JPH11341749A - Method of annealing iron core in magnetic field - Google Patents

Method of annealing iron core in magnetic field

Info

Publication number
JPH11341749A
JPH11341749A JP14129998A JP14129998A JPH11341749A JP H11341749 A JPH11341749 A JP H11341749A JP 14129998 A JP14129998 A JP 14129998A JP 14129998 A JP14129998 A JP 14129998A JP H11341749 A JPH11341749 A JP H11341749A
Authority
JP
Japan
Prior art keywords
magnetic field
annealing
iron core
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14129998A
Other languages
Japanese (ja)
Inventor
Tsutomu Kaido
力 開道
Takeaki Wakizaka
岳顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14129998A priority Critical patent/JPH11341749A/en
Publication of JPH11341749A publication Critical patent/JPH11341749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To anneal an iron core easily in a magnetic field, by generating a magnetic field to be applied to an iron core by a coil, and also, heating the iron core by the heat generation from the coil or the application of high frequency magnetic field from the coil thereby annealing it. SOLUTION: E I iron cores 1 and 2 are ones being made of bidirectional electromagnetic steel plates, and currents are let flow to heating wires 3 and 4 so a to heat the E I iron cores 1 and 2. These heating wires 3 and 4 double as windings for magnetic field generation, and generate magnetic fluxes 5 and 6 at anealing, so they are annealed in the magnetic field. Currents are let flow to the heating wires 3 and 4 so as to anneal them for about two hours at about 800 deg.C. In this case, the currents being let flow to the heating wires 3 and 4 are rectangular pulses of 50 Hz in frequency, and the effective value of the currents is adjusted with the control of pulse width so as to adjust the temperature. Then, the quantity of heating is reduced, and they are cooled at the rate of about 100 deg.C/hour, by narrowing the pulse width, with the peak value of the pulse current constant. As compared with the case where they are annealed by usual annealing method, there is little difference in magnetic properties for the ones where the annealing in a magnetic field is applied, and the same effect can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高性能の鉄心の特性改
善を行う磁界中焼鈍に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magnetic field annealing for improving the characteristics of a high performance iron core.

【0002】[0002]

【従来の技術】従来、磁性材料の特性改善方法として、
磁界中焼鈍がある。しかし、実用的には焼鈍炉の他、巻
線と電源が必要となり、工程増加やコストアップになり
問題である。
2. Description of the Related Art Conventionally, as a method for improving characteristics of a magnetic material,
There is annealing in a magnetic field. However, practically, in addition to the annealing furnace, a winding and a power source are required, which leads to an increase in steps and an increase in cost, which is a problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は、鉄心を容易
に磁界中焼鈍する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for easily annealing a core in a magnetic field.

【0004】[0004]

【課題を解決する手段】本発明の特徴とするところは、
以下の通りである。 (1) 鉄心に磁界を印加しながら焼鈍する鉄心の磁界
中焼鈍方法において、鉄心に印加する磁界をコイルによ
って発生すると共に、前記コイルからの発熱若しくは前
記コイルからの高周波磁場印加によって鉄心を加熱して
焼鈍することを特徴とする磁界中焼鈍方法。
The feature of the present invention is as follows.
It is as follows. (1) In a method of annealing a core in a magnetic field, in which a magnetic field is applied to the core while applying a magnetic field to the core, a magnetic field to be applied to the core is generated by a coil, and the core is heated by heat generation from the coil or application of a high-frequency magnetic field from the coil. Annealing in a magnetic field, characterized by performing annealing by magnetic field.

【0005】(2) 鉄心に印加する磁界が、製品の使
用状態における磁束流れに相当することを特徴とする前
記(1)記載の磁界中焼鈍方法。
(2) The magnetic field annealing method according to (1), wherein the magnetic field applied to the iron core corresponds to a magnetic flux flow in a use state of the product.

【0006】(3) 焼鈍温度が鉄心材料のキュリー点
より100℃低い温度以上とすることを特徴とする前記
(1)又は(2)記載の磁界中焼鈍方法。
(3) The magnetic field annealing method according to the above (1) or (2), wherein the annealing temperature is at least 100 ° C. lower than the Curie point of the iron core material.

【0007】(4) 電磁鋼板からなる鉄心を用い、焼
鈍温度を600℃以上とする前記(1)又は(2)記載
の磁界中焼鈍方法。
(4) The magnetic field annealing method according to the above (1) or (2), wherein an iron core made of an electromagnetic steel sheet is used and the annealing temperature is 600 ° C. or more.

【0008】(5) 巻線に通電する電流のピーク値を
制御して、発生する磁界の最大値が室温において鉄心材
料の有する保磁力の2倍以上の値となるようにすると共
に、前記電流の波形を変化させて電流の実効値を変化さ
せることにより、鉄心の加熱温度を制御することを特徴
とする前記(1)、(2)、(3)又は(4)記載の磁
界中焼鈍方法。
(5) The peak value of the current flowing through the winding is controlled so that the maximum value of the generated magnetic field is at least twice the coercive force of the iron core material at room temperature. The method according to (1), (2), (3) or (4), wherein the heating temperature of the iron core is controlled by changing the effective value of the current by changing the waveform. .

【0009】[0009]

【発明の実施の形態】鉄心はモータ、アクチュエータ、
変圧器等のエネルギー変換装置に用いられるもの、イン
ダクタ、リアクトル等の電気回路、制御回路の素子に用
いられるもの、センサに用いるもの、また磁束或いは磁
界発生の為に使用されるもので、鉄心に発生する磁束や
磁界の動作を用いたり、磁気現象を用いて検知したい物
理量、化学量を検出したりするために用いられるもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION A core is a motor, an actuator,
Used for energy conversion devices such as transformers, electric circuits such as inductors and reactors, used for control circuit elements, used for sensors, and used for generating magnetic flux or magnetic field. It is used to detect the physical quantity or chemical quantity to be detected by using the operation of the generated magnetic flux or magnetic field, or by using the magnetic phenomenon.

【0010】鉄心は一般の軟質磁性材料であり、非晶質
磁性材料、電磁鋼板やその積層体であり、また複数の分
割鉄心を組み合わせたものでも良い。
The iron core is a general soft magnetic material, and may be an amorphous magnetic material, an electromagnetic steel sheet or a laminate thereof, or may be a combination of a plurality of divided iron cores.

【0011】鉄心素材としては電磁鋼が一般的であり、
Siを含んだ珪素鋼板、Siを含まなくあるいは殆ど含
まない冷延鋼板、電磁厚板であり、板状、塊状、線状の
ものでも良い。電磁鋼の製造方法はどのような方法でも
良い。板状の電磁鋼板ではどのような板厚でも良く、一
般に使用される0.35mm、0.5mm以外の0.2mm以
下の薄板も含まれる。電磁鋼板には無方向性電磁鋼板、
方向性電磁鋼板、二方向性電磁鋼板等があるがどのよう
な集合組織を有する電磁鋼板であっても良い。
[0011] Electromagnetic steel is generally used as the iron core material.
It is a silicon steel sheet containing Si, a cold rolled steel sheet containing little or no Si, or an electromagnetic thick plate, and may be a plate-shaped, lump-shaped, or linear-shaped one. The method for producing the electromagnetic steel may be any method. The plate-shaped electromagnetic steel sheet may have any thickness, and includes a thin plate having a thickness of 0.2 mm or less other than the commonly used 0.35 mm and 0.5 mm. Non-oriented electrical steel sheet,
There are a grain-oriented electrical steel sheet, a bi-directional electrical steel sheet and the like, but an electrical steel sheet having any texture may be used.

【0012】本発明において、鉄心を磁界中焼鈍するに
あたり、磁界発生のための巻線が鉄心を焼鈍するための
発熱手段であることが特徴である。巻線によって鉄心を
発熱させる方法は、巻線自体が発熱体である場合と巻線
による高周波加熱の場合とがある。発熱体はどのような
発熱体でも良く、ニクロム線、カンタル線、シリコニッ
トなどが用いられるが、流す電流と発熱量を最適にでき
る発熱体の素材を選定すると良い。高周波加熱を用いる
場合、巻線により高周波磁界を発生させ、鉄心に生じる
鉄損による発熱を利用する。磁界中焼鈍に使用する磁界
は直流だけでなく、交番磁界や回転磁界でも良い。
In the present invention, when the iron core is annealed in a magnetic field, the winding for generating the magnetic field is a heat generating means for annealing the iron core. The method of heating the iron core by the winding includes a case where the winding itself is a heating element and a case where high frequency heating is performed by the winding. As the heating element, any heating element may be used, such as a nichrome wire, a Kanthal wire, or a silicon knit. When high-frequency heating is used, a high-frequency magnetic field is generated by a winding, and heat generated by iron loss generated in an iron core is used. The magnetic field used in the magnetic field annealing may be not only a direct current but also an alternating magnetic field or a rotating magnetic field.

【0013】磁界中焼鈍に用いる磁界は鉄心を実際に使
用する場合の磁束流れに対応したものであると良い。焼
鈍温度は実施例2に示されるようにキュリー点より10
0℃低い温度以上であると効果が大きい。再結晶等で鉄
心の磁気特性に悪い影響を与えない限りにおいて焼鈍温
度を高くすることができる。電磁鋼板で構成されている
鉄心において、焼鈍温度が実施例3のように600℃以
上であると良い。冷却時にも磁界が印加されていること
が好ましいが、磁界中焼鈍効果がない低温度域では必ず
しも磁界を一定以上に維持する必要はない。
The magnetic field used for the annealing in the magnetic field preferably corresponds to the magnetic flux flow when the iron core is actually used. The annealing temperature was set at 10 from the Curie point as shown in Example 2.
If the temperature is lower than 0 ° C., the effect is great. The annealing temperature can be increased as long as recrystallization or the like does not adversely affect the magnetic properties of the iron core. In the iron core made of the magnetic steel sheet, the annealing temperature is preferably 600 ° C. or more as in the third embodiment. It is preferable that a magnetic field is applied during cooling, but it is not always necessary to maintain the magnetic field at a certain level or more in a low temperature range where there is no annealing effect in a magnetic field.

【0014】本発明は、加熱と磁界印加との双方を巻線
に流す電流によって行うものであるが、該電流は周期的
に所定の値以上に維持し、また該電流の波形を制御して
加熱温度の制御を行うことが好ましい。ここで、所定の
値とは磁界中焼鈍に必用な最低の電流値であって、巻線
に通電することによって発生する磁界の最大値が、常温
において鉄芯材料が有する保磁力の2倍以上の値を保つ
ことができる最小の電流値のことをいう。なお、鉄芯材
料が有する保磁力とは、励磁最大磁界/保磁力>10と
なるように励磁した場合の値をいうものとする。このよ
うに、鉄芯材料が有する保磁力の2倍以上の磁界を印加
しながら磁界中焼鈍を行うようにするのは、それ未満の
磁界を印加しても鉄芯材料は十分に励磁されず、磁界方
向に所望の磁束密度を得ることができないためである。
In the present invention, both heating and application of a magnetic field are performed by a current flowing through a winding. The current is periodically maintained at a predetermined value or more, and the waveform of the current is controlled. It is preferable to control the heating temperature. Here, the predetermined value is the minimum current value necessary for annealing in a magnetic field, and the maximum value of the magnetic field generated by energizing the winding is at least twice the coercive force of the iron core material at room temperature. Is the minimum current value that can maintain the value of. Note that the coercive force of the iron core material refers to a value when excited so that the maximum magnetic field of excitation / coercive force> 10. As described above, annealing in a magnetic field while applying a magnetic field that is at least twice the coercive force of the iron core material is not performed sufficiently even when a magnetic field less than that is applied. This is because a desired magnetic flux density cannot be obtained in the magnetic field direction.

【0015】また、電流の波形を制御して加熱温度の制
御を行うには、電流型のパルス幅変調法(PWM法)を
用いればよい。PWM法を用いて巻線の抵抗発熱量を制
御する場合には、変調のデューティを大きくすればピー
ク電流の大きさが一定でも加熱を強くでき、変調のデュ
ーティを小さくすればピーク電流の大きさが一定でも加
熱を弱くでき、また冷却過程も制御できる。一方、電流
の周期があまりに短くなると鉄芯内に渦電流損が発生
じ、鉄芯に磁束が流れ難くなるので、ピーク値の周期は
室温で磁束が応答できる時間よりも長い方がよいが、あ
まり長くすると磁界中焼鈍の効果が低減するので、磁界
中焼鈍の効果を維持できる範囲とする必要がある。ま
た、ピーク電流の値を十分大きくして磁界中焼鈍効果を
十分に確保した上で、ピーク値の周期が短い高周波数の
電流を用いる方法もある。
In order to control the heating temperature by controlling the current waveform, a current-type pulse width modulation method (PWM method) may be used. When the resistance heating value of the winding is controlled by using the PWM method, the heating can be increased even if the magnitude of the peak current is constant by increasing the modulation duty, and the magnitude of the peak current can be increased by decreasing the modulation duty. Even if the temperature is constant, the heating can be weakened and the cooling process can be controlled. On the other hand, if the cycle of the current is too short, eddy current loss occurs in the iron core, making it difficult for the magnetic flux to flow through the iron core.Therefore, the cycle of the peak value should be longer than the time at which the magnetic flux can respond at room temperature. If the length is too long, the effect of annealing in a magnetic field is reduced. Therefore, it is necessary to set the range so that the effect of annealing in a magnetic field can be maintained. There is also a method of using a high-frequency current having a short peak value cycle after sufficiently increasing the peak current value to sufficiently secure the annealing effect in a magnetic field.

【0016】[0016]

【実施例】[実施例1]EI鉄心を磁界中焼鈍する実施
例を図1に示す。EI鉄心1、2は二方向性電磁鋼板か
らつくられたもので、発熱線3、4に電流を流し、EI
鉄心1、2を加熱する。この3、4は磁界発生用巻線も
兼ねており、焼鈍時には磁束5、6を発生させているの
で、磁界中焼鈍される。発熱線3、4に電流を流し、8
00℃で2時間焼鈍する。この場合、発熱線3、4に流
す電流は周波数50Hzの矩形パルスであり、パルス幅
制御で電流の実効値を調整し、温度調整した。その後、
パルス電流のピーク値は一定で、パルス幅を狭くするこ
とにより、加熱量を減少させ、100℃/時間で冷却し
た。従来の焼鈍方法(磁界発生巻き線を別途施した方
法)で焼鈍した場合と比較して、本発明の磁界中焼鈍を
施したものは殆ど磁気特性に差が無く、同等の効果が得
られた。
Embodiment 1 FIG. 1 shows an embodiment in which an EI iron core is annealed in a magnetic field. The EI cores 1 and 2 are made of a bi-directional electrical steel sheet.
Heat the iron cores 1 and 2. These windings 3 and 4 also serve as magnetic field generating windings, and generate magnetic fluxes 5 and 6 at the time of annealing, so that they are annealed in a magnetic field. Apply current to the heating wires 3 and 4
Anneal at 00 ° C. for 2 hours. In this case, the current flowing through the heating wires 3 and 4 was a rectangular pulse having a frequency of 50 Hz, and the effective value of the current was adjusted by pulse width control to adjust the temperature. afterwards,
The peak value of the pulse current was constant, the amount of heating was reduced by narrowing the pulse width, and cooling was performed at 100 ° C./hour. Compared to the case of annealing by the conventional annealing method (a method in which a magnetic field generating winding is separately applied), the one subjected to the magnetic field annealing of the present invention has almost no difference in magnetic properties, and the same effect is obtained. .

【0017】[実施例2]巻鉄心を磁界中焼鈍する実施
例を図2に示す。鉄心11は鉄系非晶質磁性材料Fe
80.57 Si120.5 (キュリー温度410℃)でつく
られたもので、発熱線12に電流を流し、鉄心11を3
75℃に加熱する。この12は磁界発生用巻線も兼ねて
おり、焼鈍時に磁界を発生させているので、磁界中焼鈍
される。この場合、発熱線12に電流を流す電源はキャ
リア周波数1kHzの電流型パルス幅制御で調整され
る。その後、パルス電流のピーク値は一定で、パルス幅
を狭くすることにより、加熱量を減少させ、100℃/
時間で冷却した。従来の磁界中焼鈍と遜色ない磁気特性
が得られた。
Embodiment 2 FIG. 2 shows an embodiment in which a wound iron core is annealed in a magnetic field. The iron core 11 is made of an iron-based amorphous magnetic material Fe
It is made of 80.5 B 7 Si 12 C 0.5 (Curie temperature 410 ° C).
Heat to 75 ° C. The reference numeral 12 also serves as a magnetic field generating winding and generates a magnetic field during annealing, so that it is annealed in a magnetic field. In this case, a power supply for supplying a current to the heating wire 12 is adjusted by current-type pulse width control at a carrier frequency of 1 kHz. After that, the peak value of the pulse current is constant, and the pulse width is narrowed to reduce the amount of heating, and 100 ° C /
Cooled in time. Magnetic properties comparable to conventional magnetic field annealing were obtained.

【0018】焼鈍温度375℃以外にキュリー温度より
100℃低い温度からキュリー温度以上でも実施した結
果を表1に示す。キュリー温度より100℃低い温度3
10℃でも磁束密度、鉄損とも改善されていることが分
かる。
Table 1 shows the results obtained when the temperature was lower than the Curie temperature by 100 ° C. and higher than the Curie temperature in addition to the annealing temperature of 375 ° C. Temperature 3 which is 100 ℃ lower than Curie temperature
It can be seen that even at 10 ° C., both the magnetic flux density and the iron loss are improved.

【0019】次に、印加する磁界の実効値を変化させて
行った磁界中焼鈍の結果を表2に示す。印加磁場が40
0A/mと1200A/mの磁界中焼鈍は本発明の方法
で行い、それ以外は比較例である。比較例では、従来通
り加熱炉を用いて無磁界で焼鈍を行うか、或いは従来通
り、通常の磁界印加用の巻線により磁界を印加すると共
に加熱炉を用いて磁界中焼鈍を行った。
Next, Table 2 shows the results of annealing in a magnetic field performed by changing the effective value of the applied magnetic field. Applied magnetic field is 40
Annealing in a magnetic field of 0 A / m and 1200 A / m was performed by the method of the present invention, and the others were comparative examples. In the comparative example, annealing was performed without a magnetic field using a heating furnace as in the related art, or annealing in a magnetic field was performed using a heating furnace and applying a magnetic field using a normal magnetic field application winding as in the related art.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [実施例3]無方向性電磁鋼板50A700からなるE
I鉄心を本発明の方法で磁界中焼鈍した。方法は実施例
1と同じであり、焼鈍温度を変化させた。無焼鈍の場合
の鉄損値に対して、600℃では0.9倍、700℃で
は0.75倍、750℃では0.65倍の鉄損を示し、
無方向性電磁鋼板の場合、磁界中焼鈍の温度は600℃
以上で効果があることが分かる。
[Table 2] Example 3 E made of non-oriented electrical steel sheet 50A700
The iron core was annealed in a magnetic field by the method of the present invention. The method was the same as in Example 1, except that the annealing temperature was changed. With respect to the iron loss value in the case of no annealing, the iron loss is 0.9 times at 600 ° C., 0.75 times at 700 ° C., and 0.65 times at 750 ° C.
In the case of non-oriented electrical steel sheet, the temperature of magnetic field annealing is 600 ° C.
It can be seen that the above is effective.

【0022】[0022]

【本発明の効果】本発明による磁界中焼鈍は、加熱に使
用される発熱線で、磁界中焼鈍する為の磁界発生も同時
に行われるので、別に磁界発生のための巻線を設けるこ
となく、加熱のための電源と磁界発生の電源を共用でき
る。従って、焼鈍炉を必要とせず、非常に経済的であ
る。
The magnetic field annealing according to the present invention is a heating wire used for heating, and a magnetic field for annealing in the magnetic field is also generated at the same time, so that no separate winding for generating a magnetic field is provided. A power supply for heating and a power supply for generating a magnetic field can be shared. Therefore, it does not require an annealing furnace and is very economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】EI鉄心を磁界中焼鈍する実施例。FIG. 1 shows an embodiment in which an EI core is annealed in a magnetic field.

【図2】巻鉄心を磁界中焼鈍する実施例。FIG. 2 shows an embodiment in which a wound core is annealed in a magnetic field.

【符号の説明】[Explanation of symbols]

1、2、11:鉄心 3、4、12:発熱線兼磁界発生用巻線 5、6 :磁束 1, 2, 11: Iron core 3, 4, 12: Heating wire and magnetic field generating winding 5, 6: Magnetic flux

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄心に磁界を印加しながら焼鈍する鉄心
の磁界中焼鈍方法において、鉄心に印加する磁界をコイ
ルによって発生すると共に、前記コイルからの発熱若し
くは前記コイルからの高周波磁場印加によって鉄心を加
熱して焼鈍することを特徴とする磁界中焼鈍方法。
In a method for annealing a core in a magnetic field, wherein the magnetic field is applied to the core by applying a magnetic field to the core, a magnetic field to be applied to the core is generated by a coil, and the core is heated by the coil or by applying a high-frequency magnetic field from the coil. A method for annealing in a magnetic field, comprising annealing by heating.
【請求項2】 鉄心に印加する磁界が、製品の使用状態
における磁束流れに相当することを特徴とする請求項1
記載の磁界中焼鈍方法。
2. The magnetic field applied to an iron core corresponds to a magnetic flux flow in a use state of a product.
The described annealing method in a magnetic field.
【請求項3】 焼鈍温度が鉄心材料のキュリー点より1
00℃低い温度以上とすることを特徴とする請求項1又
は2記載の磁界中焼鈍方法。
3. The annealing temperature is set at 1 from the Curie point of the iron core material.
3. The method for annealing in a magnetic field according to claim 1, wherein the temperature is lower by at least 00.degree.
【請求項4】 電磁鋼板からなる鉄心を用い、焼鈍温度
を600℃以上とする請求項1又は2記載の磁界中焼鈍
方法。
4. The method for annealing in a magnetic field according to claim 1, wherein an annealing temperature is set to 600 ° C. or more using an iron core made of an electromagnetic steel sheet.
【請求項5】 巻線に通電する電流のピーク値を制御し
て、発生する磁界の最大値が室温において鉄心材料の有
する保磁力の2倍以上の値となるようにすると共に、前
記電流の波形を変化させて電流の実効値を変化させるこ
とにより、鉄心の加熱温度を制御することを特徴とする
請求項1、2、3又は4記載の磁界中焼鈍方法。
5. A method for controlling a peak value of a current flowing through a winding so that a maximum value of a generated magnetic field is equal to or more than twice a coercive force of an iron core material at room temperature. 5. The magnetic field annealing method according to claim 1, wherein the heating temperature of the iron core is controlled by changing the waveform to change the effective value of the current.
JP14129998A 1998-05-22 1998-05-22 Method of annealing iron core in magnetic field Pending JPH11341749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14129998A JPH11341749A (en) 1998-05-22 1998-05-22 Method of annealing iron core in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14129998A JPH11341749A (en) 1998-05-22 1998-05-22 Method of annealing iron core in magnetic field

Publications (1)

Publication Number Publication Date
JPH11341749A true JPH11341749A (en) 1999-12-10

Family

ID=15288662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14129998A Pending JPH11341749A (en) 1998-05-22 1998-05-22 Method of annealing iron core in magnetic field

Country Status (1)

Country Link
JP (1) JPH11341749A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064228A1 (en) * 2003-01-14 2004-07-29 Toyo Tessin Kogyo Co., Ltd. Stator for motor and process for producing the same
KR100544750B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet
KR100544751B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet
KR100544741B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for manufacturing non- oriented electrical steel sheet having low iron loss
KR100544640B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet to improve magnetic properties and magnetic annealing apparatus used therein
JP2019106756A (en) * 2017-12-08 2019-06-27 トヨタ自動車株式会社 Manufacturing method of stator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544640B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet to improve magnetic properties and magnetic annealing apparatus used therein
KR100544750B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet
KR100544751B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for magnetic annealing non- oriented electrical steel sheet
KR100544741B1 (en) * 2001-12-26 2006-01-24 주식회사 포스코 Method for manufacturing non- oriented electrical steel sheet having low iron loss
WO2004064228A1 (en) * 2003-01-14 2004-07-29 Toyo Tessin Kogyo Co., Ltd. Stator for motor and process for producing the same
JP2004328986A (en) * 2003-01-14 2004-11-18 Toyo Tetsushin Kogyo Kk Stator core for motor and its manufacturing method
US6938324B2 (en) 2003-01-14 2005-09-06 Toyo Tessin Kogyo Co., Ltd. Method of manufacturing a stator core
JP2019106756A (en) * 2017-12-08 2019-06-27 トヨタ自動車株式会社 Manufacturing method of stator

Similar Documents

Publication Publication Date Title
JP2007107096A (en) Soft magnetic alloy, its production method and magnetic component
JPH0777167B2 (en) Magnetic core parts
JPH11341749A (en) Method of annealing iron core in magnetic field
JP2004328986A (en) Stator core for motor and its manufacturing method
JP6878351B2 (en) motor
JP2006249555A (en) Silicon steel sheet having low core loss in high frequency region and method for producing the same
JPH11340030A (en) High-performance iron core
JP3210776B2 (en) Magnetic material using amorphous magnetic alloy, method for producing magnetic material
JPH0552652B2 (en)
CN102220475B (en) Thin steel wire secondary heating treatment method and device
JP2002194429A (en) Heating device of metal coiled in ring or cylindrical form
JP2005206906A (en) Method for induction-heating steel sheet
KR100544751B1 (en) Method for magnetic annealing non- oriented electrical steel sheet
US20220298615A1 (en) Methods of Modifying a Domain Structure of a Magnetic Ribbon, Manufacturing an Apparatus, and Magnetic Ribbon Having a Domain Structure
JPS6159812A (en) Manufacture of core
KR100544750B1 (en) Method for magnetic annealing non- oriented electrical steel sheet
JP2007282340A (en) Method for annealing stator core for motor
KR100544640B1 (en) Method for magnetic annealing non- oriented electrical steel sheet to improve magnetic properties and magnetic annealing apparatus used therein
KR100544742B1 (en) Method for manufacturing non- oriented electrical steel sheet
JPS6137925A (en) Heat treatment of iron core
JPS61181116A (en) Manufacture of rolled iron core
Tsuchida et al. Relationship between Temperature Control and Iron Loss Reduction by Secondary Current Heating Method
KR100544741B1 (en) Method for manufacturing non- oriented electrical steel sheet having low iron loss
JPH08170119A (en) Annealing of iron core
KR100940721B1 (en) Method of magnetic flux-heating treatment FOR electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Effective date: 20070621

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070629

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070720

Free format text: JAPANESE INTERMEDIATE CODE: A912