KR19990076747A - Distribution gap electric choke - Google Patents
Distribution gap electric choke Download PDFInfo
- Publication number
- KR19990076747A KR19990076747A KR1019980704870A KR19980704870A KR19990076747A KR 19990076747 A KR19990076747 A KR 19990076747A KR 1019980704870 A KR1019980704870 A KR 1019980704870A KR 19980704870 A KR19980704870 A KR 19980704870A KR 19990076747 A KR19990076747 A KR 19990076747A
- Authority
- KR
- South Korea
- Prior art keywords
- annealing
- choke
- core
- temperature
- permeability
- Prior art date
Links
- 238000000137 annealing Methods 0.000 claims abstract description 33
- 230000035699 permeability Effects 0.000 claims abstract description 29
- 230000005291 magnetic effect Effects 0.000 claims abstract description 17
- 238000002425 crystallisation Methods 0.000 claims abstract description 14
- 230000008025 crystallization Effects 0.000 claims abstract description 14
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 3
- 230000004907 flux Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910001092 metal group alloy Inorganic materials 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 31
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/06—Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/25—Magnetic cores made from strips or ribbons
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Cable Accessories (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Abstract
Description
전기 초크는 에너지 저장 인덕터이다. 도우넛형의 인덕터에 대해, 저장 에너지는 W=1/2[(B2Aclm)/(2μ0μr)] 이며, 여기서, B 는 자속 밀도, Ac는 코어의 유효 자기 면적, lm은 평균 자로(磁路) 길이, μ0는 자유공간의 투자율, 및 μr는 재료에 있어 상대 투자율을 나타낸다.Electric chokes are energy storage inductors. For a doughnut-type inductor, the stored energy is W = 1/2 [(B 2 A c l m ) / (2μ 0 μ r )], where B is the magnetic flux density, A c is the effective magnetic area of the core, l m is the average length of the path, μ 0 is the permeability of free space, and μ r is the relative permeability of the material.
이 도우넛형의 인덕터으로 작은 에어 갭을 도입함으로서, 에어 갭에서의 자속은 강자성 코어 재료와 같은 상태로 유지된다. 그러나, 공기의 투자율(μ~1)이 전형적인 강자성 재료(μ~수천)보다 현저히 낮기 때문에, 갭에서의 자계(磁界)의 세기(H)는 코어의 나머지 부분보다 훨씬 더 높게된다(H=B/μ). 자계에 있어 단위 체적당 저장 에너지는 W=1/2(BH)이며, 이것은 에어 갭에 우선 집중됨을 나타낸다. 다시 말해, 코어의 에너지 저장용량은 갭의 도입에 의해 향상된다. 갭은 이산 또는 분포될 수 있다. 분포갭은 비자성 결합제와 함께 유지되는 강자성 분말을 이용하거나, 또는 비정질 합금을 부분적으로 결정화함에 의해 도입될 수 있다. 후자의 경우, 강자성 결정상(crystalline phase)은 분리되어 비자성 매트릭스에 의해 둘러싸인다. 이 부분적인 결정화기구는 본 발명의 초크와 관련하여 이용된다.By introducing a small air gap into this donut type inductor, the magnetic flux in the air gap is kept in the same state as the ferromagnetic core material. However, since the permeability of air (μ-1) is significantly lower than typical ferromagnetic materials (μ-thousands), the intensity (H) of the magnetic field in the gap is much higher than the rest of the core (H = B / μ). The storage energy per unit volume in the magnetic field is W = 1/2 (BH), indicating that it is first concentrated in the air gap. In other words, the energy storage capacity of the core is improved by the introduction of a gap. The gap can be discrete or distributed. The distribution gap can be introduced by using a ferromagnetic powder held with a nonmagnetic binder, or by partially crystallizing the amorphous alloy. In the latter case, the ferromagnetic crystalline phase is separated and surrounded by a nonmagnetic matrix. This partial crystallization mechanism is used in connection with the choke of the present invention.
Fe계 비정질 코어를 어닐링하는 원리에 기반을 둔 전기초크는 GB 2,117,979A 와 USP 4,812,181에서 설명되어 있다. 미국 특허 제 4,812,181 호에는 Fe 계 비정질 코어를 410℃보다 더 높은 온도에서 오랜 기간(10 시간이상) 어닐링하도록 함으로써 플랫 자화 루프를 성취하는 방법이 개시되어 있다. 여기에 개시된 방법은 비정질 리본의 표면을 결정화하여, 이에 의해 리본의 비정질 체적상에 응력을 작용시키는 단계를 포함한다.Electric chokes based on the principle of annealing Fe-based amorphous cores are described in GB 2,117,979A and USP 4,812,181. U.S. Patent No. 4,812,181 discloses a method for achieving a flat magnetization loop by allowing an Fe-based amorphous core to anneal for a long time (more than 10 hours) at temperatures higher than 410 ° C. The method disclosed herein includes crystallizing the surface of an amorphous ribbon, thereby exerting stress on the amorphous volume of the ribbon.
GB 2,117,979A 에 있어서, 전기 초크는 Fe 계 비정질 코어의 열처리에 기반을 두어 만들어진다. 최대 투자율은 초기값의 1/50 과 1/30 사이로 감소되며,(최대 40,000의 투자율에 대해, 이 처리는 대략 800 내지 1300사이 범위의 값을 만들어낸다) 그리고 비정질 코어는 체적의 10%를 초과하지 않는 결정화도(度)를 나타낸다.In GB 2,117,979A, the electric choke is made based on the heat treatment of the Fe based amorphous core. The maximum permeability is reduced between 1/50 and 1/30 of the initial value (for a maximum permeability of 40,000, this treatment produces values ranging from approximately 800 to 1300) and the amorphous core exceeds 10% of the volume. The degree of crystallinity not shown is shown.
노트북 컴퓨터와 그 밖의 소형 장치용 전원 공급에서의 적용에 있어서, 매우 낮은 투자성(100-300), 매우 낮은 코어 손실, 및 높은 포화 자화 상태이면서, 높은 DC 바이어스 자계를 유지할 수 있는 극소형의 전기 초크에 대한 필요성이 있다.In applications in power supplies for notebook computers and other small devices, very low permeability (100-300), very low core loss, and high saturation magnetization, while minimizing electricity capable of maintaining a high DC bias magnetic field There is a need for chalk.
본 발명은 전기초크 적용을 위해 분포 갭을 갖춘 비정질 금속의 자기 코어에 관한 것이며, 보다 상세하게는 비정질 코어를 어닐링하여 안에 분포 갭을 만드는 방법에 관한 것이다.The present invention relates to a magnetic core of amorphous metal having a distribution gap for electric choke applications, and more particularly to a method of annealing an amorphous core to create a distribution gap therein.
하기의 상세한 설명과 첨부 도면을 참조하면, 본 발명은 더욱 완전히 이해될 것이며, 또다른 장점 또한 명백해질 것이다.With reference to the following detailed description and the accompanying drawings, the present invention will be more fully understood and other advantages will become apparent.
도 1은 코어의 투자율과 어닐링 온도 사이의 관계를 도시하고 있으며, 서로 다른 곡선이 다른 결정화 온도를 가진 재료를 설명하는 그래프;1 shows a relationship between the permeability of a core and annealing temperature, in which different curves illustrate materials with different crystallization temperatures;
도 2는 상이한 어닐링 시간에 대한 코어의 투자율과 어닐링 온도 사이의 관계를 도시한 그래프;2 is a graph showing the relationship between the permeability of the core and the annealing temperature for different annealing times;
도 3은 작은 온도 범위내에서 온도의 균일성을 성취하도록 어닐링하기 위한 코어의 로딩 구성을 도시한 도면;3 shows a loading configuration of a core for annealing to achieve temperature uniformity within a small temperature range;
도 4는 DC 바이어스계와 주파수의 함수로서 코어에서의 코어손실(W/kg)을 도시한 그래프;4 is a graph showing core loss (W / kg) at the core as a function of DC bias meter and frequency;
도 5는 DC 바이어스계 조건하에서 코어의 투자율을 도시한 그래프;5 is a graph showing the permeability of the core under DC bias meter conditions;
도 6은 어닐링 후, 리본의 전형적인 단면 주사 전자 현미경법(SEM)에 의한 사진을 도시한 도면;6 shows a photograph by typical cross-sectional scanning electron microscopy (SEM) of a ribbon after annealing;
도 7은 결정의 체적 백분율의 함수로서 투자율을 도시한 그래프;7 is a graph depicting permeability as a function of volume percentage of crystals;
본 발명은 100 내지 400의 범위에 있는 투자율과 낮은 코어 손실(100 kHz 0.1T에서 70 W/kg보다 작은)로 대략 8 mm 내지 45 mm OD의 범위에 있는 크기를 갖춘 전기 초크를 제공한다. 유리하게, 자기적 특성은 DC 바이어스 하에서 유지된다(적어도 초기 투자율의 40%는 3980 A/m 또는 50 Oe의 DC 바이어스계에서 유지된다).The present invention provides electric chokes with sizes in the range of approximately 8 mm to 45 mm OD with permeability in the range of 100 to 400 and low core losses (less than 70 W / kg at 100 kHz 0.1T). Advantageously, the magnetic properties are maintained under DC bias (at least 40% of the initial permeability is maintained in a DC bias meter of 3980 A / m or 50 Oe).
또한, 본 발명에 의해, 비정질 리본의 체적을 부분적으로 결정화하고 코어에서 미소한 갭을 발생시키도록 통제된 방법으로 Fe계 비정질 합금을 열처리하는 방법이 제공된다. 분포 갭의 결과로서, 상기 특성이 얻어진다.In addition, the present invention provides a method of heat treating an Fe-based amorphous alloy in a controlled manner to partially crystallize the volume of the amorphous ribbon and generate a small gap in the core. As a result of the distribution gap, the above characteristics are obtained.
더욱 상세하게는, 본 발명에 따라, 결정화도와 투자율 값사이의 유일한 상호관계가 제공된다. 100 내지 400 범위에서의 투자율을 얻기위해, 비정질 코어의 체적 결정화는 코어 체적의 10 내지 25%정도가 바람직하게 요구된다.More specifically, in accordance with the present invention, a unique correlation between crystallinity and permeability values is provided. In order to obtain permeability in the range of 100 to 400, the volume crystallization of the amorphous core is preferably required to be about 10 to 25% of the core volume.
또한, 본 발명은 원하는 초크 특성을 얻기 위해, 일정한 어닐링 온도 및 시간 변수와, 그리고 이들 변수들의 제어도(度)를 필요로 한다.In addition, the present invention requires constant annealing temperature and time variables and control of these variables to achieve the desired choke characteristics.
도 1 은 어닐링 온도의 함수로서 어닐링된 Fe 계 자기 코어의 투자율을 도시한다. 투자율은 10 kHz의 주파수, 8 회전의 지그(jig), 및 100 mV ac 여자에서 유도 브릿지로 측정된다. 어닐링 시간은 6 시간으로 일정하게 유지된다. 모든 코어는 불활성 가스환경에서 어닐링된다. 상이한 곡선들은 화학조성에서의 작은 변화, 결과적으로 그들의 결정화 온도에서의 작은 변화 상태의 Fe 계 합금을 나타낸다. 결정화 온도는 시차주사 열계량법(DSC)에 의해 측정된다. 투자율의 감소는 일정한 어닐링 시간에 대해 어닐링 온도의 증가로 관찰된다. 주어진 어닐링 온도에대해, 결정화 온도에 따른 투자 정도, 다시 말해 투자율은 매우 높은 결정화 온도상태의 합금에 대해 매우 높다.1 shows the permeability of an annealed Fe-based magnetic core as a function of annealing temperature. Permeability is measured with an induction bridge at a frequency of 10 kHz, 8 jigs, and 100 mV ac excitation. The annealing time is kept constant at 6 hours. All cores are annealed in an inert gas environment. Different curves represent Fe-based alloys with small changes in chemical composition and consequently small changes in their crystallization temperature. Crystallization temperature is measured by differential scanning calorimetry (DSC). The decrease in permeability is observed as an increase in the annealing temperature for a constant annealing time. For a given annealing temperature, the degree of investment depending on the crystallization temperature, ie the permeability, is very high for alloys with very high crystallization temperatures.
도 2 는 어닐링 온도의 함수로서 동일한 화학 조성을 가진 어닐링된 Fe 계 코어의 투자율을 도시한다. 상이한 곡선들은 상이한 어닐링 시간을 나타낸다. 이 그래프는 450℃ 보다 높은 온도에 대해, 어닐링 온도의 효과가 어닐링 시간의 효과보다 지배적임을 나타낸다.2 shows the permeability of annealed Fe based cores with the same chemical composition as a function of annealing temperature. Different curves represent different annealing times. This graph shows that for temperatures above 450 ° C., the effect of the annealing temperature is more dominant than the effect of the annealing time.
적절한 어닐링 온도와 시간의 조합이 Fe-B-Si 계 비정질 합금에 대해 도 1과 도 2에서의 정보를 근거로 하여 선택된다. 합금의 결정화 온도(Tx) 및/또는 화학조성이 공지된 경우에, 이러한 선택은 행해질 수 있다. 예를 들어, 100 내지 400 범위의 투자율을 성취하기 위해 Tx=507℃를 가진 Fe80B11Si9의 경우에, 6 시간 동안 420 내지 425℃ 범위의 어닐링 온도가 적절하다.The appropriate combination of annealing temperature and time is selected based on the information in FIGS. 1 and 2 for the Fe—B—Si based amorphous alloy. If the crystallization temperature (T x ) and / or chemical composition of the alloy is known, this selection can be made. For example, for Fe 80 B 11 Si 9 with T x = 507 ° C. to achieve permeability in the range of 100 to 400, annealing temperatures in the range of 420 to 425 ° C. for 6 hours are suitable.
도 1 을 다시 참조하면, 1˚또는 2˚보다 작은 온도변화가 유지될 때, 주어진 투자율 값에 대한 재현성과 균일성이 유지된다. 특별한 로딩 구성이 어닐링 공정을 위해 개발되어, 오븐에서 온도의 균일성과 재현성을 성립시킨다. 박스형의 불활성 가스오븐에 있어서, 철망 알루미늄판(2)은 도 3에 따라 쌓이고, 그 배열은 오븐의 중심에 위치된다. 알루미늄판은 어닐링동안 코어(1)를 유지시키는 기판이다.Referring again to FIG. 1, when a temperature change less than 1 ° or 2 ° is maintained, reproducibility and uniformity for a given permeability value are maintained. Special loading configurations have been developed for the annealing process to achieve temperature uniformity and reproducibility in the oven. In the box-shaped inert gas oven, the wire mesh aluminum plate 2 is stacked according to FIG. 3, and the arrangement is located at the center of the oven. The aluminum plate is a substrate which holds the core 1 during annealing.
코어 손실과 DC 바이어스와 같은, 초크에 대한 통상적인 자기 특성 데이터는 도 4와 도 5에 도시되어 있다. 코어 손실 데이터는 DC 바이어스계의 함수로서 도시되며, 상이한 곡선들은 상이한 측정 주파수를 나타낸다. 도시된 데이터는 25 mm OD 를 가진 코어에 대한 것이다. 초크 성능에 대한 중요한 변수는, 코어가 DC 바이어스 계에 의해 구동되었을 때 남아있는 초기 투자율의 백분율이다. 도 5는 35 mm OD 를 갖춘 코어에 대한 전형적인 DC 바이어스 곡선을 도시한다.Typical magnetic characteristic data for the choke, such as core loss and DC bias, are shown in FIGS. 4 and 5. Core loss data is shown as a function of the DC bias meter, with different curves representing different measurement frequencies. Data shown is for a core with 25 mm OD. An important variable for choke performance is the percentage of initial permeability remaining when the core is driven by a DC bias meter. 5 shows a typical DC bias curve for a core with 35 mm OD.
단면 주사 전자 현미경법(SEM)과 X-선 회절(XRD)은 어닐링된 코어의 분포및 백분율 결정화를 결정하기위해 수행된다. 도 6은 단면 주사 전자 현미경법(SEM)을 도시하여, 합금의 체적과 표면 양자가 결정화된 것을 나타내고 있다. 이것은 표면만이 결정화된 미국 특허 제 4,812,181 호에 설명된 방법과는 확연이 구별된다.Cross-sectional scanning electron microscopy (SEM) and X-ray diffraction (XRD) are performed to determine the distribution and percentage crystallization of the annealed core. FIG. 6 shows a cross-sectional scanning electron microscopy (SEM) showing that both the volume and the surface of the alloy are crystallized. This is distinct from the method described in US Pat. No. 4,812,181 where only the surface is crystallized.
결정화의 체적 백분율은 주사 전자 현미경법(SEM)과 X-선 회절(XRD) 모두의 데이터로부터 결정되며, 투자율의 함수로서 도 7 에 도시된다. 100 내지 400 범위의 투자율에 대해, 5 내지 30% 범위의 체적 결정화가 요구된다.The volume percentage of crystallization is determined from the data of both scanning electron microscopy (SEM) and X-ray diffraction (XRD) and is shown in FIG. 7 as a function of permeability. For permeability in the range of 100 to 400, volume crystallization in the range of 5 to 30% is required.
따라서, 본 발명을 상세히 설명하였는 데, 이러한 상세한 설명은 엄격히 한정될 필요가 없으며, 당업자는 첨부된 청구범위에 의해 한정된 본 발명의 범위내에서 모든 변경와 수정을 할 수 있다.Accordingly, while the present invention has been described in detail, such a detailed description need not be strictly limited, and a person skilled in the art can make all changes and modifications within the scope of the present invention as defined by the appended claims.
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58478796A | 1996-01-11 | 1996-01-11 | |
US8/584,787 | 1996-01-11 | ||
US08/584,787 | 1996-01-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990076747A true KR19990076747A (en) | 1999-10-15 |
KR100452535B1 KR100452535B1 (en) | 2004-12-17 |
Family
ID=24338791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0704870A KR100452535B1 (en) | 1996-01-11 | 1997-01-08 | Distributed Gap Electrical Choke |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0873567B1 (en) |
JP (2) | JP4629165B2 (en) |
KR (1) | KR100452535B1 (en) |
CN (1) | CN1114217C (en) |
AT (1) | ATE215727T1 (en) |
DE (1) | DE69711599T2 (en) |
DK (1) | DK0873567T3 (en) |
TW (1) | TW351816B (en) |
WO (1) | WO1997025727A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6144279A (en) * | 1997-03-18 | 2000-11-07 | Alliedsignal Inc. | Electrical choke for power factor correction |
WO1999045132A1 (en) | 1998-03-02 | 1999-09-10 | Massachusetts Institute Of Technology | Poly zinc finger proteins with improved linkers |
AU6782998A (en) * | 1998-03-27 | 1999-10-18 | Allied-Signal Inc. | Dry-type transformer having a generally rectangular, resin encapsulated coil |
US6534261B1 (en) | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US6503717B2 (en) | 1999-12-06 | 2003-01-07 | Sangamo Biosciences, Inc. | Methods of using randomized libraries of zinc finger proteins for the identification of gene function |
US9234187B2 (en) | 2001-01-22 | 2016-01-12 | Sangamo Biosciences, Inc. | Modified zinc finger binding proteins |
US7262054B2 (en) | 2002-01-22 | 2007-08-28 | Sangamo Biosciences, Inc. | Zinc finger proteins for DNA binding and gene regulation in plants |
US7541909B2 (en) * | 2002-02-08 | 2009-06-02 | Metglas, Inc. | Filter circuit having an Fe-based core |
DE102004024337A1 (en) * | 2004-05-17 | 2005-12-22 | Vacuumschmelze Gmbh & Co. Kg | Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same |
DE202017103569U1 (en) * | 2017-06-14 | 2018-09-17 | Sma Solar Technology Ag | Coil and electrical or electronic device with such a coil |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300950A (en) * | 1978-04-20 | 1981-11-17 | General Electric Company | Amorphous metal alloys and ribbons thereof |
GB2117979B (en) * | 1982-04-01 | 1985-06-26 | Telcon Metals Ltd | Electrical chokes |
JPS62186506A (en) * | 1986-02-12 | 1987-08-14 | Meidensha Electric Mfg Co Ltd | Annealing method of amorphous iron core |
DE3611527A1 (en) * | 1986-04-05 | 1987-10-08 | Vacuumschmelze Gmbh | METHOD FOR OBTAINING A FLAT MAGNETIZING LOOP IN AMORPHOUS CORES BY A HEAT TREATMENT |
JP2868121B2 (en) * | 1987-07-28 | 1999-03-10 | 日立金属株式会社 | Method for producing Fe-based magnetic alloy core |
CA2074805C (en) * | 1990-11-30 | 2001-04-10 | Hiroshi Watanabe | Fe-base soft magnetic alloy |
JP3322407B2 (en) * | 1990-11-30 | 2002-09-09 | 三井化学株式会社 | Fe-based soft magnetic alloy |
JPH04341544A (en) * | 1991-05-17 | 1992-11-27 | Mitsui Petrochem Ind Ltd | Fe base soft magnetic alloy |
US5252144A (en) * | 1991-11-04 | 1993-10-12 | Allied Signal Inc. | Heat treatment process and soft magnetic alloys produced thereby |
-
1997
- 1997-01-08 DE DE69711599T patent/DE69711599T2/en not_active Expired - Lifetime
- 1997-01-08 KR KR10-1998-0704870A patent/KR100452535B1/en not_active IP Right Cessation
- 1997-01-08 JP JP52533897A patent/JP4629165B2/en not_active Expired - Fee Related
- 1997-01-08 AT AT97901927T patent/ATE215727T1/en active
- 1997-01-08 WO PCT/US1997/000178 patent/WO1997025727A1/en active IP Right Grant
- 1997-01-08 DK DK97901927T patent/DK0873567T3/en active
- 1997-01-08 EP EP97901927A patent/EP0873567B1/en not_active Expired - Lifetime
- 1997-01-08 CN CN97191661A patent/CN1114217C/en not_active Expired - Fee Related
- 1997-01-20 TW TW086100556A patent/TW351816B/en not_active IP Right Cessation
-
2010
- 2010-09-16 JP JP2010207490A patent/JP4990389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100452535B1 (en) | 2004-12-17 |
JP2000503169A (en) | 2000-03-14 |
EP0873567B1 (en) | 2002-04-03 |
EP0873567A1 (en) | 1998-10-28 |
CN1208497A (en) | 1999-02-17 |
JP4990389B2 (en) | 2012-08-01 |
DK0873567T3 (en) | 2002-07-01 |
WO1997025727A1 (en) | 1997-07-17 |
JP2011061210A (en) | 2011-03-24 |
ATE215727T1 (en) | 2002-04-15 |
CN1114217C (en) | 2003-07-09 |
DE69711599T2 (en) | 2002-10-31 |
JP4629165B2 (en) | 2011-02-09 |
TW351816B (en) | 1999-02-01 |
DE69711599D1 (en) | 2002-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4990389B2 (en) | Distributed gap electric choke | |
US4409041A (en) | Amorphous alloys for electromagnetic devices | |
US5935347A (en) | FE-base soft magnetic alloy and laminated magnetic core by using the same | |
EP0020937B1 (en) | Method of enhancing the magnetic properties of amorphous metal alloys | |
JPH01110707A (en) | Magnetic core | |
JP2007107096A (en) | Soft magnetic alloy, its production method and magnetic component | |
JP2573606B2 (en) | Magnetic core and manufacturing method thereof | |
JP2007270271A (en) | Soft magnetic alloy, its manufacturing method, and magnetic component | |
US5091253A (en) | Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation | |
JPH0229735B2 (en) | ||
US4473413A (en) | Amorphous alloys for electromagnetic devices | |
US4558297A (en) | Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same | |
JPH07320920A (en) | Nano-crystal alloy magnetic core and heat-treatment method thereof | |
JPH08188858A (en) | Glass alloy having permimber characteristic | |
JP2667402B2 (en) | Fe-based soft magnetic alloy | |
US4889568A (en) | Amorphous alloys for electromagnetic devices cross reference to related applications | |
US20220298615A1 (en) | Methods of Modifying a Domain Structure of a Magnetic Ribbon, Manufacturing an Apparatus, and Magnetic Ribbon Having a Domain Structure | |
US4834814A (en) | Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability | |
JP2000119821A (en) | Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same | |
KR100270605B1 (en) | Fe based soft magnetic film alloys and their manufacturing method | |
US4588452A (en) | Amorphous alloys for electromagnetic devices | |
JPS6396252A (en) | Heat treatment of toroidal amorphous magnetic core | |
JPH01247556A (en) | Fe-base magnetic alloy excellent in iso-permeability characteristic | |
JPH0257683B2 (en) | ||
JP2021193205A (en) | Fe-BASED NANOCRYSTALLINE SOFT MAGNETIC ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
FPAY | Annual fee payment |
Payment date: 20120924 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20130926 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |