JPS61180410A - Manufacture of iron core - Google Patents

Manufacture of iron core

Info

Publication number
JPS61180410A
JPS61180410A JP60020552A JP2055285A JPS61180410A JP S61180410 A JPS61180410 A JP S61180410A JP 60020552 A JP60020552 A JP 60020552A JP 2055285 A JP2055285 A JP 2055285A JP S61180410 A JPS61180410 A JP S61180410A
Authority
JP
Japan
Prior art keywords
core
wound
iron core
magnetic alloy
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020552A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Horiuchi
堀内 三義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60020552A priority Critical patent/JPS61180410A/en
Publication of JPS61180410A publication Critical patent/JPS61180410A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To suppress the rise in temperature of the corner parts of an iron core by a method wherein a magnetic material is provided between the layers of thin plates located at the corner parts of the iron core consisting of amorphous magnetic alloy thin plates, and an annealing is performed using the heat generated by the iron core itself. CONSTITUTION:The sheet-like insulating materials 13, having the width almost the same as that of the amorphous magnetic alloy thin plates 12, are inserted between the layers of the thin plates 12 every time the amorphous magnetic alloy thin plate 12 is wound by the prescribed number of turns. When an annealing is performed on the wound core 11 for the purpose of removing a distortion, a high frequency AC current is applied to an excitation coil 14. An eddy current runs on the thin plates 12, and the temperature of the thin plates goes up. As a result, an annealing is performed by raising the temperature of the entire wound core 11 to the suitable annealing temperature with a uniform temperature distribution, thereby enabling to restore the intrinsic excellent magnetic characteristics of the amorphous magnetic alloy thin plates 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は変圧器などに用いられる非晶質磁性合金板から
なる鉄心に焼鈍を行なう鉄心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an iron core made of an amorphous magnetic alloy plate used in a transformer, etc., by annealing the iron core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、変圧器などに用いる巻鉄心の材料として、非晶質
磁性合金板を用いることが検討されつつある。非晶質磁
性合金板は、金属(Fe、 Co。
Recently, consideration has been given to using amorphous magnetic alloy plates as materials for wound cores used in transformers and the like. The amorphous magnetic alloy plate is made of metals (Fe, Co, etc.).

N1等)と半金属元素(B、C,St、P等)を主成分
として超急冷法により製造されたもので、従来からの鉄
心材料であるけい素鋼板に比して鉄損(損失)が1/3
〜1/4と小さく、磁気特性に優れている。
It is manufactured using an ultra-quenching method with main components of N1, etc.) and semimetallic elements (B, C, St, P, etc.), and has lower iron loss (loss) than silicon steel sheet, which is the conventional core material. is 1/3
It is as small as ~1/4 and has excellent magnetic properties.

しかし、非晶質磁性合金板は、超急冷法により製造する
ために、急冷時の歪により鉄損の増大など磁性特性が極
端に低下しており、本来の優れた磁気特性が得られない
。このため、非晶質磁性合金板からなる鉄心は、鉄心組
立後に歪取シ焼鈍を行なって非晶質磁性合金板の歪を除
去し、鉄損の減少などの非晶質磁性合金本来の磁気特性
の回復を図っている。この焼鈍は、鉄心を磁場中に置い
て磁気異方性を与えて、磁気特性の改善を図る方法であ
る。
However, since the amorphous magnetic alloy plate is manufactured by an ultra-quenching method, its magnetic properties are extremely degraded due to distortion during rapid cooling, such as increased core loss, and the originally excellent magnetic properties cannot be obtained. For this reason, iron cores made of amorphous magnetic alloy plates are subjected to strain relief annealing after core assembly to remove the strain on the amorphous magnetic alloy plates, thereby reducing iron loss and reducing the inherent magnetic properties of amorphous magnetic alloys. Efforts are being made to restore the characteristics. This annealing is a method for improving magnetic properties by placing an iron core in a magnetic field to impart magnetic anisotropy.

この場合、非晶質磁性合金薄板は適正な焼鈍温度条件の
範囲が狭い。例えば代表的な非晶質磁性材料である米国
アライト0社製のMETGLAS260582 (商品
名)は、第10図で示すように焼鈍温度が約400℃で
、その温度範囲が±15℃と狭い。また焼鈍必要時間も
短く、これが長い場合には非晶質磁性合金薄板の結晶化
が進んでし寸うことになる。このため、非晶質磁性合金
薄板をこの材料が本来布している優れた磁気特性を損な
うことなく歪取り焼鈍するためには、鉄心の各部分を短
時間で各々適正な焼鈍温度範囲に均一に加熱することが
必要である。
In this case, the range of appropriate annealing temperature conditions for the amorphous magnetic alloy thin plate is narrow. For example, METGLAS260582 (trade name) manufactured by Allite 0, USA, which is a typical amorphous magnetic material, has an annealing temperature of about 400°C and a narrow temperature range of ±15°C, as shown in FIG. Further, the required annealing time is short; if this time is long, the crystallization of the amorphous magnetic alloy thin plate will proceed. Therefore, in order to annealing the amorphous magnetic alloy thin plate to remove strain without impairing the excellent magnetic properties inherent to this material, each part of the iron core must be uniformly annealed within the appropriate annealing temperature range in a short time. It is necessary to heat it to

従来、非晶質磁性合金薄板からなる鉄心に対する歪取り
焼鈍は外部加熱方式が採用されている。すなわち、第1
1図で示すように例えば非晶質磁性合金薄板2を巻回し
てなる巻鉄心である鉄心7に磁界印加用の磁界コイル3
を巻装し、この鉄心1を電熱ヒータ(図示せず)を熱源
とする恒温槽4の内部に収容する。そして、直流電源5
により磁界コイル3に直流電流を流して鉄心1に磁界を
印加するとともに、電熱ヒータの発熱により恒温槽4内
部を所定の焼鈍温度まで上昇させて鉄心1を加熱するこ
とにより焼鈍を行なっている。
Conventionally, an external heating method has been adopted for strain relief annealing of an iron core made of an amorphous magnetic alloy thin plate. That is, the first
As shown in Fig. 1, a magnetic field coil 3 for applying a magnetic field is attached to an iron core 7, which is a wound iron core formed by winding, for example, an amorphous magnetic alloy thin plate 2.
This iron core 1 is housed inside a constant temperature bath 4 whose heat source is an electric heater (not shown). And DC power supply 5
The annealing is performed by applying a magnetic field to the iron core 1 by applying a direct current to the magnetic field coil 3, and by heating the iron core 1 by raising the inside of the constant temperature bath 4 to a predetermined annealing temperature by the heat generated by the electric heater.

しかしながら、このような焼鈍方法においては、鉄心1
を電熱ヒータの輻射熱により外部から加熱するので、鉄
心1内部まで良好に加熱できず鉄心1表面と鉄心1内部
とでは温度分布が。
However, in such an annealing method, the iron core 1
Since it is heated from the outside by the radiant heat of the electric heater, it is not possible to properly heat the inside of the iron core 1, and there is a temperature distribution between the surface of the iron core 1 and the inside of the iron core 1.

不均一となる。第12図は従来の焼鈍方法により鉄心型
t60に9の巻鉄心を焼鈍温度400 ’Cで加熱した
場合における鉄心各部の加熱時間と温度上昇との関係を
示す線図である。第13図は鉄心において温度を測定し
た箇所を示す説明図である。第13図においてA点は鉄
心1の薄板巻厚方向中央部、B点は薄板巻厚方向外周部
、6点は鉄心1の外表面を各々示している。なお、D点
は恒温槽4の内部空間を示している。第11図によれば
鉄心1を加熱して3時間経過した時点において、鉄心1
のB点では約280℃に温度上昇するが、A点では約2
30℃までしか温度上昇せず両者間に約50℃の温度差
を生じる。
Becomes non-uniform. FIG. 12 is a diagram showing the relationship between heating time and temperature rise of each part of the core when a nine-wound core of core type T60 is heated to an annealing temperature of 400'C by a conventional annealing method. FIG. 13 is an explanatory diagram showing the locations where the temperature was measured in the iron core. In FIG. 13, point A indicates the central portion of the iron core 1 in the direction of the thickness of the thin plate, point B indicates the outer periphery in the direction of the thickness of the thin plate, and six points indicate the outer surface of the iron core 1. Note that point D indicates the internal space of the thermostatic chamber 4. According to FIG. 11, when 3 hours have elapsed since heating the iron core 1,
At point B, the temperature rises to about 280℃, but at point A, the temperature rises to about 280℃.
The temperature increases only up to 30°C, creating a temperature difference of about 50°C between the two.

また鉄心1の6点では約390℃まで温度上昇し、A点
との間で約160℃の温度差を生じた。
Furthermore, the temperature at six points of iron core 1 rose to about 390°C, creating a temperature difference of about 160°C with point A.

このように鉄心1表面は鉄心1内部に比して温度上昇が
大きく、鉄心1全体として温度分布が不均一になる。そ
して、鉄心1全体を均一な温度にするためにはさらに鉄
心1を長時間加熱することになり、その結果温度が早く
上昇する鉄心1表面は長時間高温にさらされることにな
り、非晶質磁性合金薄板の磁気特性が劣化する。従って
、従来の焼鈍方法によれば鉄心!全体を短時間で均一な
温度に加熱することが困難であシ、その結果非晶質磁性
合金薄板2の磁気特性が劣化して本来の優れた磁気特性
を回復できないという問題がある。
As described above, the temperature rise on the surface of the iron core 1 is larger than that inside the iron core 1, and the temperature distribution becomes non-uniform throughout the iron core 1. In order to bring the entire core 1 to a uniform temperature, the core 1 must be heated for an even longer period of time, and as a result, the surface of the core 1, where the temperature rises quickly, is exposed to high temperatures for a long time, causing amorphous The magnetic properties of the magnetic alloy thin plate deteriorate. Therefore, according to the conventional annealing method, the iron core! There is a problem in that it is difficult to heat the whole to a uniform temperature in a short time, and as a result, the magnetic properties of the amorphous magnetic alloy thin plate 2 deteriorate and the original excellent magnetic properties cannot be restored.

しかして、最近非晶質磁性合金薄板からなる鉄心に巻回
したコイルに励磁用高周波電流を通して鉄心を励磁し、
この励磁により鉄心に生ずる損失で鉄心自身を発熱昇温
させて焼鈍する方法が開発されている。
Recently, however, a high frequency current for excitation is passed through a coil wound around an iron core made of an amorphous magnetic alloy thin plate to excite the iron core.
A method has been developed in which the iron core itself is annealed by generating heat and increasing its temperature by the loss that occurs in the iron core due to this excitation.

この方法は従来の外部加熱方式による焼鈍法に比して巻
鉄心を均一゛に温度上昇させることができ、さらに変圧
器コイルの巻回作業や変圧器中身の組立作業の大部分を
焼鈍の前工程として行なうことができ、焼°鈍により非
晶質磁性合金薄板が脆化した後の鉄心の取扱いを極力少
なくして非晶質磁性合金薄板に外力が加わる機会を少な
くできる利点がある。
This method can raise the temperature of the wound core more uniformly than the conventional annealing method using external heating, and most of the work of winding transformer coils and assembling the transformer contents can be done before annealing. This process can be carried out as a process, and has the advantage that the handling of the iron core after the amorphous magnetic alloy thin plate becomes brittle due to annealing can be minimized, thereby reducing the chance of external force being applied to the amorphous magnetic alloy thin plate.

しかしながら、このような高周波励磁による焼鈍方法に
おいても、未だ巻鉄心全体を均一に温度上昇させること
が不十分である。第14図は従来において高周波励磁焼
鈍方法により巻鉄心を温度上昇させた場合における鉄心
各部の温度上昇と励磁時間との関係を示す線図である。
However, even in such an annealing method using high frequency excitation, it is still insufficient to uniformly raise the temperature of the entire wound core. FIG. 14 is a diagram showing the relationship between the temperature rise of each part of the core and the excitation time when the temperature of the wound core is raised by the conventional high-frequency excitation annealing method.

第15図は第14図の線図の巻鉄心における円周方向の
温度測定点を示す説明図であシ、この図においてX点は
巻鉄心1のけい鉄部、Yはコーナ部、2は脚部を各々示
している。なお、各点は巻鉄心1における薄板巻厚方向
の中央部である。第14図によれば巻鉄心1を高周波励
磁して約30分経過した時点において、巻鉄心1のコー
ナ部Y点では400℃に温度上昇するが、けい鉄部X点
では370℃、脚部2点では300°Cまでしか温度上
昇せず、特にY点と2点との間では約100℃の温度差
が生じる。このように高周波励磁焼鈍法においても、巻
鉄心のコーナ部の温度上昇の度合が高く巻鉄心全体とし
て温度分布に不均一が生じるので、非晶質磁性合金薄板
の内部歪を十分除去できず、優れた磁気特性を有する鉄
心を得ることがむづかしいという問題があった。
FIG. 15 is an explanatory diagram showing temperature measurement points in the circumferential direction of the wound core in the diagram of FIG. 14. In this figure, point Each leg is shown. Note that each point is a central portion of the wound core 1 in the thin plate winding thickness direction. According to FIG. 14, when approximately 30 minutes have elapsed after high-frequency excitation of the wound core 1, the temperature rises to 400°C at the corner Y point of the wound iron core 1, 370°C at the silicate iron part X point, and rises to 370°C at the leg part. At the two points, the temperature increases only up to 300°C, and in particular, there is a temperature difference of about 100°C between the Y point and the two points. In this way, even in the high-frequency excitation annealing method, the degree of temperature rise at the corner part of the wound core is high and the temperature distribution becomes uneven throughout the wound core, so the internal strain of the amorphous magnetic alloy thin plate cannot be sufficiently removed. There was a problem in that it was difficult to obtain an iron core with excellent magnetic properties.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、非晶質磁性
合金薄板からなる巻鉄心に対する歪取り焼鈍を良好に行
ない、非晶質磁性合金本来の優れた磁気特性を発揮でき
る巻鉄心を得ることができる鉄心の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it provides a wound core that can exhibit the excellent magnetic properties inherent to an amorphous magnetic alloy by successfully performing strain relief annealing on a wound core made of an amorphous magnetic alloy thin plate. The purpose of the present invention is to provide a method for manufacturing an iron core that can be manufactured using the following methods.

〔発明の概要〕[Summary of the invention]

本発明の鉄心の製造方法は、非晶質磁性合金薄板からな
る巻鉄心のコーナ部における薄板の層間に磁性材を設け
、巻鉄心に巻回したコイルに高周波電流を通して巻鉄心
を励磁し鉄心自身の発熱により焼鈍を行なうことにより
、鉄心コーナ部の昇温を抑制して巻鉄心を均一な温度分
布で焼鈍を行なえるようにするものである。
The method for manufacturing an iron core of the present invention is to provide a magnetic material between the thin plate layers at the corners of a wound iron core made of amorphous magnetic alloy thin sheets, and to excite the wound iron core by passing a high-frequency current through a coil wound around the wound iron core. By performing annealing using the heat generated by the core, the temperature increase at the corner portions of the core is suppressed and the wound core can be annealed with a uniform temperature distribution.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する。 Embodiments of the present invention illustrated in the drawings will be described below.

第1図および第2図は本発明方法の一実施例を示すもの
で、この実施例は巻鉄心を2組並べて歪取シ焼鈍する場
合を対象にしている。まだこの実施例は巻鉄心のコーナ
部に設ける絶縁材としてシート状のものを用いている。
FIGS. 1 and 2 show an embodiment of the method of the present invention, and this embodiment is intended for the case where two sets of wound cores are lined up and subjected to strain relief annealing. However, in this embodiment, a sheet-like insulating material is used as the insulating material provided at the corner portion of the wound core.

まず、第2図で示すように帯状をなす非晶質磁性合金薄
板12を矩形状に巻回してノーカット形または1ターン
カツト形(図面ではノーカット形を示す)巻鉄心11を
形成する。この巻鉄心11を形成するに際して、非晶質
磁性合金薄板12を所定巻回数巻回する都度に巻鉄心1
1の各コーナ部毎に、非晶質磁性合金薄板12と略々同
幅のシート状絶縁材13を薄板12の層間に挿入する。
First, as shown in FIG. 2, a strip-shaped amorphous magnetic alloy thin plate 12 is wound into a rectangular shape to form an uncut type or one turn cut type (the uncut type is shown in the drawing) wound core 11. When forming this wound core 11, each time the amorphous magnetic alloy thin plate 12 is wound a predetermined number of turns, the wound core 11 is
A sheet-shaped insulating material 13 having approximately the same width as the amorphous magnetic alloy thin plate 12 is inserted between the layers of the thin plate 12 at each corner of the thin plate 12 .

これにより巻鉄心11の各コーナ部において、巻厚方向
に等間隔を存した複数箇所の非晶質磁性合金薄板12の
巻回層間にシート状絶縁材13を介在して配置する。な
お巻鉄心11のけい鉄部を挾んで隣シ合う各コーナ部の
間隔が短いので、この実施例ではシート状絶縁材13を
巻鉄心11の各コーナ部およびこれらコーナ部に挾まれ
るけい鉄部にわたって共通に設けるようにしている。こ
れは、巻鉄心11を形成する時にシート状絶縁材13を
非晶質磁性合金薄板12の眉間に容易に挿入できるよう
にするためである。シート状絶縁材13としては、非晶
質磁性材料の焼鈍温度400℃に耐える絶縁材料で形成
し、例えばポリイミドフィルム(耐熱温度約470℃、
宇部興産製、商品名ユーピレックス)やセラミックス<
 −z母(耐熱温度約700℃、朝日石綿製、商品名:
セラミックスファインペー・4)、あるいは非晶質磁性
合金薄板に無機質コーティング処理(MgO処理など)
を施したものを用いる。
As a result, at each corner of the wound core 11, the sheet-like insulating material 13 is interposed between the wound layers of the amorphous magnetic alloy thin plate 12 at a plurality of locations at equal intervals in the direction of the winding thickness. In addition, since the distance between adjacent corner parts of the wound core 11 with the silicate iron part sandwiched therebetween is short, in this embodiment, the sheet-like insulating material 13 is applied to each corner part of the wound core 11 and the silicate iron part sandwiched between these corner parts. This is provided in common across all departments. This is to enable the sheet-like insulating material 13 to be easily inserted between the eyebrows of the amorphous magnetic alloy thin plate 12 when forming the wound core 11. The sheet-like insulating material 13 is made of an insulating material that can withstand the annealing temperature of an amorphous magnetic material of 400°C, such as a polyimide film (with a heat resistance temperature of about 470°C,
Manufactured by Ube Industries, product name Upilex) and ceramics
-z mother (heat resistant temperature approx. 700℃, manufactured by Asahi Asbestos, product name:
Ceramics fine paper 4) or inorganic coating treatment (MgO treatment, etc.) on amorphous magnetic alloy thin plate
Use one that has been treated with

次いで、第1図で示すように焼鈍工程の前段階において
2個の巻鉄心11を並べて各巻鉄心11の内側の脚部に
共通に変圧器コイル19を装着する。
Next, as shown in FIG. 1, before the annealing step, the two wound cores 11 are arranged side by side, and a transformer coil 19 is commonly attached to the inner leg of each wound core 11.

次いで、第1図で示すように各巻鉄心11の外側の脚部
に励磁コイル14を互いに逆向きにして巻回する。励磁
コイル14の巻回数は適宜設定する。励磁コイル14は
切換スイッチ15を介して高周波交流電源16と直流電
源I7とに接続する。図中18は高周波交流電源16の
電圧を調整する電圧調整器である。
Next, as shown in FIG. 1, the excitation coils 14 are wound around the outer legs of each core 11 in opposite directions. The number of turns of the excitation coil 14 is set appropriately. The excitation coil 14 is connected to a high frequency AC power source 16 and a DC power source I7 via a changeover switch 15. In the figure, 18 is a voltage regulator that adjusts the voltage of the high frequency AC power supply 16.

そして、巻鉄心11の歪取り焼鈍を行なう場合には、切
換スイッチ15により励磁コイル14を高周波交流電源
16へ接続し、電圧調整器18によりミ圧を調整して励
磁コイル14に高周波交流電流を流す。この交流電流の
周波数は500肚以上、例えば2〜7kHzに選定する
。励磁コイル14に交流電流を流すと磁束の発生により
巻鉄心11における非晶質磁性合金薄板12にうず電流
が流れ、このうず電流に伴う電力損失により非晶質磁性
合金薄板12に熱が発生して温度上昇する。非晶質磁性
合金薄板12の温度が適正な焼鈍温度400 ’Cまで
上昇すれば、電圧調整器18で交流電流の電圧を調整し
て温度400℃を一定時間保持する。このようにして巻
鉄心1ノ全体の非晶質磁性合金薄板12が均一な温度分
布で短時間に焼鈍温度400℃まで上昇する。
When strain relief annealing is to be performed on the wound core 11, the excitation coil 14 is connected to the high frequency AC power supply 16 by the changeover switch 15, the voltage is adjusted by the voltage regulator 18, and the high frequency AC current is applied to the excitation coil 14. Flow. The frequency of this alternating current is selected to be 500 degrees or more, for example, 2 to 7 kHz. When an alternating current is passed through the excitation coil 14, an eddy current flows through the amorphous magnetic alloy thin plate 12 in the wound core 11 due to the generation of magnetic flux, and heat is generated in the amorphous magnetic alloy thin plate 12 due to power loss accompanying this eddy current. temperature rises. When the temperature of the amorphous magnetic alloy thin plate 12 rises to the appropriate annealing temperature of 400'C, the voltage of the alternating current is adjusted by the voltage regulator 18 to maintain the temperature at 400'C for a certain period of time. In this way, the amorphous magnetic alloy thin plate 12 of the entire wound core 1 is heated to an annealing temperature of 400° C. in a short time with uniform temperature distribution.

その後に、切換スイッチ15の操作で励磁コイル14を
交流電源16から直流電源17に切換え接続する。これ
により、巻鉄心11は交流による励磁が停止され冷却を
始める。
Thereafter, the excitation coil 14 is switched and connected from the AC power source 16 to the DC power source 17 by operating the changeover switch 15. As a result, the wound core 11 is stopped from being excited by alternating current and starts cooling.

同時に直流電源17から励磁コイル14に直流電流が流
れ、巻鉄心1ノに対して磁場を形成する。このようにし
て巻鉄心1ノを磁場中にて冷却する。
At the same time, a DC current flows from the DC power supply 17 to the exciting coil 14, forming a magnetic field with respect to the wound core 1. In this way, the wound core 1 is cooled in the magnetic field.

なお、巻鉄心11の焼鈍が終了した後は励磁コイル14
を巻鉄心11から取り外す。なお、シート状絶縁材13
は巻鉄心1ノに設けたままの状態とする。
Note that after the annealing of the wound core 11 is completed, the excitation coil 14
from the winding core 11. Note that the sheet-like insulating material 13
Leave it attached to the wound core 1.

しかして、このような方法で@鉄心11の焼鈍を行なう
と、巻鉄心1ノのコーナ部の薄板層間にシート状絶縁材
13を配置したことにより、コーナ部の発生損失が減少
して発熱が抑制されるので、巻鉄心11の周方向の温度
分布の温度差、特にコーナ部と脚部の温度差が小さくな
り温度分布が均一される。このため、巻鉄心11全体を
均一な温度分布で適正な焼鈍温度400゛Cに濫読上昇
させて焼鈍を行ない、非晶質磁性合金薄板12の本来の
優れた磁気特性を回復させることができる。また、各コ
ーナ部に挾まれで、けい鉄部の発生損失も減少させて巻
鉄心11の温度分布の均一化に役立つ。実験結果の一例
では、巻鉄心のコーナ部において非晶質磁性合金薄板を
約30〜40巻回する毎にシート状絶縁材を挿入して巻
鉄心の高周波励磁焼鈍を行なった一場合に、巻鉄心の周
方向の最大温度差を20℃以下にすることができ、また
シート状絶縁材を挿入しないものに比して巻鉄心の鉄損
を約15チ向上できた。
However, when the iron core 11 is annealed in this manner, the sheet-shaped insulating material 13 is placed between the thin plate layers at the corner of the wound core 1, which reduces the loss generated at the corner and generates less heat. Therefore, the temperature difference in the circumferential temperature distribution of the wound core 11, especially the temperature difference between the corner portion and the leg portion, becomes small, and the temperature distribution becomes uniform. Therefore, the original excellent magnetic properties of the amorphous magnetic alloy thin plate 12 can be restored by annealing the entire wound core 11 with a uniform temperature distribution at an appropriate annealing temperature of 400°C. In addition, the loss generated in the silicate iron portions sandwiched between each corner portion is also reduced, which helps to make the temperature distribution of the wound core 11 uniform. An example of experimental results shows that when a sheet-like insulating material is inserted every 30 to 40 turns of an amorphous magnetic alloy thin plate in the corner of a wound core and high-frequency excitation annealing is performed on the wound core, The maximum temperature difference in the circumferential direction of the core could be reduced to 20 degrees Celsius or less, and the core loss of the wound core could be improved by about 15 inches compared to one without inserting sheet-shaped insulating material.

これらの点について更に詳細に説明する。非晶質磁性合
金薄板を巻回したま\の鉄心、すなわち歪取り焼鈍前の
鉄心において発生する鉄損(W/kp)をヒステリシス
損と渦電流損に分離(実測例よシ求める)すると、鉄心
を商用周波数(5011z、 60Hz)で励磁した場
合に於いてはヒステリシス損が大部分を占めているが、
励磁周波数が5 KHzになると両者の比率は略等しく
なる。非晶質磁性合金薄板は適正な熱処理を行なうこと
によって鉄損が減少する。特に高周波域での熱処理効果
は大きい。これは非晶質磁性合金薄板の製作時に急冷に
よって生じた歪を熱処理により取シ除いてヒステリシス
損を減少させると共に、熱処理によって非晶質磁性合金
薄板に生じた微細な結晶相によって磁区が細分化され、
磁壁付近に生じた異常渦電流損が減少するためであシ、
高周波領域では後者の影響が大きいと言われている。
These points will be explained in more detail. If the iron loss (W/kp) generated in an iron core wound with an amorphous magnetic alloy thin plate, that is, before strain relief annealing, is separated into hysteresis loss and eddy current loss (calculated using an actual measurement example), When the iron core is excited at commercial frequencies (5011z, 60Hz), hysteresis loss accounts for most of the loss.
When the excitation frequency becomes 5 KHz, the ratios of both become approximately equal. The core loss of amorphous magnetic alloy thin plates is reduced by applying appropriate heat treatment. The effect of heat treatment is particularly large in the high frequency range. This reduces hysteresis loss by removing the strain caused by rapid cooling during the production of the amorphous magnetic alloy thin sheet through heat treatment, and also causes the magnetic domains to become finer due to the fine crystal phase created in the amorphous magnetic alloy thin sheet through heat treatment. is,
This is because the abnormal eddy current loss generated near the domain wall is reduced.
It is said that the latter effect is large in the high frequency range.

変圧器鉄心の鉄損を求める一般式として下記がある。The following is a general formula for determining the iron loss of a transformer core.

鉄損 W/y = Kl f Bm +に2f” Bm
” t”但し f=周波数(Hz)  Bm =最大磁
束密度t=磁性材料の厚さ K1+Kttn:定数上式
で前項に示すヒステリシス損は周波数に比例して増加す
るが、後項の渦電流損は周波数の2乗に比例する。これ
らのことから高周波域での歪取り焼鈍においては、渦電
流損の影響が大きくなる。特に矩形状の巻鉄心において
は、コーナ一部の非晶質磁性合金薄板の面圧が薄板の巻
き締まりにより鉄心脚部のそれにくらべて高くなる。こ
のため、非晶質磁性合金薄板は絶縁皮膜がないために眉
間抵抗が低いことから、コーナ一部の渦電流が、高周波
になるほど増加し鉄損の悪化を招いていた。本発明はこ
の現象に着目して、巻鉄心のコーナ部の薄板層間に絶縁
材を設けることにより、コーナ部の眉間抵抗を増大して
渦電流損の低減を図るようにしている。
Iron loss W/y = Kl f Bm + 2f” Bm
"t" where f = frequency (Hz) Bm = maximum magnetic flux density t = thickness of magnetic material K1 + Kttn: constant In the above equation, the hysteresis loss shown in the previous section increases in proportion to the frequency, but the eddy current loss in the latter section Proportional to the square of the frequency. For these reasons, in strain relief annealing in a high frequency range, the influence of eddy current loss becomes large. Particularly in a rectangular wound core, the surface pressure of the amorphous magnetic alloy thin plate at a portion of the corner is higher than that of the core leg due to the tightness of the thin plate. For this reason, since the amorphous magnetic alloy thin plate has a low glabellar resistance due to the lack of an insulating film, the eddy current in a part of the corner increases as the frequency increases, leading to worsening of iron loss. The present invention has focused on this phenomenon, and by providing an insulating material between the thin plate layers at the corner portions of the wound core, the glabellar resistance at the corner portions is increased and eddy current loss is reduced.

次に巻鉄心のコーナ部において薄板巻厚方向に所定定間
隔を存した非晶質磁性合金薄板の層間にシート状絶縁材
を設ける点について説明する。第3図は巻鉄心11を巻
厚方向にaブロックからgブロックまでの複数のブロッ
クに分割した状態を示している。なお、aブロックが鉄
心最内周側、gブロックが最外周側である。そして巻鉄
心にサーチコイル(図示せず)を巻回して周波数5 K
Hzで巻鉄心を励磁し、巻鉄心の巻厚方向の磁束分布を
測定した。測定結果の一例を第4図の線図で示す。この
線図においてBは分割した各ブロックの磁束密度、Bm
は巻鉄心全体の磁束密度を示す。磁束密度0.3テ)う
σ)では巻鉄心の内周側のブロックはど磁束密度が高い
が、磁束密度0.7テスラσ)では巻鉄心の内周側と外
周側の磁束密度の差はほとんどない。
Next, the provision of a sheet-like insulating material between the layers of the amorphous magnetic alloy thin plate at a predetermined interval in the thickness direction of the thin plate at the corner portion of the wound core will be explained. FIG. 3 shows a state in which the wound core 11 is divided into a plurality of blocks from a block to g block in the direction of the winding thickness. Note that the a block is the innermost circumferential side of the iron core, and the g block is the outermost circumferential side. Then, a search coil (not shown) is wound around the wound core to set the frequency to 5 K.
The wound core was excited at Hz, and the magnetic flux distribution in the thickness direction of the wound core was measured. An example of the measurement results is shown in the diagram of FIG. In this diagram, B is the magnetic flux density of each divided block, Bm
represents the magnetic flux density of the entire wound core. When the magnetic flux density is 0.3 tesla), the block on the inner circumference of the wound core has a high magnetic flux density, but when the magnetic flux density is 0.7 tesla), the difference in the magnetic flux density between the inner and outer circumferential sides of the wound iron core is high. There are almost no

高周波励磁焼鈍法では、巻鉄心自身の損失により昇温さ
せるため、ある程度高い磁束密度(0,3〜1.0テス
ラ付近)で巻鉄心を励磁するので、巻鉄心の巻厚方向の
磁束密度を一定とみなすことができる。従って、巻鉄心
のコーナ部に設けるシート状絶縁材は、略均等巻厚毎の
薄板層間に配置すれば良いといえる。
In the high-frequency excitation annealing method, the core is excited by a somewhat high magnetic flux density (around 0.3 to 1.0 Tesla) in order to raise the temperature due to the loss of the core itself, so the magnetic flux density in the direction of the winding thickness of the core is increased. It can be considered constant. Therefore, it can be said that the sheet-like insulating material provided at the corner portion of the wound core may be placed between the thin plate layers of approximately equal winding thickness.

第5図ないし第7図は本発明の他の実施例を示すもので
、第1図および第2図と同一部分は同一符号を付して示
している。この実施例は巻鉄心に設けるコーナ部に設け
る絶縁材として、巻鉄心11を形成する非晶質磁性合金
薄板120表面に絶縁被膜を形成したものである。
5 to 7 show other embodiments of the present invention, and the same parts as in FIGS. 1 and 2 are designated by the same reference numerals. In this embodiment, an insulating film is formed on the surface of an amorphous magnetic alloy thin plate 120 forming the wound core 11 as an insulating material provided at the corner portion of the wound core.

まず、第6図で示すように帯状の非晶質磁性合金薄板1
2を巻回し、谷コーナ部において各巻回層の非晶質磁性
合金薄板11の両面に絶縁層20を形成した矩形状の巻
鉄心11を形成する。この巻鉄心1ノは例えば第7図で
示す方法により形成する。フーグ状に巻回した非晶質磁
性合金薄板12を繰出して、無機質の酸化被膜溶液21
を入れた浴槽22の上方を通過させる。
First, as shown in FIG. 6, a strip-shaped amorphous magnetic alloy thin plate 1
2 is wound to form a rectangular wound core 11 in which insulating layers 20 are formed on both sides of the amorphous magnetic alloy thin plate 11 of each wound layer at the valley corner portion. This wound core 1 is formed, for example, by the method shown in FIG. The amorphous magnetic alloy thin plate 12 wound in a hoog shape is fed out and an inorganic oxide coating solution 21 is applied.
It passes above the bathtub 22 containing the water.

この浴槽22の上方には間欠的に上下動する押えロー2
23を設け、この押えローラ23が下降することにより
巻鉄心11の各コーナ部に相当する非晶質磁性合金薄板
12の部分を押し下げて浴槽22の酸化被膜溶液21中
に浸漬させ、非晶質磁性合金薄板12の両側表面に溶液
21を付着させる。ざらに非晶質磁性合金薄板12を乾
燥装置24に通し、該薄板12に付着した酸化被膜溶液
21を乾燥させて無機質酸化被膜すなわち絶縁被膜20
を形成し、その後非晶質磁性合金薄板12を巻取機25
により矩形状に巻取る。このように巻鉄心11の各コー
ナ部に相当する部分の両面に絶縁被膜20を順次形成し
ながら非晶質磁性合金薄板12を巻回して巻鉄心1ノを
形成することにより、巻鉄心11の各コーナ部において
各非晶質磁性合金薄板12の層間に絶縁被膜20を形成
する。なお、この実施例では非晶質磁性合金薄板12に
絶縁被膜20を形成することを容易にするために、巻鉄
心11のけい鉄部およびその両側に位置する各コーナ部
にわたって絶縁被膜20を形成するようKしている。
Above this bathtub 22 is a presser row 2 that moves up and down intermittently.
23 is provided, and when the pressing roller 23 descends, the portions of the amorphous magnetic alloy thin plate 12 corresponding to each corner of the wound core 11 are pushed down and immersed in the oxide film solution 21 in the bath 22, and the amorphous A solution 21 is applied to both surfaces of the magnetic alloy thin plate 12. Roughly pass the amorphous magnetic alloy thin plate 12 through a drying device 24 to dry the oxide film solution 21 adhering to the thin plate 12 to form an inorganic oxide film, that is, an insulating film 20.
After that, the amorphous magnetic alloy thin plate 12 is passed through a winder 25.
Wind it into a rectangular shape. In this way, the amorphous magnetic alloy thin plate 12 is wound to form the wound core 1 while sequentially forming the insulating coating 20 on both sides of the portion corresponding to each corner of the wound core 11. An insulating coating 20 is formed between the layers of each amorphous magnetic alloy thin plate 12 at each corner. In this embodiment, in order to facilitate the formation of the insulating coating 20 on the amorphous magnetic alloy thin plate 12, the insulating coating 20 is formed over the silicate portion of the wound core 11 and each corner portion located on both sides thereof. I am asking you to do so.

次いで、第5図で示すように2組の巻鉄心1ノを並べて
巻鉄心11の内側の脚部に変圧器コイル19を装着し、
さらに各巻鉄心11の外側の脚部に励磁コイル14を巻
回し、この励磁コイル14を切換スイッチ15を介して
交流電源16と直流電源17に接続する。そして、前述
した実施例の場合と同様に巻鉄心11を高周波励磁し、
この励磁に伴い巻鉄心11に生ずる損失により巻鉄心1
1自身を発熱させて焼鈍を行なう。
Next, as shown in FIG. 5, two sets of wound cores 1 are placed side by side, and a transformer coil 19 is attached to the inner leg of the wound core 11.
Further, an excitation coil 14 is wound around the outer leg of each winding core 11, and this excitation coil 14 is connected to an AC power source 16 and a DC power source 17 via a changeover switch 15. Then, the wound core 11 is excited at high frequency in the same manner as in the embodiment described above,
Due to the loss that occurs in the wound core 11 due to this excitation, the wound core 1
1. Annealing is performed by generating heat.

なお、この焼鈍はN、ガス、Arガスなどの不活性ガス
雰囲中において行なう。
Note that this annealing is performed in an inert gas atmosphere such as N, gas, or Ar gas.

しかして、この実施例の方法により焼鈍を行なうと、巻
鉄心1ノのコーナ部における非晶質磁性合金薄板12の
層間に絶縁被膜20が存在しているので、コーナ部の発
生損失が減少して発熱が抑制されるので、巻鉄心11全
体の温度分布を均一化して適正焼鈍温度400℃にて焼
鈍できる。実験結果の一例では、絶縁被膜処理を施さな
い巻鉄心に比して鉄心周方向の最大温反差を20℃以下
とすることができ、巻鉄心の鉄損を約17チも向上でき
た。また、発生損失が犬なるコーナ部の非晶質磁性合金
薄板Z2に部分的に絶縁被膜20を形成しているので、
巻鉄心1ノ全体の非晶質磁性合金薄板12に絶縁被膜処
理を施した場合に比して占積率が良好である。
Therefore, when annealing is carried out by the method of this embodiment, since the insulating coating 20 exists between the layers of the amorphous magnetic alloy thin plate 12 at the corner part of the wound core 1, the loss generated at the corner part is reduced. Since heat generation is suppressed, the temperature distribution of the entire wound core 11 can be made uniform and annealing can be performed at a proper annealing temperature of 400°C. An example of experimental results shows that the maximum temperature difference in the circumferential direction of the core can be reduced to 20 degrees Celsius or less, and the core loss of the wound core can be improved by about 17 inches compared to a wound core without insulation coating treatment. In addition, since the insulating coating 20 is partially formed on the amorphous magnetic alloy thin plate Z2 at the corner part where the generated loss is small,
The space factor is better than when the amorphous magnetic alloy thin plate 12 of the entire wound core 1 is treated with an insulating coating.

第8図は、巻鉄心11のコーナ部における各巻回層の非
晶質磁性合金薄板120片面に各々絶縁被膜20を形成
した例を示している。
FIG. 8 shows an example in which an insulating coating 20 is formed on one side of the amorphous magnetic alloy thin plate 120 of each wound layer in the corner portion of the wound core 11.

第9図は、巻鉄心11のコーナ部において巻厚方向に所
定間隔(例えば10〜20巻回)を存して位置する複数
箇所の非晶質磁性合金薄板120両面または片面に絶縁
被膜20を形成した例を示している。
FIG. 9 shows insulating coatings 20 on both or one side of amorphous magnetic alloy thin plates 120 located at a plurality of locations at predetermined intervals (for example, 10 to 20 turns) in the winding thickness direction at the corners of the wound core 11. An example is shown below.

この第8図および第9図で示すように絶縁被膜を形成し
た場合でも、同様な効果を得ることができる。
Similar effects can be obtained even when an insulating film is formed as shown in FIGS. 8 and 9.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の巻鉄心の製造方法によれば
、非晶質磁性合金薄板からなる巻鉄心を均一な温度分布
で温度上昇させて焼鈍を行なうことができるので、磁気
特性に優れた鉄心を得ることができる。
As explained above, according to the method for manufacturing the wound core of the present invention, the wound iron core made of amorphous magnetic alloy thin plate can be annealed by raising the temperature with a uniform temperature distribution. You can get iron core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の一実施例を示す説明図、第
2図は同実施例における巻鉄心を示す斜視図、第3図は
巻鉄心を巻厚方向に分割した状態を示す説明図、第4図
は巻鉄心の巻厚方向の温度分布を示す線図、第5図は本
発明の製造方法の他の実施例を示す説明図、第6図は同
実施例における巻鉄心を示す斜視図、第7図は同実施例
の巻鉄心の製造工程を示す説明図、第8図および第9図
は同実施例の巻鉄心の変形例を示す斜視図、第10図は
非晶質磁性合金薄板の焼鈍特性を示す線図、第11図は
従来の外部加熱焼鈍方法を示す説明図、第12図は従来
の外部加熱焼鈍方法により焼鈍した場合の巻鉄心各部の
温度上昇を示す線図、第13図は巻鉄心の温度測定点を
示す説明図、第14図は従来の高周波励磁焼鈍方法によ
り焼鈍した場合の巻鉄心各部の温度上昇を示す線図、第
15図は巻鉄心の温度測定点を示す説明図である。 11・・・巻鉄心、12・・・非晶質磁性合金薄板、1
3・・・シート状絶縁材、14・・・励磁コイル、16
・・交流電源、17・・直流電源、19・・・変圧器コ
イル、2θ・・絶縁被膜。 出願人代理人 弁理士 鈴 江 武 彦第1vA 第3図 第4図 ブロック 第5図 第6図 第7図 *sm 191a $ 10図 焼誂温 度じC) 1111図 第12図 時間(合) 第13図 第14図 vff  間 (介) 第15図
Fig. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention, Fig. 2 is a perspective view showing a wound core in the same embodiment, and Fig. 3 is an explanatory diagram showing a state where the wound iron core is divided in the direction of the winding thickness. 4 is a diagram showing the temperature distribution in the winding thickness direction of the wound core, FIG. 5 is an explanatory diagram showing another embodiment of the manufacturing method of the present invention, and FIG. 6 is a diagram showing the winding core in the same embodiment. FIG. 7 is an explanatory diagram showing the manufacturing process of the wound core of the same embodiment, FIGS. 8 and 9 are perspective views showing modifications of the wound core of the same example, and FIG. 10 is an amorphous core. Fig. 11 is an explanatory diagram showing the conventional external heating annealing method, and Fig. 12 shows the temperature rise in each part of the wound core when annealing is performed by the conventional external heating annealing method. Fig. 13 is an explanatory diagram showing the temperature measurement points of the wound core, Fig. 14 is a diagram showing the temperature rise of each part of the wound core when annealed by the conventional high-frequency excitation annealing method, and Fig. 15 is a diagram showing the temperature measurement points of the wound core. FIG. 2 is an explanatory diagram showing temperature measurement points. 11...Wound core, 12...Amorphous magnetic alloy thin plate, 1
3... Sheet-shaped insulating material, 14... Excitation coil, 16
...AC power supply, 17..DC power supply, 19..Transformer coil, 2θ..Insulating coating. Applicant's representative Patent attorney Takehiko Suzue 1vA Fig. 3 Fig. 4 Block Fig. 5 Fig. 6 Fig. 7 *sm 191a $ Fig. 10 Baking temperature C) 1111 Fig. 12 Time (combined) Figure 13 Figure 14 Between vff Figure 15

Claims (3)

【特許請求の範囲】[Claims] (1)非晶質磁性合金薄板からなる巻鉄心のコーナ部に
おける前記非晶質磁性合金薄板の層間に絶縁材を設け、
前記巻鉄心に巻回したコイルに交流電流を通して前記巻
鉄心を励磁し、この励磁に伴い前記巻鉄心に生ずる損失
により巻鉄心自身を発熱昇温させて焼鈍を行なうことを
特徴とする鉄心の製造方法。
(1) providing an insulating material between the layers of the amorphous magnetic alloy thin plate in the corner portion of the wound core made of the amorphous magnetic alloy thin plate;
Manufacturing an iron core characterized in that an alternating current is passed through a coil wound around the wound iron core to excite the wound iron core, and the wound iron core itself is heated and heated by heat generation due to a loss generated in the wound iron core due to this excitation to perform annealing. Method.
(2)絶縁材はシート状のものである特許請求の範囲第
1項に記載の鉄心の製造方法。
(2) The method for manufacturing an iron core according to claim 1, wherein the insulating material is in the form of a sheet.
(3)絶縁材は巻鉄心を形成する非晶質磁性合金薄板の
表面に形成した絶縁被膜である特許請求の範囲第1項に
記載の鉄心の製造方法。
(3) The method for manufacturing an iron core according to claim 1, wherein the insulating material is an insulating coating formed on the surface of the amorphous magnetic alloy thin plate forming the wound core.
JP60020552A 1985-02-05 1985-02-05 Manufacture of iron core Pending JPS61180410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020552A JPS61180410A (en) 1985-02-05 1985-02-05 Manufacture of iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020552A JPS61180410A (en) 1985-02-05 1985-02-05 Manufacture of iron core

Publications (1)

Publication Number Publication Date
JPS61180410A true JPS61180410A (en) 1986-08-13

Family

ID=12030316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020552A Pending JPS61180410A (en) 1985-02-05 1985-02-05 Manufacture of iron core

Country Status (1)

Country Link
JP (1) JPS61180410A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071982A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Transformer
WO2016047718A1 (en) * 2014-09-26 2016-03-31 日立金属株式会社 Amorphous alloy core and method for manufacturing same
WO2016047717A1 (en) * 2014-09-26 2016-03-31 日立金属株式会社 Method for manufacturing amorphous alloy core
JP2019117155A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Method for specifying iron loss inferior part of wound iron core

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071982A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Transformer
JPWO2016047718A1 (en) * 2014-09-26 2017-07-06 日立金属株式会社 Amorphous alloy magnetic core and manufacturing method thereof
WO2016047717A1 (en) * 2014-09-26 2016-03-31 日立金属株式会社 Method for manufacturing amorphous alloy core
CN106716569A (en) * 2014-09-26 2017-05-24 日立金属株式会社 Amorphous alloy core and method for manufacturing same
CN106716572A (en) * 2014-09-26 2017-05-24 日立金属株式会社 Method for manufacturing amorphous alloy core
JPWO2016047717A1 (en) * 2014-09-26 2017-06-22 日立金属株式会社 Method for producing amorphous alloy magnetic core
WO2016047718A1 (en) * 2014-09-26 2016-03-31 日立金属株式会社 Amorphous alloy core and method for manufacturing same
EP3200210A4 (en) * 2014-09-26 2018-06-20 Hitachi Metals, Ltd. Method for manufacturing amorphous alloy core
EP3200208A4 (en) * 2014-09-26 2018-06-20 Hitachi Metals, Ltd. Amorphous alloy core and method for manufacturing same
US10269476B2 (en) 2014-09-26 2019-04-23 Hitachi Metals, Ltd. Method of manufacturing an amorphous alloy magnetic core
US10283265B2 (en) 2014-09-26 2019-05-07 Hitachi Metals, Ltd. Method of manufacturing amorphous alloy magnetic core
CN106716569B (en) * 2014-09-26 2019-08-13 日立金属株式会社 Amorphous alloy magnetic core and its manufacturing method
US11244782B2 (en) 2014-09-26 2022-02-08 Hitachi Metals, Ltd. Amorphous alloy magnetic core
JP2019117155A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Method for specifying iron loss inferior part of wound iron core

Similar Documents

Publication Publication Date Title
US4355221A (en) Method of field annealing an amorphous metal core by means of induction heating
JP7028242B2 (en) Manufacturing method of winding cores and winding cores of grain-oriented electrical steel sheets and transformers using them
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
BR112013001052B1 (en) Grain oriented electrical steel sheet
JP2001167867A (en) Electromagnetic apparatus for heating metallic element
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
CA2279981A1 (en) Ferromagnetic amorphous metallic alloy and annealing method
JPS61180410A (en) Manufacture of iron core
Wilson et al. High temperature magnetic characterisation of structural steels using Epstein frame
JP5702632B2 (en) Magnetic article using magnetic metal ribbon coated with insulator
US11244782B2 (en) Amorphous alloy magnetic core
JP3210776B2 (en) Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JPS61292906A (en) Manufacture of wound core
JPS61131410A (en) Manufacture of wound core
JP7299464B2 (en) Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
JPH11341749A (en) Method of annealing iron core in magnetic field
JPS636822A (en) Manufacture of mound core
US7132018B2 (en) Magnetic core insulation
JPH0315189A (en) Induction heating method for slab
JP7056717B1 (en) Winding iron core
JPH0141720B2 (en)
TW508595B (en) Magnetic core insulation
JP2009127073A (en) Method for manufacturing double oriented silicon steel sheet
SU1744766A1 (en) Method of manufacture of strip-type magnetic cores
JPS59123719A (en) Method for annealing iron core for electric apparatus