JPS59123719A - Method for annealing iron core for electric apparatus - Google Patents

Method for annealing iron core for electric apparatus

Info

Publication number
JPS59123719A
JPS59123719A JP21220182A JP21220182A JPS59123719A JP S59123719 A JPS59123719 A JP S59123719A JP 21220182 A JP21220182 A JP 21220182A JP 21220182 A JP21220182 A JP 21220182A JP S59123719 A JPS59123719 A JP S59123719A
Authority
JP
Japan
Prior art keywords
iron core
annealing
flux density
magnetic flux
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21220182A
Other languages
Japanese (ja)
Other versions
JPH0313294B2 (en
Inventor
Masami Wada
正美 和田
Yoshihiro Igarashi
吉広 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21220182A priority Critical patent/JPS59123719A/en
Publication of JPS59123719A publication Critical patent/JPS59123719A/en
Publication of JPH0313294B2 publication Critical patent/JPH0313294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain an iron core for an electric apparatus having a reduced iron loss and improved magnetic flux density in a weak magnetic field without reducing the magnetic flux density in a strong magnetic field by restricting the time required to heat an iron core at a fixed temp. or above when the iron core is annealed. CONSTITUTION:When an iron core is annealed by induction heating, the temp. T deg.C of the core is adjusted to 720-850 deg.C, and the time the core is heated at a temp. above T deg.C is restricted to -0.37XT deg.C+320min. By the restriction an iron core having superior magnetic characteristics is obtd. without using any special equipment and material. When the upper limit of the temp. of the iron core exceeds 850 deg.C, the interlaminar insulating films are deteriorated, exerting unfavorable influence.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、王として、小形電動機や小形変圧器等の電気
機器に用いられる鉄心の・焼鈍方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention primarily relates to an annealing method for iron cores used in electrical equipment such as small electric motors and small transformers.

従来汐11の構成とその問題点 交流電気機器の鉄心は王として電磁鋼板を使用している
が、加工歪の除去並びに磁気特性改善を目的として焼鈍
を施こすことが多いO特に、機器の高効率化傾向の強い
昨今では、コストを考慮すると、鉄心の焼鈍(は不可欠
であると云えるOこの焼鈍は、一般には電気抵抗発熱、
ガスや石油の燃焼熱によって雰囲気全加熱し、さらに鉄
心を加熱するという間接加熱法が主として採用されてい
るOこの焼鈍により磁気特性は、材料によっても多少の
差異はあるが、鉄損の低下と、低磁場での磁束密度の上
昇が起る。特に鉄損の低下による電気機器の特性向上効
果は最大の利点である。しかし、従来からの焼鈍には、
次の二つの問題点かある。
Conventional structure of Shio 11 and its problems Electrical steel sheets are used as the core of AC electrical equipment, but they are often annealed to remove processing distortion and improve magnetic properties. Nowadays, when there is a strong trend towards efficiency, it can be said that annealing of the iron core is indispensable when considering cost.
An indirect heating method is mainly used, in which the entire atmosphere is heated by the combustion heat of gas or oil, and the iron core is further heated.This annealing improves the magnetic properties, although there are some differences depending on the material, and reduces iron loss. , an increase in magnetic flux density occurs at low magnetic fields. In particular, the greatest advantage is the effect of improving the characteristics of electrical equipment by reducing iron loss. However, in conventional annealing,
There are two problems:

まず第一に、間接加熱のため、加熱効率が低く一加熱に
長時間要し、(例えは4〜6時間)かつ消費エネルギー
量も莫大である。この解決策として加熱時間の大巾短縮
及び消費エネルギーの節約を可能とした誘導加熱法によ
る焼鈍方法か注目されているか、磁気特性のすぐれた鉄
ノL・を得るためにId解決すべき課題も多いものであ
った。第二の問題点は、焼鈍によって高磁場での磁束密
度の低下である。この磁束密度の低下量は、Bso(5
00゜A/m )で0,02〜o、o3Tであり、鉄損
の低下によるメリットと比較すると太きいものではない
が、高効率化ニーズの強さからみれば決して小さいもの
ではない。この磁束密度低下対策として、あらかじめ材
料の磁束密度を高いものにする方法は種々提案されてい
るが、現時点で(はコスト高になり不利である。高効率
化を限られたコスト、及び鉄心寸法(製品寸法との関係
か′ら)で実現するためには、この磁束密度の低下は大
きな障害である。
First of all, because of indirect heating, the heating efficiency is low and one heating takes a long time (for example, 4 to 6 hours), and the amount of energy consumed is enormous. As a solution to this problem, the annealing method using induction heating is attracting attention as it can greatly shorten the heating time and save energy consumption, and there are also issues that need to be solved in order to obtain iron alloys with excellent magnetic properties. There were many. The second problem is a decrease in magnetic flux density in high magnetic fields due to annealing. The amount of decrease in this magnetic flux density is Bso(5
It is 0.02 to 0.03T at 00°A/m2), which is not large compared to the merit of reducing iron loss, but it is by no means small in view of the strong need for higher efficiency. As a countermeasure against this decrease in magnetic flux density, various methods have been proposed to increase the magnetic flux density of the material in advance, but at present, it is disadvantageous due to high cost. This reduction in magnetic flux density is a major obstacle to achieving this (due to its relationship with product dimensions).

第1図に従来法の焼鈍熱一時間サイクルパターンを示す
。炉の構造、能力によっても多少の差異はあるが、一般
的焼鈍条件は、加熱4〜5時間。
FIG. 1 shows a one-hour cycle pattern of annealing heat in the conventional method. Although there are some differences depending on the structure and capacity of the furnace, the general annealing conditions are heating for 4 to 5 hours.

均熱γ50℃〜soo℃1〜2時間、冷却4〜6時間の
総計10〜12時間である。この方法Qてよって焼鈍を
した場合の磁化特性の一例を第2図に示す。焼鈍によっ
て低礎場(第2図では10A/m以下)では焼鈍によっ
て大巾に磁束密度が高くなっているが、高磁場(10A
/m 以−ヒ)で(d低下している。一般に、焼鈍によ
って磁束密度が低下するのは、集合組織によると考えら
れている。すなわち、焼鈍によって結晶粒の成長が起シ
、成長か進むと2粒界周辺から(111)面が集積し、
この(111)面は磁化容易軸(oo1]を全く含まな
い。そのため特に高磁場での磁束密度は低くなると推測
される。焼鈍時の結晶粒成長度は、焼鈍温度や均熱時間
等の被処理材の受ける熱エネルギー量により決定される
他、材料の製造プロセスによっても決定される。従来法
での焼鈍では一生産性や炉の構造から鉄心コア一枚一枚
の7ビアな温度1時間制個1は不可能であり、鉄損を可
能な限り低下させかつ磁束密度の低下も防止することは
実際上不可能であった。
The total time is 10 to 12 hours, including soaking for 1 to 2 hours at 50°C to 50°C and cooling for 4 to 6 hours. An example of the magnetization characteristics when annealed by this method Q is shown in FIG. Due to annealing, the magnetic flux density increases significantly in a low field (below 10 A/m in Figure 2), but in a high magnetic field (10 A/m or less)
/m (I - H) (d decreases). Generally, it is thought that the decrease in magnetic flux density due to annealing is due to the texture. In other words, annealing causes the growth of crystal grains, and the growth progresses. and (111) planes accumulate from around the two grain boundaries,
This (111) plane does not contain any easy axis of magnetization (oo1). Therefore, it is assumed that the magnetic flux density is particularly low in high magnetic fields. The degree of grain growth during annealing is influenced by the annealing temperature, soaking time, etc. In addition to being determined by the amount of thermal energy received by the treated material, it is also determined by the manufacturing process of the material.In conventional annealing methods, the temperature of 7 vias of each iron core for 1 hour is determined due to productivity and furnace structure. It is impossible to achieve the single-metal control 1, and it is practically impossible to reduce iron loss as much as possible and also prevent a decrease in magnetic flux density.

発明の目的 本発明は、上記従来の問題点に鑑みてなされたもので、
高磁場での磁束密度を低下さぜす、鉄損の低減や低凪場
での磁束密度を改善し得る焼鈍方法を提供するものであ
る。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The present invention provides an annealing method that reduces the magnetic flux density in a high magnetic field, reduces iron loss, and improves the magnetic flux density in a low calm field.

発明の構成 本発明は、鉄心の焼鈍に際し、鉄心温度が720℃以上
での加熱、冷却所要時間を一定以内に限定するもので、
これにより磁気特性のすぐれた鉄心を供給するものであ
る。
Structure of the Invention The present invention limits the time required for heating and cooling within a certain range when the core temperature is 720°C or higher when annealing the core.
This provides an iron core with excellent magnetic properties.

実施例の説明 以下1本発明の実施例を添付図面を参照して説明する。Description of examples An embodiment of the present invention will be described below with reference to the accompanying drawings.

1ず、本発明は誘導加熱法による焼鈍では、鉄Iし自身
が発熱し、かつその速度も投入電力量他で答易に制御で
きる利点があることに基づいてなされたものである。こ
の利点を利用すれは、ンビアな制御jにより結晶粒成長
度も制御できるため、(111)面の集積度もおさえる
ことが可能であろうとの推定より実験を行い確認をした
。第3図(で実験での誘導加熱焼鈍サイクルパターン示
す。
First, the present invention is based on the fact that in annealing by induction heating, the iron itself generates heat, and the rate of heat generation can be easily controlled by adjusting the input power amount and other factors. By utilizing this advantage, since the degree of crystal grain growth can also be controlled by the uniform control j, it was assumed that it would be possible to suppress the degree of integration of the (111) plane, and this was confirmed through experiments. Figure 3 shows the experimental induction heating annealing cycle pattern.

結晶粒の成長は一誘導加熱法の利点を活す範囲内の時間
(一応60分以内)では720゛C以上で起こることを
あらかじめ確認した。そこで、72゜“C以上の鉄ノし
・温度(T″C)(である時間(第3図Tm )と磁束
密度の関係について実験した一例を第4図に示す。80
0℃以上の時間では材料によって多少の差はあるが、1
0〜16分以上で磁束密度は低下する。図中供試材1は
あらかじめ(100)面(磁化容易軸〔001〕を含む
)の集積度を上げたもの、供試材2は一般的材料(例え
は530)である。Tm  が温度T (”C)によっ
て変化することを示したのが第6図である。以上の結果
から、磁束密度低下を最小限におさえる時間は、鉄心温
度(T’C)の関数として(1)式に示す。
It was previously confirmed that the growth of crystal grains occurs at temperatures of 720°C or higher within the time range (within 60 minutes) that takes advantage of the induction heating method. Therefore, an example of an experiment conducted on the relationship between time (Tm in Figure 3) and magnetic flux density is shown in Figure 4.80
Although there are some differences depending on the material at temperatures above 0℃, 1
The magnetic flux density decreases after 0 to 16 minutes. In the figure, sample material 1 is one in which the degree of integration of the (100) plane (including the axis of easy magnetization [001]) has been increased in advance, and sample material 2 is a general material (for example, 530). Figure 6 shows that Tm changes with temperature T ('C). From the above results, the time to minimize the decrease in magnetic flux density is expressed as ( 1) It is shown in the formula.

Tm  =  −0,3了・T +320・・・・・・
・・・・・ ・・(1)本発明の一実施例として、最高
温度800℃Tm=5分、加熱5分、冷却(2oo”(
1):で)45分のときの磁化特性を第6図に示し、鉄
損特性を第7図に示す。なお、第6図、第7図において
、Aは焼鈍前の特性、Bは本発明による特性、Cは従来
法による特性を示すものである。壕だ、供試材はJIS
−C;2554r小形電動機用磁性鋼帯」のS40相当
のものである。一般的に使用される磁束密度1.2〜1
.7Tでは一従来法よりすぐれている。又、鉄損特性で
は、1.3〜1.4T以下では従来法が若干良いが、そ
れ以上の磁束密度ではむしろ本発明の方が低い。との磁
気特性の鉄心にてコンデンサモータ2 P 、 150
Wf、z試作し特性を測定した。その結果を下表に示す
O本発明の実施例では、磁束密度が従来法より高いため
、励磁電流が減少して、−次銅横が低下し、さら1て、
鉄JThK於ても減少している。これは、このモータが
比較的磁束密度が高い(1,5〜1.7T)ため、本発
明の効果がより大きく出ているものであるが、本発明の
有効性を明らかにするものである。
Tm = -0,3 completed・T +320...
... (1) As an example of the present invention, maximum temperature 800°C Tm = 5 minutes, heating 5 minutes, cooling (2oo")
1):) The magnetization characteristics at 45 minutes are shown in FIG. 6, and the iron loss characteristics are shown in FIG. In FIGS. 6 and 7, A shows the characteristics before annealing, B shows the characteristics according to the present invention, and C shows the characteristics according to the conventional method. It's a trench, the test material is JIS.
-C: It is equivalent to S40 of 2554r magnetic steel strip for small electric motors. Commonly used magnetic flux density 1.2~1
.. 7T is superior to a conventional method. In addition, in terms of iron loss characteristics, the conventional method is slightly better at a magnetic flux density of 1.3 to 1.4 T or less, but the present invention is rather lower at magnetic flux densities higher than that. Capacitor motor 2P, 150 with iron core of magnetic properties
A prototype of Wf,z was manufactured and its characteristics were measured. The results are shown in the table below. In the example of the present invention, the magnetic flux density is higher than that of the conventional method, so the excitation current decreases, the -thickness decreases, and furthermore,
Iron JThK is also decreasing. This is because this motor has a relatively high magnetic flux density (1.5 to 1.7 T), so the effect of the present invention is even greater, and this clearly demonstrates the effectiveness of the present invention. .

1QOv50H2 第8図に一第6図、第7図に示したものの金属組織を示
す。なお、第8図において、(a)は焼鈍削の、(b)
は本発明の、(C)は従来法の供試材の金属組織を示す
。図示する如く、焼鈍削に比較して若干結晶粒が成長し
ているが、従来法と比較すると明らかに結晶粒径は小さ
い。
1QOv50H2 Figure 8 shows the metal structure of the metal shown in Figures 6 and 7. In addition, in Fig. 8, (a) shows the annealing process, and (b) shows the annealing process.
(C) shows the metal structure of the sample material of the present invention, and (C) shows the metal structure of the sample material of the conventional method. As shown in the figure, the crystal grains grow slightly compared to annealing, but the crystal grain size is clearly smaller than that of the conventional method.

発明の詳細 な説明したごとく本発明によれば、特殊な設備や材料に
よらず、磁気特性のすぐれた鉄心を供給することが可能
であり、高効率化ニーズの対応に大変有利である。尚、
本発明の鉄心温度の上限t、(s s o ”Cとした
のは、それ以上の高温では、電気鉄板の表面にある層間
絶縁皮膜が著しく劣化し、−場合によっては剥離するこ
ともあるためである。
As described in detail, according to the present invention, it is possible to supply an iron core with excellent magnetic properties without using special equipment or materials, and it is very advantageous in meeting the need for higher efficiency. still,
The reason why the upper limit of the iron core temperature of the present invention is set as t, (s s o ”C) is because at higher temperatures, the interlayer insulation film on the surface of the electric iron plate will deteriorate significantly, and in some cases, it may peel off. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法による焼鈍のサイクルパターンを示す図
、第2図は従来法による焼鈍前後の磁化特性の一例を示
す図−第3図は本発明にかかる誘導加熱焼鈍実験のサイ
クルパターンを示す図、第4図は同実験結果の一例で鉄
心温度(T’C)が800℃以上の時間Tm (分)と
磁束密度の関係を示す図、第6図は同実験結果の一例で
磁束密度が低下しない鉄心温度(T″C)と時間(Tm
分)の関係を示す図、第6図は本発明の実施例と従来法
と磁化特性の比較を示す図、第7図は本発明の実施例と
従来法との鉄損特性の比較を示す図−第<a)、(b)
、(cン 8図は同比較に用いる供試材の金属組織を示す顕微鏡写
真である。 代理人の氏名 弁理士 中 尾 敏 男 はが1名@ 
1 図 第 2 図 H(A/rn) 第5図 1■七λi−関 (分) M 6 図 不ム化カH(A7n)ノ 第7図 4八東茅窪B CT) 第“8 t’<1
Figure 1 is a diagram showing a cycle pattern of annealing by a conventional method, Figure 2 is a diagram showing an example of magnetization characteristics before and after annealing by a conventional method, and Figure 3 is a diagram showing a cycle pattern of an induction heating annealing experiment according to the present invention. Figure 4 is an example of the results of the same experiment, which shows the relationship between the time Tm (minutes) during which the iron core temperature (T'C) is 800°C or higher, and magnetic flux density, and Figure 6 is an example of the results of the same experiment, which shows the relationship between magnetic flux density. Iron core temperature (T″C) and time (Tm
Figure 6 is a diagram showing a comparison of magnetization characteristics between an embodiment of the present invention and a conventional method, and Figure 7 is a diagram showing a comparison of iron loss characteristics between an embodiment of the present invention and a conventional method. Figure - Part <a), (b)
, (Figure c-8 is a micrograph showing the metallographic structure of the sample material used for the same comparison. Name of agent: Patent attorney Toshio Nakao, 1 person @
1 Fig. 2 Fig. H (A/rn) Fig. 5 1■7λi-Seki (minute) M 6 Fig. 7 4 Higashi Kayakubo B CT) '<1

Claims (1)

【特許請求の範囲】[Claims] 鉄心を誘導加熱により焼鈍するに際し、鉄心の温度T℃
が720′″C以上850″C以下で、T’C以上の時
間を−0,37X T″C,+320分を超えないよう
にした電気機器用鉄心の焼鈍方法。
When annealing the iron core by induction heating, the temperature of the iron core is T℃
A method for annealing an iron core for electrical equipment, wherein the temperature is 720'''C or more and 850''C or less, and the time over T'C does not exceed -0.37X T''C, +320 minutes.
JP21220182A 1982-12-02 1982-12-02 Method for annealing iron core for electric apparatus Granted JPS59123719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21220182A JPS59123719A (en) 1982-12-02 1982-12-02 Method for annealing iron core for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21220182A JPS59123719A (en) 1982-12-02 1982-12-02 Method for annealing iron core for electric apparatus

Publications (2)

Publication Number Publication Date
JPS59123719A true JPS59123719A (en) 1984-07-17
JPH0313294B2 JPH0313294B2 (en) 1991-02-22

Family

ID=16618589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21220182A Granted JPS59123719A (en) 1982-12-02 1982-12-02 Method for annealing iron core for electric apparatus

Country Status (1)

Country Link
JP (1) JPS59123719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111726A1 (en) 2012-01-25 2013-08-01 新日鐵住金株式会社 Metal member annealing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757829A (en) * 1980-09-22 1982-04-07 Kawasaki Steel Corp Production of non-directional electromagnetic steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757829A (en) * 1980-09-22 1982-04-07 Kawasaki Steel Corp Production of non-directional electromagnetic steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111726A1 (en) 2012-01-25 2013-08-01 新日鐵住金株式会社 Metal member annealing method
US10370733B2 (en) 2012-01-25 2019-08-06 Nippon Steel Corporation Method of annealing metal member

Also Published As

Publication number Publication date
JPH0313294B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
TWI623629B (en) Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
CN1020984C (en) Low-frequency transformer
JPH032928B2 (en)
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
EP0108575B1 (en) Local annealing treatment for cube-on-edge grain oriented silicon steel
Miyagi et al. Improvement of zone control induction heating equipment for high-speed processing of semiconductor devices
KR20050088925A (en) Stator for motor and process for producing the same
JPH07320920A (en) Nano-crystal alloy magnetic core and heat-treatment method thereof
TWI699437B (en) motor
JP2003342637A (en) Process and device for magnetic field annealing of motor core
JPS59123719A (en) Method for annealing iron core for electric apparatus
US3096222A (en) Grain oriented sheet metal
KR19990076747A (en) Distribution gap electric choke
US3220891A (en) Annealing sheet metal coils and product
JPH05214444A (en) Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property
JPS59222525A (en) Method for annealing iron core material for electric apparatus
JPH0552652B2 (en)
JPH0133535B2 (en)
JPS61179507A (en) Manufacture of iron core
JP2701443B2 (en) High silicon steel sheet having excellent iron loss characteristics and method for producing the same
JPS61147816A (en) Method for annealing amorphous iron core
JPH0565536A (en) Manufacture of high silicon steel sheet having high permeability
Godec Effect of various stress-relief annealing treatments on permeability and aging of grain-oriented electrical steel strips
JPH0559177B2 (en)