JPH0315189A - Induction heating method for slab - Google Patents

Induction heating method for slab

Info

Publication number
JPH0315189A
JPH0315189A JP14808089A JP14808089A JPH0315189A JP H0315189 A JPH0315189 A JP H0315189A JP 14808089 A JP14808089 A JP 14808089A JP 14808089 A JP14808089 A JP 14808089A JP H0315189 A JPH0315189 A JP H0315189A
Authority
JP
Japan
Prior art keywords
slab
coil
heating
current
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14808089A
Other languages
Japanese (ja)
Other versions
JPH0685348B2 (en
Inventor
Mitsumasa Tsukada
塚田 光政
Hideo Sakamoto
秀夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14808089A priority Critical patent/JPH0685348B2/en
Publication of JPH0315189A publication Critical patent/JPH0315189A/en
Publication of JPH0685348B2 publication Critical patent/JPH0685348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To prevent corner sections from being insufficiently heated, and thereby obtain an uniform distribution in temperature in a range including interiors by selecting current energizing a heating coil within a specified range determined by the thickness and the specific resistance of a slab. CONSTITUTION:A slab 1 is concentrically arranged in the inside of a rectangular coil 2 which is winded around in such a way that it is in a form roughly similar to the axial cross section of the slab 1 to be heated, so that the specified magnitude of current is applied to the heating coil 2 for the specified period of time. The both ends of the coil 2 are connected with a heating power supply 3 through a frequency converting section 4 so that current with frequencies converted by the converting section 4 is thereby applied to the coil. Namely, it is designed that current with frequencies f(Hz) within the range limited by a formula which includes the thickness tw(mm) and the specific resistance rho(muOMEGA-cm) of the slab 1, is applied to the coil 2. This permits the depth in generating induction current within the slabe 1 to be optimized so that the uniform distribution in temperature can thereby be obtained in the range from the surface to the center section in the direction of thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧延素材であるスラブ、特にチタン製のスラ
ブを所定温度に均一加熱するための誘導加熱方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an induction heating method for uniformly heating a slab as a rolled material, particularly a titanium slab, to a predetermined temperature.

〔従来の技術〕[Conventional technology]

圧延工程における要求温度にまでスラブを誘導加熱する
ための従来の誘導加熱方法は、例えば、rIron a
nd  Steel Engineer ;Septe
mber 1979Jの第50頁〜第55頁に示されて
いる。
Conventional induction heating methods for induction heating slabs to the required temperature in the rolling process include, for example, rIron a
nd Steel Engineer ;Septe
umber 1979J, pages 50 to 55.

第6図はこの誘導加熱方法の実施状態を示す模式的斜視
図である。図中1は、加熱されるべきスラブであり、該
スラブ1は、これの外形と略相似をなす矩形の加熱コイ
ル2内に、両者の各辺が所定の間隙を隔てて互いに平行
をなすように同心的に配される。加熱コイル2の両端は
加熱電源3に接続してあり、前述の如くスラブ1を配し
た後、加熱電源3から発せられる電流を加熱コイル2に
通電せしめることにより、電磁誘導作用によりスラブ1
の表面近傍に誘導電流が発生し、これの通流に伴う発熱
によりスラブ1が加熱される。前記加熱電源3としては
、商用の交流電源が一般的に利用されており、この場合
加熱コイル2には、商用周波数(5011z又は60H
z)を有する電流が通電される。
FIG. 6 is a schematic perspective view showing the implementation state of this induction heating method. In the figure, reference numeral 1 denotes a slab to be heated, and the slab 1 is placed in a rectangular heating coil 2 whose outer shape is approximately similar to that of the slab 1, so that each side of both sides is parallel to each other with a predetermined gap between them. arranged concentrically. Both ends of the heating coil 2 are connected to a heating power source 3, and after placing the slab 1 as described above, by passing current generated from the heating power source 3 through the heating coil 2, the slab 1 is heated by electromagnetic induction.
An induced current is generated near the surface of the slab 1, and the slab 1 is heated by the heat generated as the current flows. As the heating power source 3, a commercial AC power source is generally used, and in this case, the heating coil 2 has a commercial frequency (5011z or 60Hz).
z) is applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

さて、このようにスラブ1を誘導加熱するに際しては、
後工程となる圧延後における板厚精度の向上を図るべく
、前記スラブ1が断面全体に亘って均一に加熱されるこ
とが切望され、特にチタン等の難加工性材料のスラプ1
においては、加熱状態の均一性が重要な課題となってい
る。一方、加熱状態の良否は、加熱コイル2への通電に
伴う誘導電流がスラプ1の表面からどの程度の深さ範囲
に生じるかが重要な要素となっており、これが浅い場合
、スラプ1の表面近傍は十分に加熱される反面、厚さ方
向中央部には十分な伝熱がなされないために、中央付近
に不十分な加熱部分が生じ、スラプlの厚さ方向に大き
い温度勾配が生じるという難点があり、逆に誘導電流の
発生深さが深い場合、スラブ1の厚さ方向には比較的均
一な温度分布が得られる反面、角部における誘導電流の
通流が阻害される結果、各角部の近傍に局所的な加熱不
良部が発生するという難点がある。
Now, when inductively heating slab 1 in this way,
In order to improve the plate thickness accuracy after rolling, which is a subsequent process, it is strongly desired that the slab 1 be heated uniformly over the entire cross section.
In this field, uniformity of heating conditions is an important issue. On the other hand, an important factor in determining the quality of the heating state is how deep the induced current is generated from the surface of the slurp 1 when the heating coil 2 is energized. Although the vicinity is sufficiently heated, there is insufficient heat transfer in the central part in the thickness direction, resulting in an insufficiently heated part near the center, resulting in a large temperature gradient in the thickness direction of the slurp l. On the other hand, if the induced current is generated at a deep depth, a relatively uniform temperature distribution can be obtained in the thickness direction of the slab 1, but as a result of inhibiting the flow of the induced current at the corners, each There is a drawback that local heating defects occur near the corners.

前記誘導電流の発生深さδ(mm)は、公知の次式にて
与えられる。
The generation depth δ (mm) of the induced current is given by the following well-known formula.

δ− 50.3  Jρ/ (μ ・ f)    ・
・・(11但し、ρは加熱すべきスラブ1の材料に固有
の物性値である比抵抗(μΩ−cm ) 、μは同じく
非透磁率であり、rは加熱電源3の周波数(Hz)であ
る。例えば、チタン製のスラブ1を、商用周波数である
60Hzの加熱電源3に接続された加熱コイル2内に配
して誘導加熱した場合、常温〜950℃におけるチタン
材の比抵抗ρが140μΩ−cmであり、また非透磁率
μが1であることから、(1)式から誘導電流の発生深
さδは76 . 8mmとなる。この発生深さは、一般
的に製造されるチタン製のスラブ1の厚さ150+n+
a〜250mmに対して過大であり、加熱電源3に商用
電源を使用する従来の誘導加熱方法においては、スラブ
lの角部に加熱不良部が発生し、均一な加熱状態が得ら
れず、このスラブlを後工程において圧延する際に、所
望の板厚精度を得ることが困難となる不都合があった。
δ− 50.3 Jρ/ (μ・f)・
...(11 However, ρ is the specific resistance (μΩ-cm), which is a physical property value specific to the material of the slab 1 to be heated, μ is also the magnetic impermeability, and r is the frequency (Hz) of the heating power source 3. For example, when a titanium slab 1 is placed in a heating coil 2 connected to a heating power source 3 with a commercial frequency of 60 Hz and heated by induction, the specific resistance ρ of the titanium material at room temperature to 950°C is 140 μΩ. -cm, and since the non-permeability μ is 1, the induced current generation depth δ is 76.8 mm from equation (1). Thickness of slab 1 of 150+n+
In the conventional induction heating method that uses a commercial power source as the heating power source 3, heating defects occur at the corners of the slab l, making it impossible to obtain a uniform heating state. There was a problem in that it was difficult to obtain the desired thickness accuracy when rolling the slab 1 in a subsequent process.

本発明は斯かる事情に鑑みてなされたものであり、角部
における加熱不良の発生を防止し、内部に至るまで可及
的に均一な温度分布を得ることを可能とするスラブの誘
導加熱方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an induction heating method for slabs that prevents the occurrence of heating defects at corners and makes it possible to obtain as uniform a temperature distribution as possible throughout the interior. The purpose is to provide

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るスラブの誘導加熱方法は、加熱すべきスラ
ブを、その内部に同心的に配してなる矩形の加熱コイル
に、スラブの厚さtw(mm)及び比抵抗ρ(μΩ一c
m)を含む式、 にて限定される範囲内の周波数f (Hz)を有する電
流を通電させて誘導加熱を行うものである。
In the induction heating method of a slab according to the present invention, a slab to be heated is placed in a rectangular heating coil that is arranged concentrically inside the slab, and the slab thickness tw (mm) and the specific resistance ρ (μΩ1c
Induction heating is performed by passing a current having a frequency f (Hz) within the range defined by the formula including m).

〔作用〕[Effect]

本発明においては、加熱コイルに前記範囲内の周波数f
を有する電流を通電させることにより、この加熱コイル
内に配されたスラブにおける誘導電流の発生深さを適正
化し、表面から内部に至るまでの温度分布の均一性と、
角部における加熱不良部の発生防止とを共に実現する。
In the present invention, the heating coil has a frequency f within the above range.
By passing a current with a current of
This also prevents the occurrence of heating defects at corners.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係るスラブの誘導加熱方法(以下本
発明方法という)の実施状態を示す模式的斜視図である
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic perspective view showing the implementation state of the method for induction heating a slab according to the present invention (hereinafter referred to as the method of the present invention).

本発明方法の実施においては、従来の方法と同様、加熱
すべきスラプ1の軸断面と略相似をなすように巻回され
た矩形の加熱コイル2と、これへの通電電源となる加熱
電源3とを備えてなる装置が用いられるが、本発明方法
においては従来と異なり、加熱コイル2の両端は前記加
熱電源3に直接的に接続されず、サイリスクインバータ
等を用いてなる周波数変換部4を介して接続されており
、該周波数変換部4により変換された周波数を有する電
流が加熱コイル2に通電されることを特徴とする。本発
明方法は、図示の如く、加熱コイル2の内部にスラブl
を同心的に配し、該スラブ1の幅方向及び厚さ方向の各
辺と、加熱コイル2の長手方向及びこれと直交する方向
の各辺とが、所定の間隙を隔てて略平行をなして対向す
るようになした後、加熱コイル2に所定の大きさの電流
を所定時間に亘って通電することにより実施される。
In carrying out the method of the present invention, as in the conventional method, a rectangular heating coil 2 is wound so as to be substantially similar to the axial cross section of the slurp 1 to be heated, and a heating power source 3 is used as a power source for energizing the coil. However, in the method of the present invention, unlike the conventional method, both ends of the heating coil 2 are not directly connected to the heating power source 3, but a frequency converter 4 using a thyrisk inverter or the like is used. The heating coil 2 is connected through the heating coil 2, and a current having a frequency converted by the frequency converter 4 is applied to the heating coil 2. In the method of the present invention, as shown in the figure, a slab l is placed inside the heating coil 2.
are arranged concentrically, and each side of the slab 1 in the width direction and thickness direction and each side of the heating coil 2 in the longitudinal direction and a direction perpendicular thereto are substantially parallel with a predetermined gap between them. This is carried out by energizing the heating coil 2 with a predetermined magnitude of current for a predetermined period of time.

この通電によりスラブ1の内部には、電磁誘導作用によ
り誘導電流が発生し、この誘導電流の通電に伴う発熱に
よりスラプ1が加熱されるが、前述した如く加熱コイル
2に通電される電流は、加熱電源3における商用周波数
(50Hz又は6011z)ではなく、スラブ1におけ
る誘導電流の発生深さδを適正化すべく周波数変換部4
に設定された周波数を有しており、このことによりスラ
ブ1には、内部に至るまでの厚さ方向に均一な温度分布
と、角部近傍における加熱不良部の発生防止とが実現さ
れる。
Due to this energization, an induced current is generated inside the slab 1 by electromagnetic induction, and the slab 1 is heated by the heat generated by the energization of this induced current, but as described above, the current applied to the heating coil 2 is In order to optimize the generation depth δ of the induced current in the slab 1 instead of the commercial frequency (50Hz or 6011z) in the heating power source 3, the frequency converter 4
This provides the slab 1 with a uniform temperature distribution in the thickness direction up to the inside and prevents the occurrence of poorly heated portions near the corners.

前記(1)弐に示す如く、スラブ1における誘導電流の
発生深さδは、比抵抗ρ、非透磁率μ及び加熱コイル2
の通電電流の周波数rとによって定まり、これらの各値
の内、ρ及びμはスラブ1に固有の物性値であることか
ら、誘導電流の発生深さδと加熱コイル2への通電電流
の周波数との間には一義的な対応関係が或立する。一方
、誘導電流の発生深さδは、前述した如く、スラブ1内
における温度分布の発生状態に密接に関係する。以上の
ことに着眼して本発明者は、一般的な厚さ寸法(150
mm〜250mll)を有するスラプ1において加熱コ
イル2への通電電流に種々に異なる周波数fを与えて加
熱実験を行い、この結果から、スラブ1の厚さtw(m
m)、即ち、第l図に示す如くスラブ1の軸断面におけ
る短い方の辺の長さと、スラブ1の材料に固有の物性値
である比抵抗ρ(μΩ−cm)とを含む次式に示す範囲
内の周波数f (Hz)において誘導電流の発生深さが
適正となり、望ましい加熱状態が実現されることを知見
した。
As shown in (1) 2 above, the induced current generation depth δ in the slab 1 is determined by the specific resistance ρ, the non-permeability μ, and the heating coil 2.
It is determined by the frequency r of the current flowing through the heating coil 2, and among these values, ρ and μ are physical property values specific to the slab 1, so the generation depth δ of the induced current and the frequency of the current flowing through the heating coil 2 There is a unique correspondence between them. On the other hand, the induced current generation depth δ is closely related to the temperature distribution within the slab 1, as described above. Focusing on the above, the present inventor has developed a general thickness dimension (150
A heating experiment was conducted by applying various frequencies f to the current flowing to the heating coil 2 in the slab 1 having a thickness of 2 mm to 250 ml, and from the results, the thickness tw (mm to 250 ml) of the slab 1 was determined.
m), that is, as shown in Figure 1, the following equation includes the length of the shorter side in the axial cross section of the slab 1 and the specific resistance ρ (μΩ-cm), which is a physical property value specific to the material of the slab 1. It has been found that at a frequency f (Hz) within the range shown, the induced current generation depth becomes appropriate and a desirable heating state is realized.

第2図〜第4図に前記実験結果の一部を示す。Some of the experimental results are shown in FIGS. 2 to 4.

これらはいずれも、厚さ200mm、幅1000mm、
長さ8000mmのチタン製のスラブ1を、常温状態か
ら略800 ’cにまで昇温せしめるべく約60分間加
熱した後、スラブ1の一つの角部Eから幅方向に300
+nn+の範囲において、表面から厚さ方向の中心に至
るまでの部分の温度分布を測定した結果を示しており、
第2図は加熱コイル2への通電電流の周波敗fが60I
1zである場合を、また第3図はfが13011zであ
る場合を、更に第4図はfが20011zである場合を
夫々示している。
All of these are 200mm thick, 1000mm wide,
A titanium slab 1 with a length of 8,000 mm is heated for about 60 minutes to raise the temperature from room temperature to approximately 800'c, and then heated for about 60 minutes from one corner E of the slab 1 in the width direction.
It shows the results of measuring the temperature distribution from the surface to the center in the thickness direction in the +nn+ range.
Figure 2 shows that the frequency loss f of the current flowing to the heating coil 2 is 60I.
1z, FIG. 3 shows the case where f is 13011z, and FIG. 4 shows the case where f is 20011z.

まず第2図においては、測温結果が800℃を下回る加
熱不良部が前記角部Eの近傍にて生じていることが明ら
かである反面、他の部分には、表面から厚さ方向中央に
至るまで比較的均一な温度分布が得られている。これは
、周波数fが過小であるためである。逆に第4図におい
ては、角部E近傍にて820℃〜840℃程度の測温結
果が得られており加熱不良部が生じない反面、他の部分
には、表面近傍の温度が高く厚さ方向中央に向けて低下
する大きい温度勾配が生じている。これは周波数fが過
大であるためである。
First, in Fig. 2, it is clear that a heating defect where the temperature measurement result is lower than 800°C occurs near the corner E, but on the other hand, there is a heating defect in the area from the surface to the center in the thickness direction. A relatively uniform temperature distribution was obtained throughout. This is because the frequency f is too small. On the other hand, in Fig. 4, a temperature measurement result of about 820°C to 840°C is obtained near the corner E, and no heating defects occur, but on the other hand, the temperature near the surface is high and the thickness is high. There is a large temperature gradient that decreases toward the center in the horizontal direction. This is because the frequency f is excessive.

これらに対し第3図においては、角部E近傍には、前記
第4図に近い温度分布が得られており、加熱不良部の発
生が観察されない上、他の部分は、前記第2図に近く、
比較的均一な温度分布が生しており、このことから、1
30Hzなる周波数は、適正周波数であると言える。
On the other hand, in FIG. 3, a temperature distribution close to that shown in FIG. 4 is obtained near the corner E, and no heating defects are observed, and other parts are similar to those shown in FIG. 2. near,
There is a relatively uniform temperature distribution, and from this, 1
A frequency of 30 Hz can be said to be an appropriate frequency.

第5図は、前記3種の周波数を含む種々の周波数fを有
する電流を加熱コイル2にiffi電せしめた場合にお
いて、第2図〜第4図中に■〜■及び■〜■なる符号を
付して示す各測温点での測温結果を示すグラフである。
FIG. 5 shows the case where currents having various frequencies f including the above-mentioned three frequencies are applied to the heating coil 2. It is a graph which shows the temperature measurement result at each temperature measurement point shown attached.

なお■〜■はいずれも、前記角部Eから幅方向に300
mmの位置にて厚さ方向に並ぶ測温点であり、■は厚さ
方向中心部に、また■は表面近傍に夫々設定され、■〜
■の各測温点は、■〜■間を略4等分する点として夫々
設定されている。また、■〜■はいずれも、角部Eがら
45゜の傾きを有して厚さ方向中央に向けて延びる直線
上に並ぶ測温点であり、■は前記角部Eから厚さ方向及
び幅方向に各50mmの位置に、また■は前記角部Eの
極く近傍に夫々設定されており、更に、■は■と■との
略中央に、また■は■と■との略中央に夫々設定されて
いる。
Note that ■ to ■ are all 300 mm in the width direction from the corner E.
Temperature measurement points are arranged in the thickness direction at mm positions, ■ are set at the center in the thickness direction, ■ are set near the surface, and ■ ~
Each of the temperature measuring points (2) is set as a point that approximately divides the area between (2) and (2) into four equal parts. In addition, ■ to ■ are all temperature measurement points arranged on a straight line extending from the corner E to the center in the thickness direction with an inclination of 45 degrees, and ■ is set at a position of 50 mm each in the width direction, and ■ is set very close to the corner E, and ■ is set approximately at the center between ■ and ■, and ■ is approximately at the center between ■ and ■. are set respectively.

この第5図から、前記周波数rが低下するに伴い、■か
ら■の測温点における測温値が急激に低下する傾向を示
し、角部Eの近傍に加熱不良部が生じることが明らかで
あると共に、前記周波数fが増大するに伴い、前記■〜
■間の温度差が増大する傾向を示し、厚さ方向に大きい
温度勾配が生じることが明らかである。前記(2)式に
示す周波数fの制限式は、角部E近傍の温度低下が少な
く、スラプ1の厚さ方向に過大な温度勾配が生じないと
いう条件を満たすべく設定されたものである。
From FIG. 5, it is clear that as the frequency r decreases, the temperature values at the temperature measurement points from ■ to ■ tend to decrease rapidly, and it is clear that a heating defect occurs near the corner E. As the frequency f increases, the
It is clear that the temperature difference between (1) and (2) tends to increase, and a large temperature gradient occurs in the thickness direction. The limiting equation for the frequency f shown in equation (2) above is set to satisfy the conditions that the temperature drop near the corner E is small and that an excessive temperature gradient does not occur in the thickness direction of the slap 1.

(2)式の比抵抗ρに、常温から950℃までの温度範
囲におけるチタン材の比抵抗値140μΩ−cmと、ス
ラブ1の厚さt , = 200mmとを夫々代入した
場合、適正周波数範囲は、 93.501z)≦f≦171.0(}12)  ={
3)となり、これを第5図中に示す。加熱コイル2の通
電電流の周波数fが6 0il zである場合、及び通
電電流の周波数fが200Hzである場合はいずれも、
(3)式にて示される適正範囲内に含まれておらず、前
者の場合、第2図に示す如く角部E近傍にて低温部が生
し、後者の場合、第4図に示す如く厚さ方向に大きい温
度勾配が生し、表面近傍の温度が過度に高くなることは
前述した如くである。これに対し、通電電流の周波数f
が130Hzである場合は、これが(3)式にて示され
る適正範囲内の周波数であることから、前記第3図に示
す如く、スラブ1の内部に略均一な温度分布が得られて
いる。
If the specific resistance value of titanium material 140 μΩ-cm in the temperature range from room temperature to 950°C and the thickness t, = 200 mm of the slab 1 are substituted for the specific resistance ρ in equation (2), the appropriate frequency range is , 93.501z)≦f≦171.0(}12) ={
3), which is shown in FIG. When the frequency f of the current flowing through the heating coil 2 is 60 il z, and when the frequency f of the current flowing through the heating coil 2 is 200 Hz,
(3), and in the former case, a low-temperature area occurs near the corner E as shown in Figure 2, and in the latter case, as shown in Figure 4. As described above, a large temperature gradient occurs in the thickness direction, and the temperature near the surface becomes excessively high. On the other hand, the frequency f of the conducting current
When is 130 Hz, this is a frequency within the appropriate range shown by equation (3), so as shown in FIG. 3, a substantially uniform temperature distribution is obtained inside the slab 1.

なお以上の説明においては、チタン製のスラブ1につい
て述べたが、適正周波数を限定する(2)式は、他の材
料製のスラブ1においても適用可能であり、本発明方法
は、スラブ1のサイズを代表する厚さ寸法t8と、スラ
ブlの材質に応じて決定される比砥抗ρとを用いて(2
)弐にて決定される適正周波数fを周波数変換部4に設
定することにより容易に実施できる。
In the above explanation, the slab 1 made of titanium was described, but the formula (2) for limiting the appropriate frequency can also be applied to the slab 1 made of other materials, and the method of the present invention is applicable to the slab 1 made of other materials. Using the thickness dimension t8 representing the size and the specific grinding resistance ρ determined according to the material of the slab l, (2
) This can be easily implemented by setting the appropriate frequency f determined in step 2 in the frequency conversion section 4.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如《本発明方法においては、加熱すべきス
ラブの厚さ及び該スラブの比抵抗とを含む(2)弐にて
限定される範囲内の周波数を有する電流を加熱コイルに
通電させるから、前記スラブCこおける誘導電流の発生
深さが適正化され、スラブの表面から厚さ方向中心部に
至るまで可及的に均一な温度分布が得られると共に、角
部における加熱不良部の発生がなく、後工程たる圧延に
際し高い板厚精度の実現が可能となる等、本発明は優れ
た効果を奏する。
As detailed above, in the method of the present invention, a current having a frequency within the range defined by (2) including the thickness of the slab to be heated and the specific resistance of the slab is passed through the heating coil. Therefore, the generation depth of the induced current in the slab C is optimized, and a temperature distribution as uniform as possible from the surface of the slab to the center in the thickness direction is obtained, and heating defects at the corners are prevented. The present invention has excellent effects such as no occurrence of such occurrence and high plate thickness accuracy during rolling, which is a subsequent process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式的斜視図、第
2図、第3図及び第4図は、加熱コイルに通電される電
流の周波数が夫々、60Hz、130Hz及び200H
zである各場合のスラブ内部の温度分布を示す図、第5
図は加熱コイルに通電される電流の周波数を変化させた
場合におけるスラブ内部の種々の測温点での測温値の変
化態様を示すグラフ、第6図は従来のスラブの誘導加熱
方法の実施状態を示す模式的斜視図である。 ■・・・スラブ  2・・・加熱コイル  3・・・加
熱電源  4・・・周波数変換部 なお、図中、同一符号は同一、又は相当部分を示す。 1・・・スラブ 2・・・加熱コイル
FIG. 1 is a schematic perspective view showing the implementation state of the method of the present invention, and FIGS. 2, 3, and 4 show cases in which the frequencies of the current applied to the heating coil are 60 Hz, 130 Hz, and 200 Hz, respectively.
Figure 5 showing the temperature distribution inside the slab in each case where z
The figure is a graph showing how the temperature values change at various temperature measurement points inside the slab when the frequency of the current applied to the heating coil is changed. Figure 6 shows the implementation of the conventional slab induction heating method. It is a typical perspective view showing a state. ■... Slab 2... Heating coil 3... Heating power source 4... Frequency conversion unit Note that in the drawings, the same reference numerals indicate the same or equivalent parts. 1... Slab 2... Heating coil

Claims (1)

【特許請求の範囲】[Claims] (1)加熱すべきスラブをこれの断面形状と略相似をな
す矩形の加熱コイル内に同心的に配し、該コイルへの通
電に伴う電磁誘導作用により前記スラブを誘導加熱する
方法において、 前記加熱コイルに通電される電流の周波数 f(Hz)を、前記スラブの厚さt_w(mm)及び比
抵抗ρ(μΩ−cm)を含む下記式にて定まる範囲内に
て選定することを特徴とするスラブの誘導加熱方法。 ▲数式、化学式、表等があります▼
(1) A method in which a slab to be heated is arranged concentrically within a rectangular heating coil having a cross-sectional shape substantially similar to the slab, and the slab is induction heated by electromagnetic induction caused by energization of the coil, comprising: The frequency f (Hz) of the current applied to the heating coil is selected within the range determined by the following formula including the thickness t_w (mm) of the slab and the specific resistance ρ (μΩ-cm). Induction heating method for slabs. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP14808089A 1989-06-09 1989-06-09 Induction heating method for slabs Expired - Lifetime JPH0685348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14808089A JPH0685348B2 (en) 1989-06-09 1989-06-09 Induction heating method for slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14808089A JPH0685348B2 (en) 1989-06-09 1989-06-09 Induction heating method for slabs

Publications (2)

Publication Number Publication Date
JPH0315189A true JPH0315189A (en) 1991-01-23
JPH0685348B2 JPH0685348B2 (en) 1994-10-26

Family

ID=15444780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14808089A Expired - Lifetime JPH0685348B2 (en) 1989-06-09 1989-06-09 Induction heating method for slabs

Country Status (1)

Country Link
JP (1) JPH0685348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100218188B1 (en) * 1997-03-29 1999-09-01 안복순 Preparation of beverage
JP2013149414A (en) * 2012-01-18 2013-08-01 Mitsubishi Electric Corp Heating test apparatus for power storage device
JP2017027767A (en) * 2015-07-22 2017-02-02 中央発條株式会社 Induction heating apparatus and induction heating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100218188B1 (en) * 1997-03-29 1999-09-01 안복순 Preparation of beverage
JP2013149414A (en) * 2012-01-18 2013-08-01 Mitsubishi Electric Corp Heating test apparatus for power storage device
JP2017027767A (en) * 2015-07-22 2017-02-02 中央発條株式会社 Induction heating apparatus and induction heating method

Also Published As

Publication number Publication date
JPH0685348B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JPS5851493A (en) Method and device for uniformly heating by lateral magnetic flux electromagnetic induction nonmagnetic flat product as conductor
Tsopelas et al. Electromagnetic-thermal NDT in thin conducting plates
JPS583720A (en) Method and apparatus for conditioning cooling degree of passing rolled wire material
JPH0315189A (en) Induction heating method for slab
Ali et al. Prediction of mechanical stress effects on the iron loss in electrical machines
Wilson et al. High temperature magnetic characterisation of structural steels using Epstein frame
WO2019151401A1 (en) Grain-oriented electrical steel sheet, transformer stacked core using same, and method for producing stacked core
JP4069002B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JPS6311409B2 (en)
JPH07128295A (en) Method for measuring crystal grain size of steel plate
Barglik Induction heating of thin strips in transverse flux magnetic field
JPH0242402B2 (en)
Masserey et al. Power formulation for the optimal control of an industrial induction heating process for thixoforming
Scott et al. Key parameters of high frequency welding
JPH0673314B2 (en) Control method of electrothermal operation
Unver et al. Introduction of a novel design approach for tunnel-type induction furnace coil for aluminium billet heating
Soda et al. E&S hysteresis model for two-dimensional magnetic properties
SE8403928D0 (en) HEAT TREATMENT PROCEDURE FOR A PIPE PIPE
JP3942285B2 (en) Hot rolling method and hot rolling equipment
JP3846761B2 (en) Method for forming metal coating layer
US20210214826A1 (en) Systems and methods for altering microstructures of materials
JP3900667B2 (en) Gradient magnetic material manufacturing apparatus having Si concentration gradient in plate thickness direction
JP3193232B2 (en) Baking method and baking furnace for surface coated metal sheet
JPH02250285A (en) Induction heating method
JP2004283846A (en) Hot rolling method and its equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 15