交流で磁化する場合、その
交流周波数の磁束変化により電磁誘導作用で起電
力が発生し、これにより磁性体にうず電流がなが
れてジユール熱が発生する。前記の高周波焼鈍に
利用される損失は、ジユール熱として消費される
電力のことをいう。従つてこのうず電流損は、う
ず電流路の大きさ(磁性体の厚さ)、交流周波数、
磁化の各条件の2乗に比例して増加し、発生する
ジユール熱つまり温度上昇も増加する。ところ
で、非晶質磁性合金薄板の飽和磁化はその温度の
上昇とともに低下し、キユーリ点において消失す
る。そして、飽和磁化が低下すると発生損失量も
減少する。従つて非晶質磁性合金薄板の発生損失
はその温度上昇に伴つて減少していく。なぜなら
ば、高周波磁界により非晶質磁性合金薄板に生ず
る損失はうず電流損であり、(磁化)2、(周波数)
、(厚さ)2の条件に比例しているからである。そ
して、通常非晶質磁性合金薄板からなる鉄心の歪
取り焼鈍は、非晶質磁性合金薄板のキユーリ点の
近傍で行なう。このため、非晶質磁性合金薄板に
発生するうず電流損がそのキユーリ点付近で大幅
に低下すると薄板の温度上昇すなわち鉄心の温度
上昇に限界を与え、巻鉄心を所定の焼鈍温度まで
上昇させることが困難になる。従つて、非晶質磁
性合金薄板からなる鉄心を高周波励磁により歪取
り焼鈍することができないという問題がある。
When a magnetic material is magnetized by alternating current, an electromotive force is generated by electromagnetic induction due to changes in magnetic flux at the alternating current frequency, and this causes eddy current to flow through the magnetic material, generating Joule heat. The loss utilized in the above-mentioned induction annealing refers to the electric power consumed as Joule heat. Therefore, this eddy current loss depends on the size of the eddy current path (thickness of the magnetic material), the AC frequency,
It increases in proportion to the square of each magnetization condition, and the generated Joule heat, that is, the temperature rise, also increases. Incidentally, the saturation magnetization of an amorphous magnetic alloy thin plate decreases as its temperature rises and disappears at the Kuyuri point. When the saturation magnetization decreases, the amount of loss generated also decreases. Therefore, the loss generated in the amorphous magnetic alloy thin plate decreases as the temperature rises. This is because the loss caused in the amorphous magnetic alloy thin plate by a high-frequency magnetic field is eddy current loss, and (magnetization) 2 and (frequency)
2 , (thickness) This is because it is proportional to the condition of 2 . Strain relief annealing of the iron core made of an amorphous magnetic alloy thin plate is usually performed in the vicinity of the Kuuri point of the amorphous magnetic alloy thin plate. For this reason, when the eddy current loss generated in the amorphous magnetic alloy thin plate decreases significantly near its Curie point, it puts a limit on the temperature rise of the thin plate, that is, the temperature rise of the iron core, and raises the wound core to a predetermined annealing temperature. becomes difficult. Therefore, there is a problem in that the iron core made of the amorphous magnetic alloy thin plate cannot be subjected to strain relief annealing by high frequency excitation.

第6図は、非晶質磁性合金薄板のうち鉄心に多
く使用されるMETGLAS 2605S2(商品名:アラ
イド社製材料)における飽和磁化の温度特性を示
している。この材料のキユーリ点は415℃、焼鈍
温度は400℃である。第6図の線図によれば材料
の温度が上昇するにつれて飽和磁化が低下しキユ
ーリ点(415℃)で消失する。焼鈍温度(400℃)
でも飽和磁化は室温時の20%程度でしかない。こ
のため材料に発生するうず電流損も大幅に減少
し、鉄心を焼鈍温度まで上昇させることが困難
で、鉄心に対して高周波励磁により歪取り焼鈍を
行なえないという問題が生じる。なお、非晶質磁
性合金薄板は巻回しても層間抵抗が大きいので、
うず電流路が小さい。この点は巻鉄心の磁気特性
としては有利であるが、高周波焼鈍を施す場合に
は不利である。
FIG. 6 shows the temperature characteristics of saturation magnetization in METGLAS 2605S2 (trade name: material manufactured by Allied Co., Ltd.), which is often used in iron cores among amorphous magnetic alloy thin plates. The Kyuri point of this material is 415°C and the annealing temperature is 400°C. According to the diagram in FIG. 6, as the temperature of the material increases, the saturation magnetization decreases and disappears at the Kiuri point (415° C.). Annealing temperature (400℃)
However, the saturation magnetization is only about 20% of that at room temperature. For this reason, the eddy current loss generated in the material is also significantly reduced, and the problem arises that it is difficult to raise the iron core to the annealing temperature, and that it is impossible to perform strain relief annealing on the iron core by high-frequency excitation. In addition, since the amorphous magnetic alloy thin plate has a large interlayer resistance even when wound,
Eddy current path is small. Although this point is advantageous in terms of the magnetic properties of the wound core, it is disadvantageous when performing induction annealing.

〔発明の目的〕[Purpose of the invention]

本発明は前記問題点を解決することにより、非
晶質磁性合金薄板からなる鉄心を所定の焼鈍温度
まで上昇させ、優れた利点を有する高周波励磁に
よる歪取り焼鈍を可能にした鉄心の熱処理方法を
提供するものである。
The present invention solves the above problems and provides a heat treatment method for an iron core made of an amorphous magnetic alloy thin plate that raises the temperature to a predetermined annealing temperature and enables strain relief annealing by high-frequency excitation, which has excellent advantages. This is what we provide.

〔発明の概要〕[Summary of the invention]

本発明の鉄心の熱処理方法は、非晶質磁性合金
薄板からなる鉄心の積層面に金属からなる短絡板
を当接して配置し、次いで前記鉄心にコイルを巻
回して、このコイルに交流電流を通電して前記鉄
心を励磁し、この励磁に伴い前記鉄心に生ずる損
失により前記鉄心自身を発熱させて焼鈍を行なう
ことを特徴とするものである。すなわち、鉄心を
高周波励磁する際に短絡板により鉄心の積層面に
短絡をおこさせ、これにより鉄心に生ずるうず電
流路を大きくしてうず電流損を増大し、飽和磁化
の低下による発生損失の減少を補なうものであ
る。
The heat treatment method for an iron core of the present invention involves placing a metal shorting plate in contact with the laminated surface of the iron core made of amorphous magnetic alloy thin plates, then winding a coil around the iron core, and applying an alternating current to the coil. The method is characterized in that the iron core is energized by electricity, and the iron core itself generates heat due to the loss generated in the iron core due to this excitation, thereby performing annealing. In other words, when the iron core is excited at high frequency, a short circuit is created on the laminated surface of the iron core using a short circuit plate, thereby enlarging the eddy current path generated in the iron core, increasing eddy current loss, and reducing the generated loss by lowering saturation magnetization. It supplements the

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明す
る。
Embodiments of the present invention illustrated in the drawings will be described below.

第1図ないし第3図は本発明の熱処理方法の一
実施例を示している。この実施例は非晶質磁性合
金薄板からなる巻鉄心を対象としている。
1 to 3 show an embodiment of the heat treatment method of the present invention. This embodiment is directed to a wound core made of an amorphous magnetic alloy thin plate.

まず、帯状をなす非晶質磁性合金薄板2を連続
的に巻回して矩形状をなす巻鉄心1を形成する。
First, a strip-shaped amorphous magnetic alloy thin plate 2 is continuously wound to form a rectangular wound core 1.

この巻鉄心1の両方の積層面に、短絡板3,3
を各々面全体にわたり当接して配設する。この短
絡板3,3は鋼、アルミニウム、ステンレス鋼な
どの高導電性をもつ金属材料からなる板材を巻鉄
心1の積層面全体形状に合わせて加工したもの
で、巻鉄心1の両積層面に接触させて適宜な方法
で固定する。
Short circuit plates 3, 3 are placed on both laminated surfaces of this wound core 1.
are placed in contact with each other over the entire surface. These shorting plates 3, 3 are made of a plate material made of a highly conductive metal material such as steel, aluminum, or stainless steel, and are processed to match the overall shape of the laminated surface of the wound core 1. Contact and fix using an appropriate method.

ついで、巻鉄心1の脚部に高周波励磁用コイル
4を巻装する。
Next, the high frequency excitation coil 4 is wound around the leg portion of the wound core 1.

そして、窒素ガスなどの不活性ガスを封入した
高周波焼鈍用タンク(図示せず)の内部に巻鉄心
1を収納し、巻鉄心1に巻装した励磁用コイル4
に高周波例えば2〜4KHzの交流電流を流す。励
磁用コイル4に交流電流を流すと電磁誘導作用に
より巻鉄心1に磁束が発生し、この磁束によつて
うず電流が流れる。このうず電流の発生に伴う電
力損失により巻鉄心1にジユール熱が発生する。
このため、巻鉄心1はそれ自身の内部発熱により
加熱されて温度上昇する。巻鉄心1が非晶質磁性
合金薄板2の適正焼鈍温度例えば400℃まで昇温
すれば、励磁用コイル4に流す交流の電圧を調整
して一定時間温度を保持し、その後に励磁用コイ
ル4への通電を停止して巻鉄心1を冷却する。こ
の冷却時には励磁用コイル4に直流電流を流し
て、巻鉄心1に対して磁場を形成する。このよう
にして巻鉄心1の歪取り焼鈍を行なう。
The wound core 1 is stored inside a high-frequency annealing tank (not shown) filled with an inert gas such as nitrogen gas, and the excitation coil 4 is wound around the wound core 1.
A high-frequency alternating current, for example, 2 to 4 KHz, is passed through. When an alternating current is passed through the excitation coil 4, magnetic flux is generated in the wound core 1 due to electromagnetic induction, and this magnetic flux causes an eddy current to flow. Joule heat is generated in the wound core 1 due to power loss accompanying the generation of this eddy current.
Therefore, the wound core 1 is heated by its own internal heat generation and its temperature increases. When the wound core 1 is heated to the appropriate annealing temperature of the amorphous magnetic alloy thin plate 2, for example 400°C, the AC voltage applied to the excitation coil 4 is adjusted to maintain the temperature for a certain period of time, and then the excitation coil 4 is The winding core 1 is cooled by stopping energization to the winding core 1. During this cooling, a direct current is passed through the excitation coil 4 to form a magnetic field with respect to the wound core 1. In this manner, strain relief annealing of the wound core 1 is performed.

この焼鈍方法において、巻鉄心1の両積層面に
短絡板3,3を設けてあるので、励磁用コイル4
に交流電流を流すことにより巻鉄心1に生ずるう
ず電流は、第3図で示すように非晶質磁性合金薄
板2の各巻回層の両端面に接触する短絡板3,3
を通つて流れる。すなわち、巻鉄心1における非
晶質磁性合金薄板2の各巻回層の積層間が短絡板
3,3により短絡され、巻鉄心1におけるうず電
流路つまり(磁性体の厚さ)2を大きくすることが
できる。このためうず電流路の拡大に伴い巻鉄心
1に発生するうず電流損が増大し、巻鉄心1の温
度上昇に伴う飽和磁化の低下によるうず電流損の
減少を補うことができる。従つて、励磁用コイル
4に交流電流を流すことにより巻鉄心1を適正な
焼鈍温度まで良好に温度上昇させ、この焼鈍温度
で高周波焼鈍を行なうことができる。そして、こ
の高周波焼鈍により巻鉄心1の各部を均一に加熱
でき、巻鉄心1を構成する非晶質磁性合金薄板2
に優れた低損失特性を付与することができる。
In this annealing method, since short circuit plates 3, 3 are provided on both laminated surfaces of the wound core 1, the excitation coil 4
As shown in FIG. 3, the eddy current generated in the wound core 1 by passing an alternating current through the short-circuiting plates 3, 3 that contact both end surfaces of each wound layer of the amorphous magnetic alloy thin plate 2
flows through. That is, the laminated layers of each wound layer of the amorphous magnetic alloy thin plate 2 in the wound core 1 are short-circuited by the shorting plates 3, 3, thereby increasing the eddy current path (thickness of the magnetic material) 2 in the wound core 1. I can do it. For this reason, the eddy current loss generated in the wound core 1 increases as the eddy current path expands, and it is possible to compensate for the decrease in eddy current loss due to a decrease in saturation magnetization due to a rise in the temperature of the wound core 1. Therefore, by passing an alternating current through the excitation coil 4, the temperature of the wound core 1 can be raised to a proper annealing temperature, and induction annealing can be performed at this annealing temperature. Through this high-frequency annealing, each part of the wound core 1 can be uniformly heated, and the amorphous magnetic alloy thin plate 2 that constitutes the wound core 1 can be heated uniformly.
can be provided with excellent low loss characteristics.

第4図は、非晶質磁性合金薄板(2605S2)を
巻回して内径40mm、外径50mm、幅25mmに形成した
巻鉄心に高周波焼鈍を施し、その時の巻鉄心にお
ける温度増加を時間に対してプロツトした実験結
果を示す線図である。この線図で実線Aは巻鉄心
1の積層面に短絡板を装着した場合、また破線B
は巻鉄心に短絡板を装着しない場合の夫々におけ
る温度と時間との関係を示している。この結果巻
鉄心の積層面を短絡板で短絡した場合の方が温度
上昇速度が大きく、焼鈍温度に充分達しているこ
とが判る。なお、実験条件は交流周波数5KHz、
励磁容量750VAである。
Figure 4 shows the temperature increase in the wound core over time when induction annealing is applied to a wound core made by winding an amorphous magnetic alloy thin plate (2605S2) to have an inner diameter of 40 mm, an outer diameter of 50 mm, and a width of 25 mm. FIG. 2 is a diagram showing plotted experimental results. In this diagram, the solid line A is the case when a shorting plate is attached to the laminated surface of the wound core 1, and the broken line B is
shows the relationship between temperature and time in each case when no shorting plate is attached to the wound core. The results show that when the laminated surfaces of the wound core are short-circuited with a short-circuit plate, the temperature rises at a higher rate and the annealing temperature is sufficiently reached. The experimental conditions were an AC frequency of 5KHz,
Excitation capacity is 750VA.

前述した実施例では、巻鉄心の積層面全体に短
絡板を設けているが、これに限らず巻鉄心の積層
面に部分的に短絡板を設けて高周波焼鈍を行なう
こともできる。この場合には高周波焼鈍の際に巻
鉄心の各部分で発生する。うず電流損のむらを調
節し、より均一な温度分布を得ることができる。
第5図はこの場合の実施例を示している。巻鉄心
1のけい鉄部および脚部における角部を除く直線
部分の両積層面に、その部分に合わせた形状の短
絡板13を各々当接して設け、さらに巻鉄心1に
励磁用コイル4を巻装して交流電流を流すことに
より、巻鉄心1を焼鈍温度まで加熱して高周波焼
鈍を行う。これは非晶質磁性合金薄板2を巻回し
て矩形の巻鉄心1を形成する場合に、鉄心角部で
の薄板2の面圧が直線部での面圧より大きくな
り、このため、高周波焼鈍を行なう場合に鉄心角
部のうず電流損が直線部に比して多く発生するこ
とを考慮したものである。従つて、巻鉄心1のう
ず電流損の発生が少ない直線部に短絡板13を設
け、この直線部でのうず電流損の発生を増加させ
ることにより、巻鉄心1全体でうず電流損の発生
を均一化させて発生むらを小さくし、熱歪みの発
生などによる巻鉄心1の特性劣化を無くすことが
できる。
In the embodiments described above, the short circuit plate is provided on the entire laminated surface of the wound core, but the short circuit plate is not limited to this, and induction annealing can be performed by partially providing the short circuit plate on the laminated surface of the wound core. In this case, it occurs in each part of the wound core during induction annealing. It is possible to adjust the unevenness of eddy current loss and obtain a more uniform temperature distribution.
FIG. 5 shows an embodiment in this case. Short-circuiting plates 13 having a shape that matches the portions are provided in contact with both laminated surfaces of the straight portions of the silicate iron portion and leg portions of the wound core 1, excluding the corners, and furthermore, an excitation coil 4 is provided on the wound iron core 1. By winding the core 1 and passing an alternating current through it, the wound core 1 is heated to an annealing temperature to perform induction annealing. This is because when winding an amorphous magnetic alloy thin plate 2 to form a rectangular wound core 1, the surface pressure of the thin plate 2 at the corner portions of the core becomes greater than that at the straight portions. This is done in consideration of the fact that when performing this, eddy current loss occurs more in the corner portions of the core than in the straight portions. Therefore, by providing the shorting plate 13 in the straight section of the wound core 1 where eddy current loss is less likely to occur, and increasing the occurrence of eddy current loss in this straight section, it is possible to reduce the occurrence of eddy current loss in the entire wound core 1. It is possible to make it uniform and reduce the unevenness that occurs, thereby eliminating deterioration of the characteristics of the wound core 1 due to the occurrence of thermal distortion.

なお、前述した各実施例において焼鈍処理を施
した後には、巻鉄心1から短絡板3,13を取り
外す。
In addition, after performing the annealing treatment in each of the embodiments described above, the shorting plates 3 and 13 are removed from the wound core 1.

前述の各実施例では巻鉄心を対象にして説明し
たが、本発明では非晶質磁性合金薄板を積層して
なる積層鉄心を高周波焼鈍する場合にも適用でき
る。また励磁用コイルは変圧器コイルで兼用する
こともできる。
Although each of the above-mentioned embodiments has been described with reference to a wound core, the present invention can also be applied to the case where a laminated core formed by laminating amorphous magnetic alloy thin plates is subjected to induction annealing. Further, the excitation coil can also be used as a transformer coil.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の鉄心の熱処理方法
によれば、非晶質磁性合金からなる鉄心に対して
均一な加熱を行なえる利点を有する高周波焼鈍を
行なうことができ、低損失特性に優れた鉄心を得
ることができる。
As explained above, according to the iron core heat treatment method of the present invention, it is possible to perform induction annealing, which has the advantage of uniformly heating an iron core made of an amorphous magnetic alloy, and has excellent low loss characteristics. You can get iron core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は各々本発明の熱処理方法
の一実施例を示す説明図、第3図は第2図−
線に沿う断面図、第4図は前記実施例により焼鈍
を行なう場合における鉄心の発熱温度と時間との
関係を示す線図、第5図は他の実施例を示す説明
図、第6図は非晶質磁性合金薄板の飽和磁化と温
度との関係を示す線図である。 1……巻鉄心、2……非晶質磁性合金薄板、
3,13……短絡板、4……励磁用コイル。
FIG. 1 and FIG. 2 are explanatory diagrams each showing an example of the heat treatment method of the present invention, and FIG.
4 is a diagram showing the relationship between the heat generation temperature of the iron core and time when annealing is performed according to the above embodiment, FIG. 5 is an explanatory diagram showing another embodiment, and FIG. 6 is a sectional view taken along the line. FIG. 2 is a diagram showing the relationship between saturation magnetization and temperature of an amorphous magnetic alloy thin plate. 1...Wound iron core, 2...Amorphous magnetic alloy thin plate,
3, 13... Short circuit plate, 4... Excitation coil.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質磁性合金薄板からなる鉄心の積層面に
金属からなる短絡板を当接して設け、且つ前記鉄
心にコイルを巻回して、このコイルに交流電流を
流して前記鉄心を励磁し、この励磁に伴い前記鉄
心に生ずる損失により前記鉄心自身を発熱させて
焼鈍を行なうことを特徴とする鉄心の熱処理方
法。
1. A metal shorting plate is provided in contact with the laminated surface of an iron core made of amorphous magnetic alloy thin plates, and a coil is wound around the iron core, and an alternating current is passed through this coil to excite the iron core. A method for heat treatment of an iron core, characterized in that annealing is performed by causing the iron core itself to generate heat due to loss generated in the iron core due to excitation.
JP16054984A 1984-07-31 1984-07-31 Heat treatment of iron core Granted JPS6137925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16054984A JPS6137925A (en) 1984-07-31 1984-07-31 Heat treatment of iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16054984A JPS6137925A (en) 1984-07-31 1984-07-31 Heat treatment of iron core

Publications (2)

Publication Number Publication Date
JPS6137925A JPS6137925A (en) 1986-02-22
JPH0559177B2 true JPH0559177B2 (en) 1993-08-30

Family

ID=15717388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16054984A Granted JPS6137925A (en) 1984-07-31 1984-07-31 Heat treatment of iron core

Country Status (1)

Country Link
JP (1) JPS6137925A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910268B2 (en) * 2004-06-07 2012-04-04 凸版印刷株式会社 Metallic decorative sheet
KR100704123B1 (en) * 2005-09-02 2007-04-06 주식회사 이엠따블유안테나 Resin complex with metallic appearance, producing method thereof and keypad using the complex

Also Published As

Publication number Publication date
JPS6137925A (en) 1986-02-22

Similar Documents

Publication Publication Date Title
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
JPH0559177B2 (en)
JP2003342637A (en) Process and device for magnetic field annealing of motor core
JPH0552652B2 (en)
JP3210776B2 (en) Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JP3689331B2 (en) Heating method for cylindrical metal coil
JPS61179507A (en) Manufacture of iron core
JPS62210609A (en) Manufacture of wound core
JPS6159812A (en) Manufacture of core
JPH0552653B2 (en)
JPS61174612A (en) Manufacture of iron core
JPH0684655A (en) High frequency wound core and high frequency induction electric appliance employing wound core
JPS61174613A (en) Manufacture of iron core
JPS61181116A (en) Manufacture of rolled iron core
JP2002194429A (en) Heating device of metal coiled in ring or cylindrical form
JPS59151403A (en) Method for annealing iron core
JPS61180413A (en) Manufacture of iron core
JPS61180410A (en) Manufacture of iron core
JPS6140016A (en) Manufacture of core
JPS636822A (en) Manufacture of mound core
JPS62226611A (en) Annealing of iron core
JPS6184007A (en) Iron core of electromagnetic induction apparatus
JPS59123719A (en) Method for annealing iron core for electric apparatus
JPS61292906A (en) Manufacture of wound core
JPS6265312A (en) Method for annealing iron core