JPH0552653B2 - - Google Patents
Info
- Publication number
- JPH0552653B2 JPH0552653B2 JP59176251A JP17625184A JPH0552653B2 JP H0552653 B2 JPH0552653 B2 JP H0552653B2 JP 59176251 A JP59176251 A JP 59176251A JP 17625184 A JP17625184 A JP 17625184A JP H0552653 B2 JPH0552653 B2 JP H0552653B2
- Authority
- JP
- Japan
- Prior art keywords
- iron core
- temperature
- core
- wound
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 84
- 238000000137 annealing Methods 0.000 claims description 45
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 35
- 230000005284 excitation Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 60
- 238000004804 winding Methods 0.000 description 23
- 230000020169 heat generation Effects 0.000 description 8
- 101100165177 Caenorhabditis elegans bath-15 gene Proteins 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は変圧器などに用いられる非晶質磁性合
金板からなる鉄心に焼鈍を行なう鉄心の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an iron core made of an amorphous magnetic alloy plate used in a transformer, etc., by annealing the iron core.
近時、変圧器などに用いる巻鉄心および積層鉄
心の材料として、非晶質磁性合金板を用いること
が検討されつつある。非晶質磁性合金板は、金属
(Fe、Co、Ni等)と半金属元素(B、C、Si、
P等)を主成分として超急冷法により製造された
もので、従来からの鉄心材料であるけい素鋼板に
比して鉄損(損失)が1/3〜1/4と小さく、磁気特
性に優れている。
Recently, consideration has been given to using amorphous magnetic alloy plates as materials for wound cores and laminated cores used in transformers and the like. Amorphous magnetic alloy plates are made of metals (Fe, Co, Ni, etc.) and semimetallic elements (B, C, Si,
It is manufactured using an ultra-quenching method with P, etc. as its main component, and has low iron loss (loss) of 1/3 to 1/4 compared to silicon steel sheets, which are conventional core materials, and has excellent magnetic properties. Are better.
しかし、非晶質磁性合金板は、超急冷法により
製造するために、急冷時の歪により鉄損の増大な
ど磁気特性が極端に低下しており、本来の優れた
磁気特性が得られない。このため、非晶質磁性合
金板からなる鉄心は、鉄心組立後に歪取り焼鈍を
行なつて非晶質磁性合金板の歪を除去し、鉄損の
減少などの非晶質磁性合金本来の磁気特性の回復
を図つている。この焼鈍は、鉄心を磁場中に置い
て磁気異方性を与えて、磁気特性の改善を図る方
法である。 However, since amorphous magnetic alloy plates are manufactured using an ultra-quenching method, their magnetic properties are extremely degraded due to distortion during rapid cooling, such as increased core loss, and the originally excellent magnetic properties cannot be obtained. For this reason, iron cores made of amorphous magnetic alloy plates undergo strain-relief annealing after core assembly to remove the strain on the amorphous magnetic alloy plates, thereby reducing core loss and reducing the inherent magnetic properties of amorphous magnetic alloys. Efforts are being made to restore the characteristics. This annealing is a method for improving magnetic properties by placing an iron core in a magnetic field to impart magnetic anisotropy.
しかして、この焼鈍を行なう場合には、次の点
が重要である。非晶質磁性合金板は焼鈍温度条件
が狭く、鉄心内部の温度分布が均一になるように
昇温しないと、熱応力により磁気特性が低下し
て、その本来の優れた磁気特性の回復を図ること
ができない。また、非晶質磁性合金板は焼鈍後に
脆化する性質があるので、焼鈍後において鉄心を
取扱う時に、非晶質磁性合金板が外力により破損
(割れや破片の発生)し、変圧器使用中に絶縁破
壊などを起すなどの虞れがあり、鉄心の品質上好
ましくない。このため、鉄心を組立てる作業を焼
鈍の前工程に行ない、焼鈍後における組立て工程
数を減少して、非晶質磁性合金板に外力が加わる
機会を減らすことが必要である。この場合、鉄心
に変圧器コイルを巻回する作業は、鉄心に応力が
加わる度合が大である。 However, when performing this annealing, the following points are important. Amorphous magnetic alloy plates have narrow annealing temperature conditions, and if the temperature is not raised to make the temperature distribution inside the core uniform, the magnetic properties will deteriorate due to thermal stress, and the original excellent magnetic properties must be recovered. I can't. In addition, since amorphous magnetic alloy plates have the property of becoming brittle after annealing, when handling the iron core after annealing, the amorphous magnetic alloy plates may be damaged by external force (creating cracks or fragments), which may occur while the transformer is in use. There is a risk of dielectric breakdown, etc., which is unfavorable in terms of the quality of the iron core. Therefore, it is necessary to assemble the iron core before annealing, reduce the number of assembly steps after annealing, and reduce the chances of external force being applied to the amorphous magnetic alloy plate. In this case, the work of winding the transformer coil around the iron core places a large degree of stress on the iron core.
従来、非晶質磁性合金板からなる鉄心の焼鈍
は、外部熱源により鉄心を加熱する方式が採用さ
れている。すなわち、第2図で示すように非晶質
磁性合金板2からなる鉄心1、例えば非晶質磁性
合金板2を巻回してなる巻鉄心に磁界印加用のコ
イル3を巻回し、この鉄心1を電熱ヒータ(図示
せず)を熱源とする恒温槽4の内部に収容する。
そして、直流電源5によりコイル3の直流電流を
通電して鉄心1に磁界を印加するとともに、電熱
ヒータの加熱により恒温槽4内部を所定の焼鈍温
度に上昇させて鉄心1を加熱することにより焼鈍
を行なう。 Conventionally, for annealing an iron core made of an amorphous magnetic alloy plate, a method has been adopted in which the iron core is heated by an external heat source. That is, as shown in FIG. 2, a coil 3 for applying a magnetic field is wound around an iron core 1 made of an amorphous magnetic alloy plate 2, for example, a wound iron core made by winding the amorphous magnetic alloy plate 2. is housed inside a constant temperature bath 4 whose heat source is an electric heater (not shown).
Then, a direct current is passed through the coil 3 by the DC power source 5 to apply a magnetic field to the iron core 1, and the inside of the constant temperature bath 4 is raised to a predetermined annealing temperature by heating with an electric heater to heat the iron core 1, thereby annealing it. Do the following.
非晶質磁性合金材料の焼鈍温度は、その種類に
よつても異なるが、現在変圧器用鉄心材料として
最も適切とされているアライド社製
METGLAS2605S2では、360〜410℃程度が適切
である。また、焼鈍温度保持時間は2時間程度が
適切とされている。 The annealing temperature for amorphous magnetic alloy materials varies depending on the type, but the annealing temperature for amorphous magnetic alloy materials varies depending on the type, but the annealing temperature for amorphous magnetic alloy materials is currently considered to be the most suitable as a core material for transformers.
For METGLAS2605S2, a temperature of about 360 to 410°C is appropriate. Further, it is considered appropriate that the annealing temperature is maintained for about 2 hours.
しかしながら、このような焼鈍方法において
は、鉄心1は熱源である電熱ヒータの輻射熱によ
り外部から加熱されるので、鉄心内部まで良好に
加熱されず、鉄心1表面と内部の温度分布が不均
一になる。このため、鉄心1の非晶質磁性合金板
2は熱応力により磁気特性が低下して、本来の磁
気特性を回復することが困難である。また、電熱
ヒータにより鉄心1を所定の焼鈍温度すなわち
400℃程度まで加熱するために、恒温槽4内部も
同温度まで昇温するので、仮りに変圧器コイルを
巻回した鉄心1の恒温槽4の内部に入れて焼鈍を
行なうと、コイルも一緒に外部から400℃まで加
熱される。しかるに、一般にコイルの絶縁被覆に
用いる絶縁物は、耐熱性の限度が低く、400℃の
温度まで加熱されると、絶縁物が損傷して実用性
がなくなる。このため、焼鈍前の工程で鉄心1に
変圧器コイルを巻回して、その後に焼鈍を行なう
ことは、コイルの破損を伴うので困難であり、焼
鈍後の工程で鉄心1にコイルを巻回することにな
る。しかし、焼鈍後の鉄心1は非晶質磁性合金板
2の脆化現象を伴うので、焼鈍後に鉄心1にコイ
ルを巻回する組立作業を行なうと、非晶質磁性合
金板2が外力により破損する機会が増大して、鉄
心1の品質を低下させることになる。 However, in such an annealing method, since the iron core 1 is heated from the outside by the radiant heat of the electric heater that is the heat source, the inside of the iron core is not properly heated, and the temperature distribution on the surface and inside of the iron core 1 becomes uneven. . Therefore, the magnetic properties of the amorphous magnetic alloy plate 2 of the iron core 1 deteriorate due to thermal stress, and it is difficult to restore the original magnetic properties. In addition, the iron core 1 is heated to a predetermined annealing temperature using an electric heater.
In order to heat up to about 400℃, the temperature inside the constant temperature oven 4 will also rise to the same temperature, so if you put the iron core 1 wound with the transformer coil inside the constant temperature oven 4 and perform annealing, the coil will also be heated at the same temperature. It is heated externally to 400℃. However, the insulating material used for the insulation coating of the coil generally has a low limit of heat resistance, and when heated to a temperature of 400° C., the insulating material is damaged and becomes impractical. For this reason, it is difficult to wind the transformer coil around the iron core 1 in the process before annealing and then perform annealing because it will damage the coil. It turns out. However, since the iron core 1 after annealing is accompanied by the embrittlement phenomenon of the amorphous magnetic alloy plate 2, when the assembly work of winding a coil around the iron core 1 after annealing is performed, the amorphous magnetic alloy plate 2 is damaged by external force. This increases the chance that the quality of the iron core 1 will deteriorate.
そこで、非晶質磁性合金板からなる鉄心に励磁
コイルを設け、この励磁コイルに励磁用交流電流
を流して鉄心を励磁し、この励磁により鉄心に生
ずる損失で鉄心自身を発熱昇温させて焼鈍する方
法が提案されている。この方法は変圧器コイルの
巻回や変圧器中身組立の大部分を焼鈍の前工程で
行うことができるので、焼鈍により脆化する非晶
質磁性合金板の取扱いを極力少なくできる利点が
ある。 Therefore, an excitation coil is provided on the iron core made of an amorphous magnetic alloy plate, and an excitation alternating current is passed through this excitation coil to excite the iron core.The loss that occurs in the iron core due to this excitation causes the iron core itself to generate heat and heat up, annealing it. A method has been proposed. This method has the advantage that most of the winding of the transformer coil and the assembly of the transformer contents can be performed in the process prior to annealing, so that handling of the amorphous magnetic alloy plate, which becomes brittle due to annealing, can be minimized as much as possible.
しかしながら、この方法においては、鉄心自身
の発熱で昇温する際に、鉄心表面よりの放熱があ
るので、このままでは励磁のための電力消費量が
増大することになる。 However, in this method, when the temperature rises due to the heat generated by the iron core itself, heat is radiated from the surface of the iron core, so if this method continues, the power consumption for excitation will increase.
本発明は前記事情に鑑みてなされたもので、非
晶質磁性合金板からなる鉄心に対する焼鈍を経済
的に、かつ良好に行ない、非晶質磁性合金本来の
優れた磁気特性を充分発揮できる品質の良い鉄心
を得ることができる鉄心の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and is capable of economically and favorably annealing an iron core made of an amorphous magnetic alloy plate, with the result that the quality is such that the excellent magnetic properties inherent to the amorphous magnetic alloy can be sufficiently exhibited. The purpose of this invention is to provide a method for manufacturing an iron core that can obtain an iron core with good quality.
本発明による鉄心の製造方法は、非晶質磁性合
金薄板からなる鉄心を焼鈍するに際して、励磁コ
イルを巻回した鉄心を恒温槽に入れ、励磁コイル
に高周波交流電流を流して鉄心を励磁し、この励
磁に伴い鉄心に生ずる損失により鉄心自身を発熱
させるとともに、恒温槽に設けた発熱体により鉄
心を加熱し、さらに恒温槽内が予じめ設定した温
度まで上昇した後には、高周波励磁による鉄心自
身の発熱で鉄心を所定の焼鈍温度まで上昇させて
焼鈍することを特徴とするものである。すなわ
ち、本発明は励磁による鉄心自身の発熱と恒温槽
の加熱により鉄心を均一な温度分布で昇温できる
とともに、鉄心の放熱を抑制して鉄心を短時間で
昇温させることにより焼鈍作業を迅速に行なうこ
とができる。この場合、恒温槽内の設定温度を絶
縁物を劣化させない温度に設定することにより、
鉄心に変圧器コイルを装着してその変圧器コイル
を損焼することなく焼鈍を行なえるようになる。
The method for manufacturing an iron core according to the present invention includes, when annealing an iron core made of an amorphous magnetic alloy thin plate, placing the iron core around which an excitation coil is wound in a constant temperature bath, and exciting the iron core by passing a high-frequency alternating current through the excitation coil. The loss that occurs in the core due to this excitation causes the core itself to generate heat, and the core is heated by a heating element installed in the thermostatic oven.Furthermore, after the temperature inside the thermostatic oven has risen to a preset temperature, the core is heated by high-frequency excitation. The feature is that the iron core is annealed by raising it to a predetermined annealing temperature using its own heat generation. In other words, the present invention can raise the temperature of the iron core with a uniform temperature distribution by using the heat generated by the iron core itself due to excitation and the heating of the constant temperature bath, and also speeds up the annealing work by suppressing the heat radiation of the iron core and raising the temperature of the iron core in a short time. can be done. In this case, by setting the temperature in the thermostatic chamber to a temperature that does not deteriorate the insulation,
It becomes possible to attach a transformer coil to an iron core and perform annealing without damaging the transformer coil.
以下本発明を図面で示す実施例について説明す
る。
Embodiments of the present invention illustrated in the drawings will be described below.
第1図は本発明方法の一実施例を示すもので、
この実施例では非晶質磁性合金薄板を巻回してな
る2相の巻鉄心を並べ、各巻鉄心の中央の脚部に
共通に変圧器コイルを巻回したものを対象にして
いる。 FIG. 1 shows an embodiment of the method of the present invention.
In this embodiment, two-phase wound cores formed by winding amorphous magnetic alloy thin plates are arranged, and a transformer coil is commonly wound around the central leg of each wound core.
各巻鉄心11は帯状の非晶質磁性合金薄板12
を矩形状に巻回して形成する。各巻鉄心11は並
べてその中央の脚部に変圧器コイル13を共通に
巻回する。 Each winding core 11 is a strip-shaped amorphous magnetic alloy thin plate 12
is formed by winding it into a rectangular shape. Each winding core 11 is arranged side by side, and a transformer coil 13 is commonly wound around its central leg.
そして、巻鉄心11を焼鈍するに際しては、各
巻鉄心11の外側の脚部に励磁用高周波交流電流
を流すための仮巻コイル14を各々巻回する。仮
巻コイル14は互いに逆巻きにして巻回し、その
巻回数は変圧器コイル13の絶縁耐力上問題のな
い電圧となるように大きさを設定する。なお、仮
巻コイル14は耐電圧性、耐熱性を考慮してセラ
ミツクスなどの無機絶縁被覆電線を用いる。 When the wound core 11 is annealed, a pre-wound coil 14 is wound around the outer leg portion of each wound core 11 to cause an excitation high-frequency alternating current to flow therethrough. The temporary winding coils 14 are wound in opposite directions to each other, and the number of turns is set so as to provide a voltage that does not cause problems in terms of the dielectric strength of the transformer coil 13. Note that for the temporary coil 14, an inorganic insulated wire made of ceramic or the like is used in consideration of voltage resistance and heat resistance.
次いで、変圧器コイル13および仮巻コイル1
4を巻回した各巻鉄心11を恒温槽15の内部に
入れる。恒温槽15内に入れた各巻鉄心11の仮
巻コイル14は、切換スイツチ17を介して高周
波交流電源18と直流電源19に各各接続する。
20は交流電源18の電圧を調整する電圧調整器
である。なお、恒温槽15は発熱体である電気ヒ
ータ16を備え、この電気ヒータ16の発熱によ
り内部を所定の設定温度に保持している。 Next, transformer coil 13 and temporary winding coil 1
Each of the cores 11 wound with 4 is placed inside the thermostatic chamber 15. The temporarily wound coils 14 of each wound core 11 placed in the thermostatic chamber 15 are connected to a high frequency AC power source 18 and a DC power source 19 via a changeover switch 17, respectively.
20 is a voltage regulator that adjusts the voltage of the AC power supply 18. The thermostatic oven 15 includes an electric heater 16 as a heat generating element, and the heat generated by the electric heater 16 maintains the inside at a predetermined set temperature.
そして、巻鉄心11を焼純するために恒温槽1
5における内部温度を、変圧器コイル13に用い
られる絶縁物が熱劣化を生じない温度、例えば
100〜150℃程度に設定する。この設定温度は絶縁
物の種類により適宜変更することができ、H種絶
縁物を使用したものではさらに高温度に設定する
ことができる。すなわち、恒温槽15内部が前記
設定温度となるように電気ヒータ16を発熱させ
る。このため恒温槽15内部に入れられた巻鉄心
11は電気ヒータ16により外部から加熱されて
温度上昇する。 Then, in order to sinter and purify the wound core 11, a constant temperature bath 1 is used.
5, the internal temperature at which the insulating material used in the transformer coil 13 does not cause thermal deterioration, for example,
Set the temperature to about 100-150℃. This set temperature can be changed as appropriate depending on the type of insulator, and it can be set to a higher temperature if an H type insulator is used. That is, the electric heater 16 is made to generate heat so that the inside of the constant temperature bath 15 reaches the set temperature. For this reason, the wound core 11 placed inside the thermostatic chamber 15 is heated from the outside by the electric heater 16 and its temperature rises.
また、切換スイツチ17により仮巻コイル14
を高周波交流電源18へ接続し、電圧調整器20
により電圧を調整して仮巻コイル14に励磁用高
周波交流電流を流す。この交流電流の周波数は例
えば2〜4KHzに選定する。このため仮巻コイル
14に交流を流すことにより磁束が発生して巻鉄
心11にうず電流が流れ、このうず電流に伴う電
力損失によつて巻鉄心11にジユール熱が発生す
る。従つて巻鉄心11はそれ自身の内部発熱によ
り加熱されて温度上昇する。 In addition, the temporary winding coil 14 is set by the changeover switch 17.
is connected to the high frequency AC power supply 18, and the voltage regulator 20 is connected to the high frequency AC power supply 18.
The voltage is adjusted by , and a high-frequency alternating current for excitation is caused to flow through the temporary coil 14 . The frequency of this alternating current is selected to be, for example, 2 to 4 KHz. For this reason, by flowing an alternating current through the temporarily wound coil 14, magnetic flux is generated and eddy current flows through the wound iron core 11, and Joule heat is generated in the wound iron core 11 due to power loss accompanying this eddy current. Therefore, the wound core 11 is heated by its own internal heat generation and its temperature rises.
このようにして巻鉄心11は高周波励磁による
内部発熱と、恒温槽15の電気ヒータ16による
外部加熱の両方により温度上昇する。すなわち、
巻鉄心11の温度は恒温槽15の設定温度範囲ま
では、励磁による内部発熱と恒温槽15の外部加
熱の併用により上昇する。そして、巻鉄心11の
温度が恒温槽15の設定温度(100〜150℃)まで
上昇した時点からは、巻鉄心11は高周波励磁に
よる鉄心自身の発熱により温度上昇する。巻鉄心
11の温度が非晶質磁性合金薄板12の適正焼鈍
温度の400℃まで上昇すれば、電圧調整器20で
電圧調整して巻鉄心11の温度400℃を適正な温
度保持時間で一定に保持する。なお、各巻鉄心1
1の仮巻コイル14は逆極性に接続してあるの
で、仮巻コイル14に交流電流を流して励磁を行
なつても、変圧器コイル13に磁束による誘起電
圧が生じない。 In this way, the temperature of the wound core 11 rises due to both internal heat generation due to high frequency excitation and external heating due to the electric heater 16 of the constant temperature oven 15. That is,
The temperature of the wound core 11 rises up to the set temperature range of the thermostatic oven 15 by a combination of internal heat generation due to excitation and external heating of the thermostatic oven 15. Then, from the time when the temperature of the wound core 11 rises to the set temperature (100 to 150° C.) of the constant temperature bath 15, the temperature of the wound core 11 increases due to heat generation of the core itself due to high frequency excitation. When the temperature of the wound core 11 rises to 400°C, which is the appropriate annealing temperature for the amorphous magnetic alloy thin plate 12, the voltage is adjusted by the voltage regulator 20 to keep the temperature of the wound core 11 at 400°C constant for an appropriate temperature holding time. Hold. In addition, each winding core 1
Since the temporary winding coil 14 of No. 1 is connected with opposite polarity, even if an alternating current is applied to the temporary winding coil 14 to excite it, no induced voltage is generated in the transformer coil 13 due to the magnetic flux.
次いで、切換スイツチ17の切換えにより仮巻
コイル14を交流電源18から切離して直流電源
19へ接続する。このため、仮巻コイル14への
交流電流の通電がしや段されて巻鉄心11の励磁
が停止し、巻鉄心11が冷却を始める。同時に直
流電源より直流電流が仮巻コイル14に流れ巻鉄
心11に対して磁場を形成する。このようにして
巻鉄心11を磁場中にて冷却する。 Next, by switching the changeover switch 17, the temporary coil 14 is disconnected from the AC power source 18 and connected to the DC power source 19. For this reason, the supply of alternating current to the temporarily wound coil 14 is gradually stopped, the excitation of the wound core 11 is stopped, and the wound iron core 11 begins to cool down. At the same time, a DC current flows from the DC power supply to the temporary winding coil 14 and forms a magnetic field with respect to the winding core 11. In this way, the wound core 11 is cooled in the magnetic field.
焼鈍終了後は巻鉄心11を恒温槽15から取り
出し、巻鉄心11から仮巻コイル14を外して作
業を終了する。 After the annealing is completed, the wound core 11 is taken out from the constant temperature bath 15, and the temporarily wound coil 14 is removed from the wound iron core 11 to complete the work.
なお、恒温槽15は巻鉄心11の酸化を防止す
るために窒素ガスなどの不活性雰囲気とすること
が好ましい。 Note that the constant temperature bath 15 is preferably filled with an inert atmosphere such as nitrogen gas in order to prevent oxidation of the wound core 11.
このようにして巻鉄心11を製造すれば、巻鉄
心11の温度が恒温槽15の設定温度未満の範囲
にある時には高周波励磁による鉄心自身の発熱と
恒温槽15からの外部加熱との併用により巻鉄心
11の温度が上昇し、次いで巻鉄心11の温度が
恒温槽15の設定温度に等しくなつた時点からは
高周波励磁による鉄心自身の発熱により巻鉄心1
1が昇温する。このため、巻鉄心11の放熱量は
鉄心温度と恒温槽15の設定温度との差により決
定され、常温状態で励磁した場合に比して放熱量
が小さくなり、巻鉄心11を短時間に焼鈍温度に
上昇させることができる。 If the wound core 11 is manufactured in this way, when the temperature of the wound core 11 is in a range lower than the set temperature of the thermostatic oven 15, the core can be wound by both heat generation of the core itself due to high frequency excitation and external heating from the thermostatic oven 15. The temperature of the iron core 11 rises, and from the time when the temperature of the wound iron core 11 becomes equal to the set temperature of the thermostatic chamber 15, the wound iron core 1 increases due to heat generation of the iron core itself due to high frequency excitation.
1 rises in temperature. Therefore, the amount of heat dissipated from the wound core 11 is determined by the difference between the core temperature and the set temperature of the constant temperature bath 15, and the amount of heat dissipated is smaller than when excited at room temperature, allowing the wound core 11 to be annealed in a short time. Can be raised to temperature.
すなわち、巻鉄心11の発熱量をQ1(Kcal)、
巻鉄心11からの放熱量をQ2(Kcal)、巻鉄心1
1内部への蓄熱量をQ3(Kcal)とすると、
Q3=Q1−Q2 ……(1)
となる。 That is, the calorific value of the wound core 11 is Q 1 (Kcal),
The amount of heat dissipated from the winding core 11 is Q 2 (Kcal), and the heat radiation from the winding core 1 is
If the amount of heat stored inside 1 is Q 3 (Kcal), then Q 3 =Q 1 −Q 2 (1).
Q1とQ2は次式で表わされる。 Q 1 and Q 2 are expressed by the following equations.
Q1=k1Wqt ……(2)
Q2=k2W(Om−On) ……(3)
k1,k2:比例定数
W:鉄心重量(Kg)
q:鉄心単位重量、単位時間当りの発熱量
(Kcal/Kg・h)
t:通電時間(h)
Om:鉄心温度(℃)
On:恒温槽内の温度(℃)
前述の式から明らかなように巻鉄心温度Omを
400℃程度に上昇させるために発熱量Q1を有効に
蓄熱量Q2に供するためには放熱量Q2を小さくす
る必要がある。一方、常温状態で巻鉄心を励磁し
た場合の放熱量Q2′は、
Q2′=k2W(Om−Oa) ……(4)
Oa:周囲温度(常温)℃
となる。 Q 1 = k 1 Wqt ……(2) Q 2 = k 2 W (Om−On) ……(3) k 1 , k 2 : Constant of proportionality W: Iron core weight (Kg) q: Iron core unit weight, unit time Calorific value per unit (Kcal/Kg・h) t: Current energization time (h) Om: Iron core temperature (℃) On: Temperature in constant temperature chamber (℃) As is clear from the above formula, the winding core temperature Om is
In order to effectively use the heat generation amount Q 1 to increase the heat storage amount Q 2 to raise the temperature to about 400° C., it is necessary to reduce the heat radiation amount Q 2 . On the other hand, the amount of heat dissipation Q 2 ′ when the wound core is excited at room temperature is Q 2 ′ = k 2 W (Om−Oa) ……(4) Oa: ambient temperature (room temperature) °C.
本発明では巻鉄心11を焼鈍するに際して100
〜150℃の温度に加熱した恒温槽15内で巻鉄心
11を励磁して焼鈍する方法であるから、常温状
態で巻鉄心を励磁した場合に比較して放熱量の差
Q2′は、(3)、(4)式よりQ2″=k2W(Om−Oa)とな
り、放熱量が小さくなるために巻鉄心11は短時
間で焼鈍温度まで上昇させることができる。すな
わち、(2)式で表わされる鉄心単位重量、単位時間
当りの発熱量qを一定とした場合は、400℃程度
まで昇温させるのに必要な通電時間を大幅に短縮
できる。従つて巻鉄心11の焼鈍を迅速に行なえ
る。一方通電時間tを一定とした場には発熱量q
を小さくでき、q∝fnBm(f:交流電流周波数、
B:磁束密度)であることにより、交流電流の周
波数が低くても良く、また同一鉄心重量の場合に
は交流電源18の電源容量が小さくてよいという
利点がある。なお、巻鉄心11からの放熱量を減
少させ、かつ外部加熱を併用することにより、巻
鉄心11内、外部の温度分布が一層均一化され、
焼鈍による歪取りが良好に行えて磁気特性の低下
を防止できる。 In the present invention, when annealing the wound core 11,
Since this is a method of exciting and annealing the wound core 11 in a constant temperature bath 15 heated to a temperature of ~150°C, there is a difference in the amount of heat dissipated compared to when the wound core 11 is excited at room temperature.
From equations (3) and (4), Q 2 ′ becomes Q 2 ″=k 2 W (Om−Oa), and since the amount of heat dissipation is small, the wound core 11 can be raised to the annealing temperature in a short time. In other words, if the iron core unit weight expressed by equation (2) and the calorific value q per unit time are constant, the energization time required to raise the temperature to about 400°C can be significantly shortened. The iron core 11 can be annealed quickly.On the other hand, when the current application time t is constant, the calorific value q
can be made small, and q∝f n B m (f: alternating current frequency,
B: magnetic flux density), the frequency of the alternating current may be low, and in the case of the same iron core weight, the power supply capacity of the alternating current power supply 18 may be small. Note that by reducing the amount of heat dissipated from the wound core 11 and also using external heating, the temperature distribution inside and outside the wound core 11 can be made more uniform.
Strain removal by annealing can be performed well and deterioration of magnetic properties can be prevented.
さらに、巻鉄心11を恒温槽15内に入れて焼
鈍を行なうに際して、恒温槽15内は変圧器コイ
ル13の絶縁物が熱劣化しない温度に設定してあ
るので、巻鉄心11に変圧器コイル13を巻回し
て焼鈍を行なつても変圧器コイル13を損傷させ
ることなく焼鈍を行なうことができる。 Furthermore, when the wound core 11 is placed in the thermostatic oven 15 for annealing, the temperature inside the thermostatic oven 15 is set at a temperature that does not cause thermal deterioration of the insulation of the transformer coil 13. Even if the transformer coil 13 is wound and annealed, the transformer coil 13 can be annealed without being damaged.
なお、前述した実施例では巻鉄心を高周波励磁
するために、巻鉄心に仮巻した仮巻コイルを用い
ているが、これに限定されず巻鉄心に巻回した変
圧器コイルを利用しても良い。但し、この場合高
圧用では変圧器コイルに絶縁破壊の問題が生じる
ので、低圧用の変圧器に採用することが可能であ
る。 In addition, in the above-mentioned embodiment, in order to excite the wound iron core at high frequency, a temporarily wound coil is used, but the present invention is not limited to this, and a transformer coil wound around the wound iron core may also be used. good. However, in this case, since the problem of dielectric breakdown occurs in the transformer coil when used for high voltage use, it is possible to employ it for low voltage transformers.
また巻鉄心を冷却する時に巻鉄心に直流磁界を
付与するためには仮巻コイルを利用する方法の他
に、変圧器コイルを利用することも可能であり、
さらに巻鉄心を加熱させる過程から巻鉄心に直流
磁界を付与することも可能である。 In addition to using a temporary winding coil, it is also possible to use a transformer coil to apply a DC magnetic field to the winding core when cooling the winding core.
Furthermore, it is also possible to apply a DC magnetic field to the wound iron core during the process of heating the wound iron core.
焼鈍を行なう鉄心は巻鉄心に限定されず、非晶
質磁性合金薄板を積層してなる積層鉄心も対象に
して同等の効果を得ることができる。 The core to be annealed is not limited to a wound core, and the same effect can be obtained with a laminated core made of laminated amorphous magnetic alloy thin plates.
焼純を行なう場合には、鉄心に変圧器コイルを
巻回しておくことが品質上および製造上有利であ
る。しかし必ずしもこれに限らず、鉄心に変圧器
コイルを巻回しないで焼鈍することも可能であ
る。 When performing sintering, it is advantageous in terms of quality and manufacturing to wind the transformer coil around the iron core. However, the present invention is not limited to this, and it is also possible to perform annealing without winding the transformer coil around the iron core.
以上説明したように本発明の鉄心の製造方法に
よれば、非晶質磁性合金薄板からなる鉄心を均一
な温度分布で昇温させて経済的に焼鈍を行ない、
焼鈍による非晶質磁性合金薄板の磁気特性の劣化
を防止できるとともに、焼鈍を短時間で迅速に行
なうとができる。また鉄心に変圧器コイルを巻回
した状態でも変圧器コイルを損傷することなく焼
鈍を行なえるので、焼鈍後に行なう組立工程の数
を減少し、非晶質磁性合金薄板の脆化による破損
を防止できる。従つて非晶質磁性合金薄板からな
る品質の良い鉄心を得ることができる。
As explained above, according to the method for manufacturing an iron core of the present invention, an iron core made of an amorphous magnetic alloy thin plate is heated with a uniform temperature distribution to economically anneal it.
Deterioration of the magnetic properties of the amorphous magnetic alloy thin plate due to annealing can be prevented, and annealing can be performed quickly and in a short time. In addition, annealing can be performed without damaging the transformer coil even when the transformer coil is wound around the iron core, reducing the number of assembly steps to be performed after annealing and preventing damage due to embrittlement of the amorphous magnetic alloy thin plate. can. Therefore, a high quality iron core made of amorphous magnetic alloy thin plate can be obtained.
第1図は本発明の製造方法の一実施例を示す説
明図、第2図は従来例を示す説明図である。
11……巻鉄心、12……非晶質磁性合金薄
板、13……変圧器コイル、14……仮巻コイ
ル、15……恒温槽、16……電気ヒータ、18
……交流電源、19……直流電源。
FIG. 1 is an explanatory diagram showing an embodiment of the manufacturing method of the present invention, and FIG. 2 is an explanatory diagram showing a conventional example. 11... Wound iron core, 12... Amorphous magnetic alloy thin plate, 13... Transformer coil, 14... Pre-wound coil, 15... Constant temperature oven, 16... Electric heater, 18
...AC power supply, 19...DC power supply.
Claims (1)
に際して、恒温槽の内部に、励磁コイルを巻回し
た前記鉄心を入れ、前記励磁コイルに高周波交流
電流を流して前記鉄心を励磁し、この励磁に伴い
前記鉄心に生ずる損失により前記鉄心自身を発熱
させるとともに、前記恒温槽に設けた発熱体によ
り前記鉄心を加熱して前記鉄心を昇温させ、次い
で前記恒温槽内の温度が設定値まで上昇した後
は、前記励磁による前記鉄心自身の発熱のみで前
記鉄心を焼鈍温度まで上昇させて焼鈍することを
特徴とする鉄心の製造方法。 2 恒温層内の温度を絶縁物が劣化しない温度に
設定した特許請求の範囲第1項記載の鉄心の製造
方法。[Scope of Claims] 1. When annealing an iron core made of an amorphous magnetic alloy thin plate, the iron core around which an excitation coil is wound is placed in a constant temperature bath, and a high-frequency alternating current is passed through the excitation coil to anneal the iron core. is excited, the iron core itself generates heat due to the loss that occurs in the iron core due to this excitation, the iron core is heated by a heating element provided in the thermostatic oven to raise the temperature of the iron core, and then the temperature of the iron core in the thermostatic oven is increased. A method for manufacturing an iron core, characterized in that after the temperature rises to a set value, the iron core is raised to an annealing temperature and annealed only by the heat generated by the iron core itself due to the excitation. 2. The method of manufacturing an iron core according to claim 1, wherein the temperature in the constant temperature layer is set to a temperature at which the insulator does not deteriorate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17625184A JPS6154612A (en) | 1984-08-24 | 1984-08-24 | Manufacture of core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17625184A JPS6154612A (en) | 1984-08-24 | 1984-08-24 | Manufacture of core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6154612A JPS6154612A (en) | 1986-03-18 |
JPH0552653B2 true JPH0552653B2 (en) | 1993-08-06 |
Family
ID=16010295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17625184A Granted JPS6154612A (en) | 1984-08-24 | 1984-08-24 | Manufacture of core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6154612A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62186506A (en) * | 1986-02-12 | 1987-08-14 | Meidensha Electric Mfg Co Ltd | Annealing method of amorphous iron core |
US20240254589A1 (en) * | 2023-02-01 | 2024-08-01 | Raytheon Technologies Corporation | Selective heat treatment of metals using a coil-in-furnace system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120127A (en) * | 1973-03-24 | 1974-11-16 | ||
JPS56129310A (en) * | 1980-03-13 | 1981-10-09 | Tdk Corp | Manufacture of transformer or coil |
JPS5970714A (en) * | 1982-10-14 | 1984-04-21 | Toyota Motor Corp | Heating method in heat treatment furnace |
JPS5979515A (en) * | 1982-10-29 | 1984-05-08 | Aichi Electric Mfg Co Ltd | Manufacture of transformer core |
JPS6115313A (en) * | 1984-07-02 | 1986-01-23 | Daihen Corp | Manufacture of transformer |
-
1984
- 1984-08-24 JP JP17625184A patent/JPS6154612A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49120127A (en) * | 1973-03-24 | 1974-11-16 | ||
JPS56129310A (en) * | 1980-03-13 | 1981-10-09 | Tdk Corp | Manufacture of transformer or coil |
JPS5970714A (en) * | 1982-10-14 | 1984-04-21 | Toyota Motor Corp | Heating method in heat treatment furnace |
JPS5979515A (en) * | 1982-10-29 | 1984-05-08 | Aichi Electric Mfg Co Ltd | Manufacture of transformer core |
JPS6115313A (en) * | 1984-07-02 | 1986-01-23 | Daihen Corp | Manufacture of transformer |
Also Published As
Publication number | Publication date |
---|---|
JPS6154612A (en) | 1986-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH032928B2 (en) | ||
US5225005A (en) | Method of annealing/magnetic annealing of amorphous metal in a fluidized bed and apparatus therefor | |
JPH0552652B2 (en) | ||
JPH0552653B2 (en) | ||
KR19990076747A (en) | Distribution gap electric choke | |
JPS61179507A (en) | Manufacture of iron core | |
JPH07122097B2 (en) | Partial adiabatic annealing method for amorphous alloys | |
JPS6140016A (en) | Manufacture of core | |
JPS61181116A (en) | Manufacture of rolled iron core | |
JPS6174315A (en) | Manufacture of iron core | |
JPH0559177B2 (en) | ||
JPS61174612A (en) | Manufacture of iron core | |
JPS62210609A (en) | Manufacture of wound core | |
JPS6159812A (en) | Manufacture of core | |
JPS61179519A (en) | Manufacture of iron core | |
JPS6265312A (en) | Method for annealing iron core | |
JPS61174613A (en) | Manufacture of iron core | |
JPS6140015A (en) | Manufacture of core | |
JPS61181115A (en) | Manufacture of rolled iron core | |
JPS6252912A (en) | Annealing method for iron core | |
JPS61147816A (en) | Method for annealing amorphous iron core | |
JPH0684655A (en) | High frequency wound core and high frequency induction electric appliance employing wound core | |
JPS61292907A (en) | Manufacture of wound core | |
JPS62226611A (en) | Annealing of iron core | |
JP2002194429A (en) | Heating device of metal coiled in ring or cylindrical form |