JPS6159812A - Manufacture of core - Google Patents

Manufacture of core

Info

Publication number
JPS6159812A
JPS6159812A JP18185084A JP18185084A JPS6159812A JP S6159812 A JPS6159812 A JP S6159812A JP 18185084 A JP18185084 A JP 18185084A JP 18185084 A JP18185084 A JP 18185084A JP S6159812 A JPS6159812 A JP S6159812A
Authority
JP
Japan
Prior art keywords
core
iron core
magnetic alloy
temperature
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18185084A
Other languages
Japanese (ja)
Inventor
Kenzo Tsutsui
筒井 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18185084A priority Critical patent/JPS6159812A/en
Publication of JPS6159812A publication Critical patent/JPS6159812A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To display magnetic characteristics original to an amorphous magnetic alloy by arranging magnetic material bodies having a Curie point higher than an amorphous magnetic alloy metal sheet among the layers of a core in which the amorphous magnetic alloy metal sheet is wound or laminated, high-frequency exciting the core and heat-generating and annealing core itself by loss generated by the high-frequency excitation. CONSTITUTION:Exciting coils 14 are connected to a high-frequency AC power supply 16 by a changeover switch 15, and voltage is adjusted by a voltage regulator 18 and the high-frequency AC power supply is flowed through the exciting coils 14. The frequency of the AC power supply is selected to 1kHz or higher such as 2-4kHz. When the AC power supply is flowed through the exciting coil 14, eddy currents flow through amorphous magnetic alloy metal sheets 12 and magnetic material bodies 13 in a wound core 11 by the generation of magnetic flux, and the temperature of the amorphous magnetic alloy metal sheet 12 rises by its own internal heat generation and heating by the heat generation of the magnetic material body 13. When the temperature of the amorphous magnetic alloy metal sheet 12 rises to a proper annealing temperature, voltage is adjusted, the temperature is kept for a fixed time and the whole is annealed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明rよ変圧器などに用いられる非晶質磁性合金板か
らなる鉄心に焼鈍を行なう鉄心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an iron core made of an amorphous magnetic alloy plate used in a transformer, etc., by annealing the iron core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、変圧器などに用いる巻鉄心および積層鉄心の材料
として、非晶質磁性合金板を用いることが検討されつつ
ある。非晶質磁性合金板は、金属(fe 、 Co 、
 Ni等)と半金属元素(B、C。
Recently, consideration has been given to using amorphous magnetic alloy plates as materials for wound cores and laminated cores used in transformers and the like. The amorphous magnetic alloy plate is made of metals (Fe, Co,
Ni, etc.) and metalloid elements (B, C.

St、P等)を主成分として超急冷法によυ製造された
もので、従来からの鉄心材料であるけい素鋼板に比して
鉄損(損失)が1/3〜1/4と小さく、磁気特性に優
れている。
Manufactured by an ultra-quenching method using St, P, etc.) as the main ingredients, the iron loss is 1/3 to 1/4 smaller than that of silicon steel sheets, which are conventional core materials. , has excellent magnetic properties.

しかし、非晶質磁性合金板は、超急冷法によ)製造する
ために、急冷時の歪により鉄損の増大など磁性特性が極
端に低下しており、本来の優れた磁気特性が得られない
。このため、非晶質磁性合金板からなる鉄心は、鉄心組
立後に歪取シ焼鈍を行なって非晶/JJ磁性合金板の歪
を除去し、鉄損の減少などの非晶質磁性合金本来の磁気
特性の回復を図っている。この焼純に、鉄心を鍼場中に
置いて磁気異方性を与えて、(磁気特性の改壱を図る方
法でろる。
However, since amorphous magnetic alloy plates are manufactured using an ultra-quenching method, their magnetic properties are extremely degraded due to strain during quenching, including increased iron loss, making it impossible to obtain the original excellent magnetic properties. do not have. For this reason, iron cores made of amorphous magnetic alloy plates are subjected to strain relief annealing after core assembly to remove the strain on the amorphous/JJ magnetic alloy plates, thereby reducing iron loss and other properties inherent to amorphous magnetic alloys. Efforts are being made to restore the magnetic properties. This is done by placing an iron core in an acupuncture field to give it magnetic anisotropy (to improve its magnetic properties).

この場合、非晶質磁性合金薄板は適正な焼鈍温度条件の
範囲が狭い。例えば代表的な非晶質磁性材料である米国
アライド社製のMETGLAS260582 (商品名
)は、第9図で示すように焼鈍温度が約400℃で、そ
の温度範囲が±15℃と狭い。また焼鈍必要時間も短く
、これが長い場合には非晶質磁性合金薄板の結晶化が進
んでしまうことになる。このため、非晶質磁性合金薄板
をこの材料が本来有している優れた磁気特性を損なうこ
となく歪取シ焼鈍するためには、鉄心の各部分を短時間
で各々適正な焼鈍温度範囲に均一に加熱することが必要
である。
In this case, the range of appropriate annealing temperature conditions for the amorphous magnetic alloy thin plate is narrow. For example, METGLAS260582 (trade name) manufactured by Allied, USA, which is a typical amorphous magnetic material, has an annealing temperature of about 400°C and a narrow temperature range of ±15°C, as shown in FIG. Furthermore, the required annealing time is short; if this time is long, the crystallization of the amorphous magnetic alloy thin plate will proceed. Therefore, in order to strain-relieve an amorphous magnetic alloy thin plate without impairing the excellent magnetic properties inherent to this material, each part of the iron core must be brought to the appropriate annealing temperature range in a short time. Uniform heating is necessary.

従来、非晶質磁性合金薄板からなる鉄心に対する歪取シ
焼鈍は外部加熱方式が採用されている。すなわち、第1
0図で示すように例えば非晶質磁性合金薄板2を巻回し
てなる巻鉄心でちる鉄心1に磁界印加用の磁界コイル3
を巻装し、この鉄心1を電熱ヒータ(図示せず)を熱源
とする恒温槽4の内部に収容する。そして、直流電源5
により磁界コイル3に直流電流を流して鉄心1に磁界と
印加するとともに、電熱ヒータの発熱により恒温槽4内
部を所定の焼鈍温度まで上昇させて鉄心lを加熱するこ
とにより焼鈍を行なっている。
Conventionally, an external heating method has been adopted for strain relief annealing of an iron core made of an amorphous magnetic alloy thin plate. That is, the first
As shown in Figure 0, for example, a magnetic field coil 3 for applying a magnetic field to an iron core 1 made of a wound iron core formed by winding an amorphous magnetic alloy thin plate 2.
This iron core 1 is housed inside a constant temperature bath 4 whose heat source is an electric heater (not shown). And DC power supply 5
The annealing is performed by applying a magnetic field to the iron core 1 by applying a direct current to the magnetic field coil 3, and by raising the inside of the constant temperature bath 4 to a predetermined annealing temperature by the heat generated by the electric heater to heat the iron core 1.

しかしながら、このような焼鈍方法においては、鉄心1
を電熱ヒータの輸射熱により外部から加熱するので、鉄
心l内部まで良好に加熱できず鉄心1六面と鉄心1内部
とでに温度分布が不均一となる。第11図は従来の焼鈍
方法により鉄心重tht60kgの巻鉄心を焼鈍温度4
00℃で加熱した場合における鉄心谷部の加熱時間と温
度上昇との関係を示す線図である。第12図は鉄心にお
いて温度を測定した3所を示す祝明図である。第12図
においてAAil″l:鉄心lの薄板巻厚方向中央部、
B点は薄板巻厚方向外周部、0点は鉄心1の外表面を各
々示している。なお、DAは恒温槽4の内部空間を示し
ている。第11図によれば鉄心1を加熱して3F#f間
経過した時点において、鉄心1のB点では約280℃に
温度上昇するが、A点では約230℃までしか温度上昇
せず両者間に約50℃の温度差を生じる。また鉄心1の
D点では約390℃まで温度上昇し、A点との間で約1
60℃の温反差を生じた。このように鉄心1表面は鉄心
1内部に比して温度上昇が大きく、鉄心1全体として温
度分布が不均一になる。そして、鉄心1全体を均一な温
度にするためにはさらに鉄心1を長時間加熱することに
なシ、その結果温度が早く上昇する鉄心1表面は長時間
高温にさらされることになシ、非晶質磁性合金薄板の磁
気特性が劣化する。従って、従来の焼鈍方法によれば鉄
心ノ全体を短時間で均一な温度に加熱することが困難で
あり、その結果非晶質磁性合金薄板2の磁気特性が劣化
して本来の優れた磁気特性を回復できないという問題が
るる。
However, in such an annealing method, the iron core 1
Since it is heated from the outside by the radiated heat of the electric heater, it is not possible to properly heat the inside of the iron core 1, resulting in uneven temperature distribution between the 16 sides of the iron core and the inside of the iron core 1. Figure 11 shows a wound iron core with a core weight tht 60 kg that is annealed at a temperature of 4 by the conventional annealing method.
FIG. 2 is a diagram showing the relationship between the heating time and temperature rise of the core valley when heated at 00°C. FIG. 12 is a congratulatory map showing three locations where temperatures were measured in the iron core. In Fig. 12, AAil''l: central part of the thin plate winding thickness direction of the iron core l;
Point B indicates the outer periphery in the thickness direction of the thin plate, and point 0 indicates the outer surface of the iron core 1. Note that DA indicates the internal space of the thermostatic chamber 4. According to Fig. 11, after heating the iron core 1 for 3F#f, the temperature at point B of the iron core 1 rises to about 280°C, but at point A, the temperature rises only to about 230°C, and the temperature between the two rises. This results in a temperature difference of approximately 50°C. In addition, the temperature at point D of iron core 1 rises to about 390℃, and the temperature rises to about 1
A temperature difference of 60°C was generated. As described above, the temperature rise on the surface of the iron core 1 is larger than that inside the iron core 1, and the temperature distribution becomes non-uniform throughout the iron core 1. In order to bring the entire core 1 to a uniform temperature, it is necessary to heat the core 1 for a longer period of time, and as a result, the surface of the core 1, where the temperature rises quickly, is exposed to high temperatures for a long time. The magnetic properties of the crystalline magnetic alloy thin plate deteriorate. Therefore, according to the conventional annealing method, it is difficult to heat the entire iron core to a uniform temperature in a short time, and as a result, the magnetic properties of the amorphous magnetic alloy thin plate 2 deteriorate and the original excellent magnetic properties are deteriorated. The problem is that it cannot be recovered.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、非晶質両性
合金薄板からなる鉄心に対する歪取シ焼鈍を良好に行な
い、非晶質磁性合金本来の優れた磁気特性を発揮できる
鉄心を得ることができる鉄心の製造方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to successfully perform strain relief annealing on an iron core made of an amorphous amphoteric alloy thin plate to obtain an iron core that can exhibit the excellent magnetic properties inherent to an amorphous magnetic alloy. The purpose is to provide a method for manufacturing iron cores that can.

〔発明の概要〕[Summary of the invention]

本発明の鉄心の製造方法は、非晶質磁性合金薄板を巻回
または積層してなる鉄心の層間に非晶質磁性合金薄板よ
シキューリ点が高い磁性材料体を配置し、鉄心を高周波
励磁して、その発生損失により鉄心自身を発熱させて焼
鈍を行なうものであシ、鉄心全体を短時間で均一に温度
上昇させて焼鈍を行なうことができる。特に鉄心に磁性
材料体を配置して高周波励磁に要する電力消費を抑制し
、電源設備の小型化を図シ経済的に焼鈍を行なうことが
できるものである。
The method for manufacturing an iron core of the present invention includes arranging a magnetic material having a high Scicuri point, such as an amorphous magnetic alloy thin plate, between the layers of an iron core made by winding or laminating amorphous magnetic alloy thin plates, and exciting the iron core with high frequency. The generated loss causes the core itself to generate heat for annealing, and the temperature of the entire core can be raised uniformly in a short period of time to perform annealing. In particular, by arranging a magnetic material in the iron core, the power consumption required for high-frequency excitation can be suppressed, the power supply equipment can be downsized, and annealing can be performed economically.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する。 Embodiments of the present invention will be described below with reference to drawings.

第1図および第2図は本発明方法の一実施例を示すもの
で、この実施例は巻鉄心を2組並べて歪取フ焼鈍する場
合を対象にしている。
FIGS. 1 and 2 show an embodiment of the method of the present invention, and this embodiment is intended for the case where two sets of wound cores are lined up and subjected to strain relief annealing.

まず、帯状をなす非晶質磁性合金薄板12を矩形状に巻
回して巻鉄心11を形成する。この巻鉄心11を形成す
るに際して、非晶質磁性合金薄板12を所定巻回数巻回
する都度に、帯板状をなす磁性材料体13を鉄心周方向
全体にわたυ巻回する。これにより巻鉄心11全体とし
て非晶質磁性合金薄板12の巻厚方向に所定の巻回数間
隔を存して位置する複数箇所には、各6磁性材料体13
が非晶質磁性合金薄板12の巻回層間に鉄心周方向にわ
たシ介在して配置される。磁性材料体13は、非晶質磁
性合金薄板12のキューリ点(約500〜550℃)よ
シも高いキューリ点を有する磁性材料を用いる。
First, a band-shaped amorphous magnetic alloy thin plate 12 is wound into a rectangular shape to form a wound core 11. In forming this wound core 11, each time the amorphous magnetic alloy thin plate 12 is wound a predetermined number of turns, a strip-shaped magnetic material 13 is wound around the entire circumferential direction of the core. As a result, in the wound core 11 as a whole, each six magnetic material bodies 13 are located at a plurality of locations with predetermined winding intervals in the winding thickness direction of the amorphous magnetic alloy thin plate 12.
is arranged between the wound layers of the amorphous magnetic alloy thin plate 12 in the circumferential direction of the iron core. The magnetic material body 13 uses a magnetic material having a Curie point higher than that of the amorphous magnetic alloy thin plate 12 (approximately 500 to 550° C.).

これは後述するように非晶質磁性合金薄板12に比して
キューリ点の高い材料を用いることにより、温度上昇に
よる飽和磁束密度の低下が少なくなるためである。また
磁性材料体13は非晶質磁性合金薄板2の厚さく約30
μ)に比して厚肉のものを用いてうず電流損の発生を大
きくすることが望ましい。この磁性材料体としては例え
ば方向性けい素鋼板(キューリ魚釣700〜800℃、
平均厚さ約0. j5 wm )を用いることができる
。このように磁性材料体13を配置した非晶質磁性合金
薄板12からなる巻鉄心11を形成する。
This is because, as will be described later, by using a material with a higher Curie point than the amorphous magnetic alloy thin plate 12, the saturation magnetic flux density decreases less due to temperature rise. The magnetic material body 13 is made of amorphous magnetic alloy thin plate 2 with a thickness of about 30 mm.
It is desirable to increase the occurrence of eddy current loss by using a thicker wall than μ). Examples of this magnetic material include grain-oriented silicon steel plates (cucumber 700-800°C,
Average thickness approximately 0. j5 wm ) can be used. A wound core 11 is formed of the amorphous magnetic alloy thin plate 12 on which the magnetic material body 13 is arranged in this manner.

次いで、2個の巻鉄心11を並べて各巻鉄心11の外側
の脚部に励磁コイル14を巻回する。
Next, the two wound cores 11 are arranged and the excitation coil 14 is wound around the outer leg of each wound core 11.

励磁コイル14の巻回数は適宜設定する。励磁コイル1
4は切換スイッチ15を介して高周波又流電源16と直
流電源17とに接続する。図中1sta、高周波交流電
源16の電圧を調整する電圧調整器である。
The number of turns of the excitation coil 14 is set appropriately. Excitation coil 1
4 is connected to a high frequency or current power source 16 and a direct current power source 17 via a changeover switch 15. In the figure, 1sta is a voltage regulator that adjusts the voltage of the high frequency AC power supply 16.

そして、巻鉄心11の歪取シ焼鈍を行なう場合には、切
換スイッチ15により励磁コイル14を高周波交流電源
16へ接続し、電圧調整器18によりミ圧をli!li
4!!シて励磁コイル14に高周波交流電流を流す。こ
の交流電流の周波数は1 kHz以上、例えば2〜4 
kHzに選定する。
When strain relief annealing is to be performed on the wound core 11, the excitation coil 14 is connected to the high frequency AC power supply 16 by the changeover switch 15, and the voltage is adjusted to li! by the voltage regulator 18. li
4! ! Then, a high frequency alternating current is passed through the excitation coil 14. The frequency of this alternating current is 1 kHz or more, for example 2 to 4
Select kHz.

励磁コイル14に交流電流を流すと磁束の発生により巻
鉄心1ノにおける非晶質磁性合金薄板12および磁性材
料体13にうず電流が流れ、このうず電流に伴う電力損
失により非晶質磁性合金薄板12および磁性材料体13
に熱が発生する。このため、非晶質磁性合金薄板12は
それ自身の内部発熱と磁性材料体13の発熱による加熱
とにより温度上昇する。非晶質磁性合金薄板12の温度
が適正な焼鈍温度400℃まで上昇すれば、電圧調整器
18で交流電流の電圧を調整して温度400’Cを一定
時間保持する。
When an alternating current is passed through the excitation coil 14, eddy current flows through the amorphous magnetic alloy thin plate 12 and the magnetic material body 13 in the wound core 1 due to the generation of magnetic flux, and the power loss accompanying this eddy current causes the amorphous magnetic alloy thin plate to 12 and magnetic material body 13
heat is generated. Therefore, the temperature of the amorphous magnetic alloy thin plate 12 increases due to its own internal heat generation and heating due to the heat generated by the magnetic material body 13. When the temperature of the amorphous magnetic alloy thin plate 12 rises to the appropriate annealing temperature of 400°C, the voltage of the alternating current is adjusted by the voltage regulator 18 to maintain the temperature at 400'C for a certain period of time.

このようにして巻鉄心1ノ全体の非晶質磁性合金薄板1
2が均一な温度分布で短時間に焼鈍温度400℃まで上
昇する。
In this way, the entire amorphous magnetic alloy thin plate 1 of the wound core 1 is
2, the annealing temperature rises to 400°C in a short time with uniform temperature distribution.

その後に、切換スイッチ18の操作で励磁コイル14を
交流電源16から直流電源17に切換え接続する。これ
により、巻鉄心11は交流による励磁が停止され冷却を
始める。
Thereafter, the excitation coil 14 is switched from the AC power source 16 to the DC power source 17 by operating the changeover switch 18 . As a result, the wound core 11 is stopped from being excited by alternating current and starts cooling.

同時に直流電源17から励磁コイル14に直流電流が流
れ、巻鉄心1ノに対して磁場を形成する。このよう・に
して巻鉄心11を磁場中にて冷却する。
At the same time, a DC current flows from the DC power supply 17 to the exciting coil 14, forming a magnetic field with respect to the wound core 1. In this manner, the wound core 11 is cooled in the magnetic field.

なお、巻鉄心1ノの焼鈍か終了した後は励磁コイル14
全巻鉄心11から取)外す。
In addition, after the annealing of the wound core 1 is completed, the excitation coil 14
(Remove all windings from core 11).

また、磁性材料体13は巻鉄心11に配置したままの状
態とすることにより、巻鉄心11の剛性を高めることが
できる。
Further, by leaving the magnetic material body 13 disposed on the wound core 11, the rigidity of the wound core 11 can be increased.

しかして、このような方法で巻鉄心1ノに焼鈍を行なう
と、巻鉄心11が温度上昇する時に、非晶質磁性合金薄
板2よ)キューリ点が高い磁性材料体13の発熱が非晶
質磁性合金薄板12の温度上昇を助けることになシ、こ
の結果高周波交流電源16t−経済的に構成できるとい
う効果を得ることができる。゛ この点について更に詳細に説明する。非晶質磁性合金薄
板からなる鉄心を焼鈍温度400℃に温度上昇させるた
めにな、鉄心単位重量当多発生する損失を25 w/に
9以上とする必要かある。第3図はアライド社製部TG
LAS2605S2 (商品名)における父流℃流周波
数を・臂うメータとした鉄損および磁束密度の関係を示
す線図である。この第3図によれば非晶質磁性合金薄板
に25 W/kg以上の損失を発生させるためには、5
 kHzの周波数で6000ガウス以上の磁束密度とす
る必要があることが判る。一方弁晶質磁性合金のキュー
リ点は約500〜550℃であり、適正焼鈍温度40 
Q ’CI’!比較的キューリ点に近い温度である。し
かし、非晶質磁性合金はキューリ点に近づくように温度
上昇するに従って飽和磁束密度が低下する性質がある。
Therefore, when the winding core 1 is annealed in this manner, when the temperature of the winding core 11 rises, the heat generated by the magnetic material 13 with a high Curie point (amorphous magnetic alloy thin plate 2) is amorphous. This helps in increasing the temperature of the magnetic alloy thin plate 12, and as a result, the high frequency AC power source 16t can be constructed economically. ``This point will be explained in more detail. In order to raise the temperature of an iron core made of an amorphous magnetic alloy thin plate to an annealing temperature of 400° C., it is necessary to increase the loss generated per unit weight of the iron core to 25 w/9 or more. Figure 3 is from Allied Manufacturing Department TG.
It is a diagram showing the relationship between iron loss and magnetic flux density using the father flow frequency in LAS2605S2 (trade name) as a meter. According to this Figure 3, in order to generate a loss of 25 W/kg or more in an amorphous magnetic alloy thin plate, it is necessary to
It can be seen that it is necessary to have a magnetic flux density of 6000 Gauss or more at a frequency of kHz. On the other hand, the Curie point of a crystalline magnetic alloy is approximately 500 to 550°C, and the appropriate annealing temperature is 40°C.
Q 'CI'! The temperature is relatively close to the Curie point. However, amorphous magnetic alloys have a property that the saturation magnetic flux density decreases as the temperature increases so as to approach the Curie point.

第4図はアライド社1! METGLAS2605S2
の飽和磁束密度と温度との関係を示す線図であり、この
線図によれば、温度上昇に伴う飽和磁束密度低下の傾向
が判る。この性質により非晶質磁性合金薄板は焼鈍温度
400℃まで温度上昇させるための損失を発生させるに
必要な磁束密度が得られない場合がある。この対策とし
て励磁コイルに流す交流電流の′電流値を増大するか、
あるいは周波数?高くすることが考えられるが、この場
合に4高周波励磁に喪する電力消*量が増大し、変流電
源の設備が大型化し高価なものとなる。
Figure 4 is Allied Company 1! METGLAS2605S2
FIG. 2 is a diagram showing the relationship between the saturation magnetic flux density and temperature, and according to this diagram, the tendency of the saturation magnetic flux density to decrease as the temperature rises can be seen. Due to this property, the amorphous magnetic alloy thin plate may not be able to obtain the magnetic flux density necessary to generate a loss to raise the temperature to an annealing temperature of 400°C. As a countermeasure for this, either increase the current value of the alternating current flowing through the excitation coil, or
Or frequency? It is conceivable to make it higher, but in this case, the amount of power consumed by four high-frequency excitations increases, and the equipment for the variable current power supply becomes larger and more expensive.

しかして、本発明の製造方法でに鉄心に非晶質磁性合金
薄板よ)キューり点が高い磁性材料体を設けて、高周波
励磁により磁性材料体を非晶質磁性合金薄板と同じく損
失により発熱させるようにしている。磁性材料体も温度
上昇に伴い飽和磁束密度が低下するが、キューリ点が高
いために焼鈍温度400℃程度では非晶質磁性合金薄板
のような大きな飽和磁束密度の低下がなく高い飽和磁束
密度を保持できる。つまり磁性材料体に非晶質磁性合金
薄板の飽和磁束密度の低下(損失発生量の低下)を補償
することになり、磁性材料体の発熱によυ非晶質磁性合
金薄板を焼鈍温度400℃まで加熱できる。従って、励
磁コイルに流す交流電流の電流値を増大あるいは周波数
を増大する必要がなく、高周波励磁に喪する電力消費量
を抑制できる。
Therefore, in the manufacturing method of the present invention, a magnetic material body with a high cue point (such as an amorphous magnetic alloy thin plate) is provided in the iron core, and the magnetic material body generates heat due to loss like the amorphous magnetic alloy thin plate by high frequency excitation. I try to let them do it. The saturation magnetic flux density of magnetic materials also decreases as the temperature rises, but because the Curie point is high, at an annealing temperature of about 400°C, there is no large decrease in saturation magnetic flux density as with amorphous magnetic alloy thin sheets, and high saturation magnetic flux density can be achieved. Can be retained. In other words, the magnetic material body compensates for the decrease in saturation magnetic flux density (reduction in loss generation) of the amorphous magnetic alloy thin plate, and the heat generated by the magnetic material body causes the υ amorphous magnetic alloy thin plate to be annealed at a temperature of 400°C. It can be heated up to. Therefore, there is no need to increase the current value or frequency of the alternating current flowing through the excitation coil, and it is possible to suppress the amount of power consumed by high-frequency excitation.

次に前述した効果を具体的実施例により説明する。例え
ば巻鉄心の各部の寸法を第2図によりa”:20cm、
 b=10cm、 c=5crn、 d=10 cmと
すると、巻鉄心重量に約53kgとなる。そして、巻鉄
心を400℃まで温度上昇させるのに必要な損失は25
 W/kli’ X 53kg= 1325 Watt
sとなる。
Next, the effects described above will be explained using specific examples. For example, the dimensions of each part of the wound core are a": 20 cm according to Figure 2,
If b = 10 cm, c = 5 crn, and d = 10 cm, the weight of the wound core will be approximately 53 kg. The loss required to raise the temperature of the wound core to 400℃ is 25
W/kli' X 53kg= 1325 Watt
It becomes s.

磁性材料体としてG−11クラスの方向性けい素鋼板を
鉄心全重量に対して5重量%(53ゆ×0.05=2.
65kg)だけ適宜分布して巻鉄心に設けたとする。第
5図にG−11クラスの方向性けい素鋼板の鉄損特性を
示している。この線図によれば、励磁用交流電流の周波
数の時にけい素鋼板の磁束密度が5000ガウスである
と、鉄損が200 W/ゆとなる。この場合けい素鋼板
の発生損失は、20 Q W/kl? X 2.65y
=s 30Wat4sとなる。また磁束密度5000ガ
ウスの場合の非晶質磁性合金材料METGLAS 26
05 S 2の鉄損は18W/に9である。この場合の
METGLAS2605S2の発生損失は18 W/k
ll X53kfl=950Wattsとなる。従って
、方向性けい素鋼板の発生損失530 WattsとM
ETGLAS2605S2の発生損失950 Watt
sの合計で、避TGLAS2605S2を焼鈍温度40
0℃まで昇温させることになシ、必要な損失を少ない電
力で発生することができる。
As a magnetic material, G-11 class grain-oriented silicon steel plate was used in an amount of 5% by weight based on the total weight of the core (53Y x 0.05 = 2.
65 kg) are appropriately distributed and provided on the wound core. FIG. 5 shows the iron loss characteristics of a grain-oriented silicon steel sheet of G-11 class. According to this diagram, if the magnetic flux density of the silicon steel plate is 5000 Gauss at the frequency of the excitation alternating current, the iron loss will be 200 W/yu. In this case, the loss generated by the silicon steel plate is 20 Q W/kl? X 2.65y
=s 30Wat4s. In addition, when the magnetic flux density is 5000 Gauss, the amorphous magnetic alloy material METGLAS 26
The iron loss of 05 S 2 is 18W/9. In this case, the generated loss of METGLAS2605S2 is 18 W/k
ll X53kfl=950Watts. Therefore, the generated loss of grain-oriented silicon steel plate 530 Watts and M
ETGLAS2605S2 generated loss 950 Watt
In total, TGLAS2605S2 was annealed at a temperature of 40
By raising the temperature to 0°C, the necessary loss can be generated with less power.

ここで、鉄心に設ける磁性材料体の量について説明する
。鉄心全重量に対する磁性材料体の量(比率)を増大す
ると、鉄心を高周波励磁した場合、当然発生損失が増大
してよシ低い周波数および磁束密度の領域での焼鈍が可
能となる。
Here, the amount of magnetic material provided in the iron core will be explained. If the amount (ratio) of the magnetic material to the total weight of the iron core is increased, the generated loss will naturally increase when the iron core is excited at high frequency, making it possible to perform annealing in a lower frequency and magnetic flux density region.

しかし、鉄心に変圧器コイルを装盾して鉄心を通常商用
周波数範囲で使用する場合にμ鉄心の発生損失が増大し
、非晶質磁性合金薄板本来の優れた磁気特性が損なわれ
てしまう。第1表は、非晶質磁性合金薄板からなる巻鉄
心に設ける方向性けい素鋼板(磁性材料体)の量を変化
させ、た場合に、商用周波数における巻鉄心の無負荷損
失の変化を示したものである。
However, when the iron core is shielded by a transformer coil and used in the normal commercial frequency range, the loss generated by the μ iron core increases, and the excellent magnetic properties inherent to the amorphous magnetic alloy thin plate are impaired. Table 1 shows the changes in the no-load loss of the core at commercial frequencies when the amount of grain-oriented silicon steel plates (magnetic material) provided in the core made of amorphous magnetic alloy thin plates is changed. It is something that

第1表 この表に基づいて考察するならば、鉄心を構成する非晶
質磁性合金薄板の特長である低無負荷損失特性を失なわ
ないようにするために、鉄心に設ける方向性けい素鋼板
(磁性材料体)の割合は、鉄心全重量に対して2〜10
重量%が適当であると云える。
Table 1 Based on this table, grain-oriented silicon steel sheets are installed in the iron core in order to avoid losing the low no-load loss characteristics that are a feature of the amorphous magnetic alloy thin sheets that make up the iron core. The ratio of (magnetic material) to the total weight of the iron core is 2 to 10
It can be said that the weight % is appropriate.

第6図および第7図は各々他の実施例を示している。第
6図は、磁性材料体13を巻鉄心1ノの周方向全体にわ
たシ設けるのではなく、巻鉄心11の脚部およびけい鉄
部に各々区分して磁性材料体13を部分的に設けた場合
を示している。
FIGS. 6 and 7 each show other embodiments. In FIG. 6, instead of providing the magnetic material 13 all over the circumferential direction of the wound core 1, the magnetic material 13 is provided partially in the leg portion and the silicate portion of the wound core 11, respectively. The case is shown below.

第7図は、巻鉄心11を鉄心幅方向に複数の単位巻鉄心
11kに分割し、各単位巻鉄心11にの対向する側面間
に磁性材料体13を設けた場合を示している。
FIG. 7 shows a case where the wound core 11 is divided into a plurality of unit wound cores 11k in the core width direction, and a magnetic material body 13 is provided between the opposing sides of each unit wound core 11.

前述した各実施例4本発明を巻鉄心を対象し^場合のみ
について説明してきたか、これに限らず積層鉄心につい
ても適用できる。第8図はこの場合の実施例を示してお
シ、非晶質磁性合金薄板22を積層した積層鉄心21の
積層方向の間隔を存した複数箇所に磁性材料体23例え
ば方向性けい素鋼板を介在して配置した場合を示してい
る。
Although the above-mentioned embodiment 4 has been described only for the case of a wound core, the present invention is not limited to this and can also be applied to a laminated core. FIG. 8 shows an embodiment in this case, in which magnetic material bodies 23, for example grain-oriented silicon steel plates, are placed at multiple locations at intervals in the lamination direction of a laminated core 21 in which amorphous magnetic alloy thin plates 22 are laminated. This shows the case where they are interposed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の鉄心の製造方法によれば、
非晶質磁性合金薄板からなる鉄心を均一な温度分布で昇
温させて短時間に焼鈍を行なうことができるので、磁気
特性に優れた鉄心を得ることができる。また鉄心を焼鈍
するための電力消費を抑えて電源設備の小抛化を図υ経
済性を向上できる。
As explained above, according to the method of manufacturing the iron core of the present invention,
Since an iron core made of an amorphous magnetic alloy thin plate can be annealed in a short time by raising the temperature with a uniform temperature distribution, an iron core with excellent magnetic properties can be obtained. In addition, it is possible to reduce power consumption for annealing the iron core, reduce the size of power supply equipment, and improve economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一実施例を示す説明図、第
2図は同実施例における巻鉄心を示す斜視図、第3図は
非晶質磁性合金薄板の鉄損特性を示す線図、第4図に非
晶質磁性合金薄板の飽和磁束密度と温度との関係を示す
線図、第5図はけい素鋼板の鉄損特性を示す線図、第6
図ないし第8図は各々互いに異なる他の実施例を示す鉄
心の斜視図、wc9図は非晶質磁性合金薄板の焼鈍特性
を示す線図、第−lO図は従来の鉄心焼鈍方法を示す説
明図、第11図は従来方法により焼鈍した場合の鉄心各
部の温度上昇を示11・・・巻鉄心、12・・・非晶磁
性合金薄板、13・・・磁性材料体、14・・・励磁コ
イル、15・・・切換スイッチ、16・・・交流電源、
17・・・直流電源、21・・・積層鉄心、22・・・
非晶質磁性合金薄板、23・・・磁性材料体。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 石数東宮L (ナスラ) 第4図 hn  宋 ? 虐(Tスラ) 第6図 J 第7図    第8図 第9図 第10図
Fig. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention, Fig. 2 is a perspective view showing a wound core in the same embodiment, and Fig. 3 is a line showing iron loss characteristics of an amorphous magnetic alloy thin plate. Figure 4 is a diagram showing the relationship between the saturation magnetic flux density and temperature of an amorphous magnetic alloy thin plate, Figure 5 is a diagram showing the iron loss characteristics of a silicon steel plate, and Figure 6 is a diagram showing the relationship between saturation magnetic flux density and temperature of an amorphous magnetic alloy thin plate.
Figures 8 to 8 are perspective views of the core showing other embodiments that are different from each other, Figure WC9 is a diagram showing the annealing characteristics of an amorphous magnetic alloy thin plate, and Figure -1O is an explanation showing the conventional method of annealing the core. Figure 11 shows the temperature rise in each part of the core when annealed by the conventional method. 11...Wound core, 12...Amorphous magnetic alloy thin plate, 13...Magnetic material body, 14...Excitation Coil, 15... Selector switch, 16... AC power supply,
17... DC power supply, 21... Laminated iron core, 22...
Amorphous magnetic alloy thin plate, 23...Magnetic material body. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Kokuzu Togu L (Nasra) Figure 4 hn Song Dynasty? T-sura Figure 6 J Figure 7 Figure 8 Figure 9 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)非晶質磁性合金薄板からなる鉄心の層間に、前記
非晶質磁性合金薄板に比してキューリ点が高い磁性材料
体を配置し、前記鉄心に巻回したコイルに交流電流を通
して前記鉄心を励磁し、この励磁に伴い前記鉄心に生ず
る損失により前記鉄心自身を発熱させて焼鈍を行なうこ
とを特徴とする鉄心の製造方法。
(1) A magnetic material body having a higher Curie point than the amorphous magnetic alloy thin plate is placed between the layers of the iron core made of the amorphous magnetic alloy thin plate, and an alternating current is passed through the coil wound around the iron core. A method for manufacturing an iron core, characterized in that the iron core is excited and annealing is performed by causing the iron core itself to generate heat due to loss generated in the iron core due to the excitation.
(2)鉄心にこの鉄心全重量に対して2〜10重量%の
磁性材料体を設けてなる特許請求の範囲第1項に記載の
鉄心の製造方法。
(2) The method for manufacturing an iron core according to claim 1, wherein the iron core is provided with a magnetic material in an amount of 2 to 10% by weight based on the total weight of the iron core.
(3)磁性材料体は方向性けい素鋼板である特許請求の
範囲第1項に記載の鉄心の製造方法。
(3) The method for manufacturing an iron core according to claim 1, wherein the magnetic material is a grain-oriented silicon steel plate.
JP18185084A 1984-08-31 1984-08-31 Manufacture of core Pending JPS6159812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18185084A JPS6159812A (en) 1984-08-31 1984-08-31 Manufacture of core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18185084A JPS6159812A (en) 1984-08-31 1984-08-31 Manufacture of core

Publications (1)

Publication Number Publication Date
JPS6159812A true JPS6159812A (en) 1986-03-27

Family

ID=16107911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18185084A Pending JPS6159812A (en) 1984-08-31 1984-08-31 Manufacture of core

Country Status (1)

Country Link
JP (1) JPS6159812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256211A (en) * 1991-12-19 1993-10-26 Allied Signal Rapid annealing method using shorted secondary technique
CN101996743A (en) * 2010-11-03 2011-03-30 天津市特变电工变压器有限公司 Multi-level amorphous alloy transformer core
JP2011165701A (en) * 2010-02-04 2011-08-25 Hitachi Industrial Equipment Systems Co Ltd Amorphous core annealing method
JP2017093277A (en) * 2015-11-02 2017-05-25 パナソニックIpマネジメント株式会社 Device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256211A (en) * 1991-12-19 1993-10-26 Allied Signal Rapid annealing method using shorted secondary technique
JP2011165701A (en) * 2010-02-04 2011-08-25 Hitachi Industrial Equipment Systems Co Ltd Amorphous core annealing method
US20130000795A1 (en) * 2010-02-04 2013-01-03 Hitachi Industrial Equipment Systems Co., Ltd. Amorphous Core Annealing Method
CN101996743A (en) * 2010-11-03 2011-03-30 天津市特变电工变压器有限公司 Multi-level amorphous alloy transformer core
JP2017093277A (en) * 2015-11-02 2017-05-25 パナソニックIpマネジメント株式会社 Device

Similar Documents

Publication Publication Date Title
US7289013B2 (en) Bulk amorphous metal inductive device
US4520335A (en) Transformer with ferromagnetic circuits of unequal saturation inductions
US5256211A (en) Rapid annealing method using shorted secondary technique
JPS6159812A (en) Manufacture of core
JPS61181116A (en) Manufacture of rolled iron core
JPS60183713A (en) Manufacture of iron core
JPS59218714A (en) Electromagnetic apparatus for high frequency power circuit
JPS61179507A (en) Manufacture of iron core
JP6943544B2 (en) Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
JPS61180410A (en) Manufacture of iron core
JPS61174612A (en) Manufacture of iron core
JP7318845B1 (en) Three-phase tripod-wound iron core and manufacturing method thereof
WO2023167015A1 (en) Three-phased three-legged wound core and method for manufacturing same
JPS61174613A (en) Manufacture of iron core
JPH0559177B2 (en)
JP7151946B1 (en) Wound core and method for manufacturing wound core
JPS61131410A (en) Manufacture of wound core
JP7299464B2 (en) Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
Lupi The application of amorphous magnetic alloys in induction heating medium-frequency transformers
JPS6222413A (en) Manufacture of core
JPS6174315A (en) Manufacture of iron core
JPS6154612A (en) Manufacture of core
JPS61292906A (en) Manufacture of wound core
JPS62210609A (en) Manufacture of wound core
JPS61292907A (en) Manufacture of wound core