JPS6140015A - Manufacture of core - Google Patents

Manufacture of core

Info

Publication number
JPS6140015A
JPS6140015A JP16053984A JP16053984A JPS6140015A JP S6140015 A JPS6140015 A JP S6140015A JP 16053984 A JP16053984 A JP 16053984A JP 16053984 A JP16053984 A JP 16053984A JP S6140015 A JPS6140015 A JP S6140015A
Authority
JP
Japan
Prior art keywords
core
heat
wound
coil
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16053984A
Other languages
Japanese (ja)
Inventor
Tatsuo Ito
伊藤 辰雄
Kazuo Yamada
一夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16053984A priority Critical patent/JPS6140015A/en
Publication of JPS6140015A publication Critical patent/JPS6140015A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the core having excellent quality by a method wherein the outside surface of the core made of an amorphous magnetic alloy thin plate is coated by a heat-reflecting material, a heat-insulating material is covered thereon, the core is excited, and then it is annealed by iron loss. CONSTITUTION:Heat reflecting copper materials 13 and 14 are coated on the surface of the wound core 11 of an amorphous magnetic alloy thin, plate the above-mentioned materials are enclosed by ceramic fibers 15 and 16, a coil 18 is wound around the center leg, and coils 19 and 19 are temporarily wound around the outer leg in the reverse direction each other. The voltage of a high frequency AC power source 21 is adjusted 28, a current is applied to the coil 19, the coil is heated up to 400 deg.C by the internal heat generated on the core 11, and this condition is maintained for 30-120min. As the coils 19 and 19 are wound reversely each other, no voltage is induced on the coil 18. The AC power source is changed to a DC power source, a magnetic field is formed on the wound core 11, and the core is cooled in the magnetic field. After an annealing is performed thereon, the coil 19 is removed. According to this constitution, the core can be annealed at a uniform temperature, the deterioration in magnetic characteristics of the thin plates can be prevented, the radiant heat generating from the core can be suppressed by the heat reflecting material, the convectional heat radiation can be suppressed by the heat insulating materials 15 and 16, the generated heat is stored in the core, and an annealing can be performed quickly.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は変圧器などに用いられる非晶質磁性合金薄板か
らなる鉄心に焼鈍を行なう鉄心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an iron core for use in transformers, etc., in which an iron core made of an amorphous magnetic alloy thin plate is annealed.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、変圧器などに用いる巻鉄心および積層鉄心の材料
として、非晶質磁性合金薄板を用いることが検討されつ
つある。非晶質磁性合金薄板は、金属(Fs * Co
・、 Ni  等)と半金属元素(B、C,81,P′
等)を主成分として超急冷法によシ製造されたもので、
従来からの鉄心材料であるけい素鋼板に比して鉄損(損
失)がIA〜1/4と小さく、磁気特性に優れている。
Recently, the use of amorphous magnetic alloy thin plates as materials for wound cores and laminated cores used in transformers and the like is being considered. The amorphous magnetic alloy thin plate is made of metal (Fs*Co
・, Ni, etc.) and metalloid elements (B, C, 81, P'
etc.) is manufactured using the ultra-quenching method as the main ingredient.
Compared to silicon steel sheet, which is a conventional iron core material, iron loss is small at IA to 1/4, and it has excellent magnetic properties.

しかし、非晶質磁性合金薄板は、超急冷法により製造す
るために、急冷時の歪によシ鉄損の増大など磁気特性が
極端に低下しておシ、本来の優れた磁気特性が得られな
い。このため、非  ・品質磁性合金薄板からなる鉄心
は、鉄心組立後に歪取シ焼鈍を行なって非晶質磁性合金
板の歪を除去し、鉄損の減少などの非晶質磁性合金本来
の磁気特性の回復を図っている。この焼鈍は、鉄心を磁
場中に置いて磁気異方性を与えて、磁気特性の改善を図
る方法である。
However, since amorphous magnetic alloy thin sheets are manufactured using an ultra-quenching method, their magnetic properties are extremely degraded due to distortion during quenching, such as increased core loss, and their original excellent magnetic properties are not achieved. I can't do it. For this reason, iron cores made of non-quality magnetic alloy thin sheets are subjected to strain relief annealing after core assembly to remove the strain on the amorphous magnetic alloy sheets, thereby improving the original magnetic properties of the amorphous magnetic alloy, such as reducing iron loss. Efforts are being made to restore the characteristics. This annealing is a method for improving magnetic properties by placing an iron core in a magnetic field to impart magnetic anisotropy.

しかして、この焼鈍を行なう場合には、次の点が重要で
ある。非晶質磁性合金薄板は焼鈍温度条件が狭く、鉄心
内部の温度分布が均一になるように昇温しないと、熱応
力によシ磁気特性が低下して、その本来の優れた磁気特
性の回復を図ることができない。また、非晶質磁性合金
薄板は焼鈍後に脆化する性質があるので、焼鈍後におい
て鉄心を取扱う時に、非晶質磁性合金板が外力によシ破
損(割れや破片の発生)シ〈変圧器使用中に絶縁破壊な
どを起すなどの慮れがアシ、鉄心の品質上好ましくない
。このため、鉄心を組立てる作業を焼鈍の前工程に行な
い、焼鈍後における組立て工数を減少して、非晶質磁性
合金板に外力が加わる機会を減らすことが必要である。
However, when performing this annealing, the following points are important. Amorphous magnetic alloy thin plates have narrow annealing temperature conditions, and if the temperature is not raised to make the temperature distribution inside the core uniform, the magnetic properties will deteriorate due to thermal stress and it will be difficult to recover the original excellent magnetic properties. It is not possible to aim for In addition, since amorphous magnetic alloy thin sheets have the property of becoming brittle after annealing, when handling the iron core after annealing, the amorphous magnetic alloy sheets may be damaged by external force (creating cracks or fragments). Carelessness such as causing dielectric breakdown during use is unfavorable in terms of the quality of the iron core. Therefore, it is necessary to assemble the iron core before annealing to reduce the number of assembly steps after annealing and to reduce the chances of external force being applied to the amorphous magnetic alloy plate.

この場合、鉄心に変圧器コイルを巻回する作業は、鉄心
に応力が加わる度合が大である。
In this case, the work of winding the transformer coil around the iron core places a large degree of stress on the iron core.

従来、非晶質磁性合金薄板からなる鉄心の焼鈍は、外部
熱源によシ鉄心を加熱する方式が採用されている。すな
わち、第8図で示すように非晶質磁性合金板2からなる
鉄心1、例えば非晶質磁性合金薄板2を巻回してなる巻
鉄心に磁界印加用のコイル3を巻回し、この鉄心Jを電
熱ヒータ(図示せず)を熱源とする恒温槽4の内部に収
容する。そして、直流電源5によシコイル3に直流電流
を通電して鉄心1に磁界を印加するとともに、電熱ヒー
タの加熱によシ恒温槽4内部を所定の焼鈍温度に上昇さ
せて鉄心Jを加熱することにより焼鈍を行なう。
Conventionally, for annealing an iron core made of an amorphous magnetic alloy thin plate, a method has been adopted in which the iron core is heated by an external heat source. That is, as shown in FIG. 8, a coil 3 for applying a magnetic field is wound around an iron core 1 made of an amorphous magnetic alloy plate 2, for example, a wound iron core made by winding an amorphous magnetic alloy thin plate 2. is housed inside a constant temperature bath 4 whose heat source is an electric heater (not shown). Then, a DC current is applied to the coil 3 by the DC power supply 5 to apply a magnetic field to the iron core 1, and the inside of the constant temperature bath 4 is raised to a predetermined annealing temperature by heating with an electric heater to heat the iron core J. Annealing is performed by this.

非晶質磁性合金材料の焼鈍温度は、その種類によりても
異なるが、現在変圧器用鉄心材料として最も適切とされ
ているアライド社製廊TGLAS2605S2では、3
90〜410℃程度が適切である。また、焼鈍温度保持
時間は2時間程度が適切とされている。
The annealing temperature of the amorphous magnetic alloy material varies depending on the type, but for Allied's Seiro TGLAS2605S2, which is currently considered the most suitable material for transformer core materials, the annealing temperature is 3.
Approximately 90 to 410°C is appropriate. Further, it is considered appropriate that the annealing temperature is maintained for about 2 hours.

しかしながら、このような焼鈍方法においては、鉄心1
は熱源である電熱ヒータの輻射熱により外部から加熱さ
れるので、鉄心内部まで良好に加熱されず、鉄心1表面
と内部の温度分布が不均一になる。このため、鉄心1の
非晶質磁性合金薄板2は熱応力により磁気特性が低下し
て、本来の磁気特性を回復することが困難である。また
、電熱ヒータによシ鉄心1を所定の焼鈍温度すなわち4
00℃程度まで力p熱するために、恒温41F4内部も
同温度まで昇温するので、仮りに変圧器コイルを巻回し
た゛鉄心1を恒温槽4の内部に入れて焼鈍を行なうと、
変圧器コイルも一緒に外部から400℃まで加熱される
However, in such an annealing method, the iron core 1
Since the iron core is heated from the outside by radiant heat from an electric heater as a heat source, the inside of the iron core is not properly heated, and the temperature distribution on the surface and inside of the iron core 1 becomes uneven. Therefore, the magnetic properties of the amorphous magnetic alloy thin plate 2 of the iron core 1 deteriorate due to thermal stress, and it is difficult to restore the original magnetic properties. Further, the iron core 1 is heated to a predetermined annealing temperature using an electric heater, that is, 4
In order to heat the core to about 00℃, the temperature inside the constant temperature 41F4 will also rise to the same temperature, so if the iron core 1 around which the transformer coil is wound is placed inside the constant temperature bath 4 and annealed,
The transformer coil is also heated externally to 400°C.

しかるに、一般に変圧器コイ、ルの絶縁被覆に用する絶
縁物は、耐熱性の限度が低(,400℃の温度まで加熱
されると、絶縁物が損傷して実用性がなくなる。このた
め、焼鈍前の工程で鉄心1に変圧器コイルを巻回して、
その後に焼鈍、を行なうことは、変圧器コイルの破損を
伴うので困難であシ、焼鈍後の工程で鉄心IVc変圧器
コイルを巻回することになるoしかし、焼鈍後の鉄心1
は非晶質磁性合金材料2の脆化現象を伴うので、焼鈍後
に鉄心1に変圧器コイルを巻回する組立作業を行なうと
、非晶質磁性合金薄板2が外力により破損する機会が増
大して、鉄心10品質を低下させることになる。
However, the insulation used for the insulation coating of transformer coils and coils generally has a low heat resistance limit (if heated to a temperature of 400°C, the insulation will be damaged and become unpractical. In the process before annealing, a transformer coil is wound around the iron core 1,
It is difficult to perform annealing after that because it will damage the transformer coil, and the iron core IVc transformer coil will be wound in the process after annealing.However, the iron core after annealing
Since this is accompanied by the embrittlement phenomenon of the amorphous magnetic alloy material 2, if the assembly work of winding the transformer coil around the iron core 1 is performed after annealing, the chances that the amorphous magnetic alloy thin plate 2 will be damaged by external force will increase. As a result, the quality of the iron core 10 will be degraded.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、非晶質磁性
合金薄板からなる鉄心に対して良好な焼鈍を効率良く行
ない、非晶質磁性合金本来の優れた磁気特性を充分発揮
できる品質の良い鉄心を得ることができる鉄心の製造方
法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and is capable of efficiently annealing an iron core made of an amorphous magnetic alloy thin plate, thereby achieving a quality that can fully exhibit the excellent magnetic properties inherent to the amorphous magnetic alloy. The object of the present invention is to provide a method for manufacturing an iron core that can obtain a good iron core.

〔発明の概要〕[Summary of the invention]

本発明の鉄心の製造方法は、非晶質磁性合金薄板からな
る鉄心の表面を熱反射材で覆うとともにこの熱反射材の
外側を断熱部材で覆い、この鉄心に巻回したコイルに励
磁用交流電流を通して鉄心を励磁し、この励磁に伴い鉄
心に生ずる損失によシ鉄心自身を発熱昇温させて焼鈍す
るものである。すなわち、非晶質磁性合金薄板からなる
鉄心を焼鈍するに際して、鉄心を均一な温度分布で加熱
して且つ鉄心に巻回した変圧器コイルを損傷する仁とな
く焼鈍を行なうことができ、焼鈍後における組立工数を
減少させるものである。また、鉄心を熱輻射線の吸収率
の小さい熱反射材で覆うとともにその外側を断熱部材で
囲うことによシ、鉄心の発熱分の輻射放熱および対流放
熱を有効に抑えてその内側に蓄積し鉄心の焼鈍を迅速に
行なうとともに、断熱部材表面温度を低下させて焼鈍の
熱に対して変圧器コイルを保護することができるもので
ある。
The method for manufacturing an iron core of the present invention involves covering the surface of the iron core made of an amorphous magnetic alloy thin plate with a heat reflecting material, covering the outside of this heat reflecting material with a heat insulating material, and applying an excitation alternating current to a coil wound around the iron core. An electric current is passed through the core to excite it, and the loss that occurs in the core due to this excitation causes the core itself to generate heat and heat up, thereby annealing it. That is, when annealing a core made of amorphous magnetic alloy thin plate, the core can be heated with a uniform temperature distribution and can be annealed without damaging the transformer coil wound around the core. This reduces assembly man-hours. In addition, by covering the iron core with a heat reflective material that has a low absorption rate of thermal radiation and surrounding the outside with a heat insulating material, the radiation and convective heat radiation of the heat generated by the iron core can be effectively suppressed and accumulated inside. In addition to quickly annealing the iron core, it is possible to lower the surface temperature of the heat insulating member and protect the transformer coil from the heat of annealing.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明する・ 第1図ないし第4図は本発明方法の一実施例を示すもの
で、この実施例では非晶質磁性合金薄板を巻回してなる
2組の巻鉄心を並べ、各巻鉄心の中央の脚部に変圧器コ
イルを巻回したものを対象にしている。
Embodiments of the present invention shown in drawings will be described below. Figures 1 to 4 show an embodiment of the method of the present invention. In this embodiment, two sets of amorphous magnetic alloy thin plates are wound. The target is one in which the cores are lined up and a transformer coil is wound around the center leg of each core.

巻鉄心11.11は帯状の非晶質磁性合金薄板12を矩
形状に巻回して形成する。
The wound core 11.11 is formed by winding a strip-shaped amorphous magnetic alloy thin plate 12 into a rectangular shape.

各巻鉄心37.’22の表面は第3図および第4図で示
す熱反射材13.14で覆うとともに、この熱反射材J
 3. J 4の外側を断熱部材15゜16で囲んであ
る。この実施例では断熱部材15.16を枠材とし、こ
れに熱反射材13゜J4vl−組合せている。断熱部材
J5は、第3図で示すように巻鉄心11の内周表面を囲
む矩形の筒部25mと、この筒部15畠の両端に形成さ
れて巻鉄心11の両端表面を囲む7ラング部15b、1
5bとからなるもので、非晶質磁性合金薄板J2を巻取
る巻型を兼用することができる。断熱部材J5の筒部1
6mと7ラング部15b、J6bにおける巻鉄心110
表面に面する内側面には、シート状をなす熱反射材13
が重ね合せて接着しである。なお、図中17は間隔絶縁
物で、これは7ラン2部15 b 、 J5bの内11
IJrfJに複数個差べて熱反射材13′ft介して取
付けである。断熱部材16は、第4図で示すように巻鉄
心JJの外周表面の周囲を囲む矩形の筒形をなすもので
ある。断熱部材16における巻鉄心J1の外周表面に面
する内側面には、シート状の熱反射#′J4が重ね合せ
て接着しである。断熱部材15.16は、熱伝導率が小
さく且つ巻鉄心11の焼鈍温度である400℃以上の熱
に耐え得る耐熱性を有する断熱材で形成する0例えばア
ルミナ(At203)とシリカ。
Each winding core 37. The surface of '22 is covered with heat reflective material 13 and 14 shown in Figs.
3. The outside of J4 is surrounded by a heat insulating member 15°16. In this embodiment, the heat insulating members 15 and 16 are used as frame members, and a heat reflecting member 13°J4vl- is combined with this. As shown in FIG. 3, the heat insulating member J5 includes a rectangular cylindrical portion 25m surrounding the inner circumferential surface of the wound core 11, and seven rung portions formed at both ends of the cylindrical portion 15 and surrounding both end surfaces of the wound core 11. 15b, 1
5b, and can also serve as a winding form for winding the amorphous magnetic alloy thin plate J2. Cylinder part 1 of heat insulating member J5
Wound core 110 at 6m and 7 rung portions 15b and J6b
A sheet-shaped heat reflecting material 13 is provided on the inner surface facing the surface.
are superimposed and glued together. In addition, 17 in the figure is a spacing insulator, which is 7 runs 2 part 15 b, 11 of J5b.
It is attached to IJrfJ through a plurality of heat reflecting materials 13'ft apart. As shown in FIG. 4, the heat insulating member 16 has a rectangular cylindrical shape surrounding the outer peripheral surface of the wound core JJ. On the inner surface of the heat insulating member 16 facing the outer circumferential surface of the wound core J1, a sheet-like heat reflecting sheet #'J4 is superimposed and adhered. The heat insulating members 15 and 16 are made of a heat insulating material having low thermal conductivity and heat resistance capable of withstanding heat of 400° C. or higher, which is the annealing temperature of the wound core 11, such as alumina (At203) and silica.

(sio□)″fc溶融して繊維化したセラミックス繊
維を材料とした成形品を用いる。熱反射材13゜J4は
、熱吸収率が小さい材料としてアルミニウム、黄銅、銅
などを用いて形成する。そして、断熱部材15の筒部J
I5mに非晶質磁性合金薄帯12を巻回して巻鉄心11
を形成することKよシ、巻鉄心11の内周表面および両
端表面を熱反射材13で覆うとともに、熱反射板13の
外側を断熱部材J5で囲む。なお、間隔絶縁物17で巻
鉄心11の両端面と□熱反射材13との間に空気層を形
成する。また断熱部材16を巻鉄心32に被せることに
よシ、巻鉄心11の外周表面を熱反射材14で覆うとと
もに、熱反射板14の外側を断熱部材16で囲むことに
なる。
(sio□)"fc A molded article made of ceramic fibers melted into fibers is used. The heat reflecting material 13°J4 is formed using aluminum, brass, copper, etc. as a material with a low heat absorption rate. Then, the cylindrical portion J of the heat insulating member 15
Amorphous magnetic alloy ribbon 12 is wound around I5m to form wound core 11.
To form K, the inner circumferential surface and both end surfaces of the wound core 11 are covered with a heat reflecting material 13, and the outside of the heat reflecting plate 13 is surrounded by a heat insulating member J5. Note that an air layer is formed between both end faces of the wound core 11 and the □ heat reflecting material 13 by the spacer insulator 17 . Furthermore, by covering the wound core 32 with the heat insulating member 16, the outer peripheral surface of the wound core 11 is covered with the heat reflecting material 14, and the outside of the heat reflecting plate 14 is surrounded by the heat insulating member 16.

次いで、巻鉄心11.11を焼鈍する前工程において、
巻鉄心71.11を並べてその中央の脚部を囲む断熱部
材75.15の外側部に共通に変圧器コイルJ8を巻回
する。
Next, in a pre-process of annealing the wound core 11.11,
A transformer coil J8 is commonly wound around the outer side of a heat insulating member 75.15 that surrounds the central leg of the wound cores 71.11.

そして、巻鉄心J J ’# J Jを焼鈍するに際し
ては、各巻鉄心23.22の外側の脚部を囲む断熱部材
15.76の外側部に励磁用交流電流を通電するための
仮巻コイルJ 9# J y f夫々巻回(仮巻)する
。これら仮巻コイル19.19は互いに巻回方向を逆に
して巻回し、切換スイ、チ20を介して高周波交流電源
21と直流電源22に夫々接続する。図中28は高周波
交流電源21の電圧を調整する電圧調整器である。
Then, when annealing the wound core J J '# J 9# Wind each of J y f (tentative winding). These pre-wound coils 19, 19 are wound in opposite winding directions, and are connected to a high frequency AC power source 21 and a DC power source 22 via a switch 20, respectively. In the figure, 28 is a voltage regulator that adjusts the voltage of the high frequency AC power supply 21.

仮巻コイル19.19には無機絶縁被覆電−例えばセラ
ミック電線等を使用することによシ耐電圧、耐熱的にも
十分耐えることができる。
By using an inorganic insulated wire, such as a ceramic wire, for the temporary winding coils 19 and 19, sufficient voltage and heat resistance can be obtained.

ここで、仮巻コイル29.79は巻回数に応じた電圧が
加わるため、巻回数を少なくシ、絶縁耐力上問題のない
巻回数を選定する。
Here, since a voltage is applied to the temporarily wound coil 29.79 according to the number of turns, the number of turns is small and the number of turns is selected so as to cause no problem in terms of dielectric strength.

そして、巻鉄心rye”izの焼鈍を行なうためには、
切換スイッチ20によシ仮巻コイル19、.19を高周
波交流電源21側へ接続し、電圧調整器28によシミ圧
を調整して仮巻コイルJ9.19に励磁用の高周波交流
電流を通電する。この交流電流の周波数#i2〜4 k
Hzに選定する。仮巻コイル19.19に交流電流を流
すと磁束の発生により巻鉄心11.11にうず電流が流
れ、このう・ず−流に伴納、電力損失によって巻鉄心1
i、IJにジュール熱が発生する。
Then, in order to anneal the wound iron core rye"iz,
The temporary winding coils 19, . 19 is connected to the high frequency AC power supply 21 side, the stain pressure is adjusted by the voltage regulator 28, and a high frequency AC current for excitation is applied to the temporary winding coil J9.19. Frequency of this alternating current #i2~4k
Hz. When an alternating current is passed through the temporary winding coil 19.19, an eddy current flows through the winding core 11.11 due to the generation of magnetic flux.
i, Joule heat is generated in IJ.

このためt巻鉄心lj 、 J Jはそれ自身の内部発
熱により加熱されて温度上昇する。巻鉄心J7,21の
温度が非晶質磁性合金薄板12の適正焼鈍温度の400
Cまで上昇すれば、電圧調整器28で高周波交流電源2
ノの電圧を調整することによシ、巻鉄心11.11の温
度400℃を適正な温度保持時間で一定に保持する。こ
の温度保持時間は30分から2時間である。なお1仮巻
コイル19.L9を互いに逆極性に接続しであるので、
仮巻コイル19.19に交流電流を流して巻鉄心1x、
11t−励磁した時に、複巻鉄心27.JJの中央側脚
部における磁束の方向が互いに逆向きになシ、この中央
側脚部に巻回した変圧器コイルJ8には磁束による誘起
電圧が生じない。また、仮巻コイル19.19を互いに
逆直列に接続しても同じ効果が得られる・ 次いで、切換スイッチ20の切換操作にょシ仮巻コイル
19.19を交流電源18側から切シ離して、直流電源
22側へ接続する。このため、仮巻コイル19.19へ
の交流電流の通電がし中断されて、巻鉄心J J t’
 J Jの励磁が停止し、巻鉄心JJ、JJが冷却を始
める。同時に直流電源22から直流電流が仮巻コイル1
9゜1.9に流れ、巻鉄心JJ、JJに対して磁場を形
成する。このようにして巻鉄心11.llt″磁場中に
て冷却する。この場合、外部熱源を有していないために
熱容量が少なく、冷却速度のコントロールを容易に行な
える。焼鈍後に仮巻コイル19.19を巻鉄心JJ、1
7から外す。
For this reason, the t-turn iron cores lj and JJ are heated by their own internal heat generation and their temperature rises. The temperature of the wound core J7, 21 is 400°C, which is the appropriate annealing temperature of the amorphous magnetic alloy thin plate 12.
If the voltage rises to C, the voltage regulator 28 turns off the high frequency AC power supply 2.
By adjusting the voltage of , the temperature of the wound core 11.11 is kept constant at 400° C. for an appropriate temperature holding time. This temperature holding time is 30 minutes to 2 hours. Note that 1 temporary winding coil 19. Since L9 is connected with opposite polarity,
By passing an alternating current through the temporarily wound coil 19.19, the wound iron core 1x,
11t-When energized, the compound-wound core 27. The directions of the magnetic fluxes in the central legs of the JJ are opposite to each other, and no induced voltage is generated by the magnetic flux in the transformer coil J8 wound around the central legs. The same effect can also be obtained by connecting the temporary winding coils 19, 19 in reverse series with each other.Next, when the changeover switch 20 is operated, the temporary winding coils 19, 19 are disconnected from the AC power supply 18 side. Connect to the DC power supply 22 side. Therefore, the supply of alternating current to the pre-wound coils 19 and 19 is interrupted, and the winding core J J t'
The excitation of JJ stops, and the wound cores JJ and JJ start cooling. At the same time, a DC current is supplied from the DC power supply 22 to the temporary winding coil 1.
9°1.9, forming a magnetic field around the wound cores JJ and JJ. In this way, the wound core 11. It is cooled in a magnetic field. In this case, since there is no external heat source, the heat capacity is small, and the cooling rate can be easily controlled. After annealing, the pre-wound coil 19.
Remove from 7.

なお焼鈍作業は、巻鉄心JJjJiの酸化を防止するた
めに不活性ガス雰囲気中、例えば窒素ガス(N2)中に
て行なうことが好ましい。
Note that the annealing work is preferably performed in an inert gas atmosphere, for example, nitrogen gas (N2) in order to prevent oxidation of the wound core JJjJi.

このようKして巻鉄心11.11を焼鈍する。In this manner, the wound core 11.11 is annealed.

この焼鈍方法において巻鉄心11.21を加熱する場合
には、高周波加熱による損失に伴い巻鉄心JJ、JJを
それ自体の内部からの発熱によシ温度上昇させるので、
巻鉄心11.11全体を充分且つ均一に加熱して、巻鉄
心21表面と内部の温度分布を均一にできる。このため
、巻鉄心Jx、i1の非晶質磁性合金薄板12には熱応
力による歪が発生せず、その磁気特性の低下を防止でき
る。また、巻鉄心J J 、 J、Jの加熱方式は巻鉄
心71.[7単独でそれ自体の発熱によシ行なう方式で
あシ、外部熱源からの輻射熱により巻鉄心1.1.、.
1.1全体を外部から焼鈍温度まで加熱する方式ではな
い。このため、巻鉄心11,1lt−加熱する時に、巻
鉄心11゜11に巻回した変圧器コイル18が、外部か
ら強制的に焼鈍温度(400℃)に加熱されることがな
く、高温による変圧器コイル18の損傷を防止できる。
When heating the wound cores 11 and 21 in this annealing method, the temperature of the wound cores JJ, JJ increases due to heat generation from within itself due to loss due to high frequency heating.
The entire wound core 11, 11 can be heated sufficiently and uniformly, and the temperature distribution on the surface and inside of the wound iron core 21 can be made uniform. Therefore, distortion due to thermal stress does not occur in the amorphous magnetic alloy thin plate 12 of the wound core Jx, i1, and deterioration of its magnetic properties can be prevented. In addition, the heating method for the wound cores J J , J, and J is wound core 71. [7] It is a method in which the wound core 1.1. ,..
1.1 It is not a method of heating the entire product from the outside to the annealing temperature. Therefore, when heating the wound core 11, 1lt, the transformer coil 18 wound around the wound core 11°11 is not forcibly heated from the outside to the annealing temperature (400°C), and the transformation due to high temperature is prevented. Damage to the device coil 18 can be prevented.

次に巻鉄心J 1 、、 J Jの表面を覆う熱反射材
JJ、24とその外側を囲む断熱部材J5.J6の焼鈍
工程時における作用について説明する。
Next, a heat reflecting material JJ, 24 covering the surface of the wound core J1, JJ, and a heat insulating member J5 surrounding the outside thereof. The effect during the annealing process of J6 will be explained.

、熱反射材13.14は巻鉄心11からの輻射による放
熱を抑制し、断熱部材15.16は巻鉄心11からの対
流による放熱を抑制して、巻鉄心11の発熱分を蓄熱に
供するものである。これKよシ熱反射材13,14およ
び断熱部材15.16は焼鈍時に巻鉄心11の発熱分の
放出(放熱)を抑えて鉄心内部処蓄積(蓄熱)し、短時
間に巻鉄心11を温度上昇させて焼鈍を行なうことがで
きるようにしている。
The heat reflecting materials 13 and 14 suppress heat dissipation due to radiation from the wound core 11, and the heat insulating members 15 and 16 suppress heat dissipation due to convection from the wound core 11, and store the heat generated by the wound core 11. It is. The heat reflecting materials 13, 14 and the heat insulating members 15, 16 suppress the release (heat radiation) of the heat generated by the wound core 11 during annealing, accumulate heat inside the core, and raise the temperature of the wound core 11 in a short time. It is made possible to perform annealing by raising the temperature.

説明を加えると、巻鉄心11を励磁して巻鉄心J1をそ
れ自身の発熱で昇温する場合、熱の一部が巻鉄心11か
ら放熱し他の一部が巻鉄心1ノ内部に蓄熱される。
To explain, when the wound core 11 is excited to raise the temperature of the wound core J1 by its own heat generation, part of the heat is radiated from the wound core 11, and the other part is stored inside the wound core 1. Ru.

ここで、巻鉄心11の発熱量をQ s (k”) 、巻
鉄心1ノからの放熱量をQ z (km)、巻鉄心1ノ
内部への蓄熱量をQ s (km)とすると、Qs=Q
IQt             ・・・(1)となる
Here, if the amount of heat generated by the wound core 11 is Q s (k''), the amount of heat dissipated from the wound core 1 is Q z (km), and the amount of heat stored inside the wound core 1 is Q s (km), then Qs=Q
IQt...(1).

Q* −Q2 JQlは次式で表わされる。Q*-Q2 JQl is expressed by the following formula.

Ql =k1wqt t            −(
2)・・・(3) Qs =CW(−−θco)            
−(4)また巻鉄心J1を覆った熱反射材13.14お
よび断熱部材13.14の温度降下量T(℃)は、とな
る。但し、 kx*ks−:比例定数 W ;巻鉄心重量(kg) ql;巻鉄心単位重量、単位時間当シの発熱量  kc
ai/kg−h t ;コイルへの通電′時間(h) g ;重力の加速度(%/s2) β ;雰囲気ガスの膨張係数 ν ;雰囲気ガスの動粘性係数(trV/s)t :巻
鉄心の代表長さ−) ’  Pr  ”、プラントル数 θ68.θ。2;熱反射板温度卦よび断熱部材表面温度
CC) θ。;静止雰囲気がス温度CC) Ac;対流による放熱面積(fi ) Ar;輻射熱による放熱面積(m2) C;巻鉄心の比熱(kW■) θ。;巻鉄心平均温度(℃) σ ;ステファン−yyルッマン定数 61;鉄心面輻射率 e2;熱反射材輻射率 F ;形態係数 δ1 、δt*Js:鉄心と熱反射材との間の空気層厚
さ、熱反射材厚さ、断熱部材厚さ λ1.λ8.λ8;雰囲気ガス、熱反射材および断熱材
の熱伝導率(k(III!/m−h・℃)W ;熱流密
度(km/h−m2) これらの各式かられかるように、巻鉄心平均温度を40
0℃程度に昇温させるために発熱量Q1を有効に蓄熱量
Qsに供するには放熱量Q3を小さくすればよ□い。従
りて熱反射材is。
Ql = k1wqt t - (
2)...(3) Qs = CW(--θco)
-(4) Also, the amount of temperature drop T (° C.) of the heat reflecting material 13.14 and the heat insulating member 13.14 covering the wound core J1 is as follows. However, kx*ks-: Proportionality constant W; Weight of wound core (kg) ql; Calorific value per unit weight of wound core, unit time kc
ai/kg-h t ; Time for energizing the coil (h) g ; Acceleration of gravity (%/s2) β ; Expansion coefficient of atmospheric gas ν ; Kinematic viscosity coefficient of atmospheric gas (trV/s) t : Wound core Typical length of −) 'Pr'', Prandtl number θ68.θ.2; Heat reflector temperature diagram and insulation member surface temperature CC) θ.; Stationary atmosphere temperature CC) Ac; Heat dissipation area due to convection (fi) Ar ; Heat dissipation area due to radiant heat (m2) C; Specific heat of wound core (kW ■) θ.; Average temperature of wound core (°C) σ; Stephan-yy Lullmann constant 61; Core surface emissivity e2; Heat reflector emissivity F; View factor δ1, δt*Js: Thickness of air layer between core and heat reflector, thickness of heat reflector, thickness of heat insulating member λ1.λ8.λ8; Heat conduction of atmospheric gas, heat reflector and heat insulator rate (k(III!/m-h・℃)W; heat flow density (km/h-m2) As can be seen from these formulas, the average temperature of the wound core is 40
In order to effectively use the heat generation amount Q1 as the heat storage amount Qs in order to raise the temperature to about 0° C., the heat radiation amount Q3 should be made small. Therefore the heat reflector is.

14および断熱部材J’5,76によって巻鉄心11の
放熱を抑えれば、発熱量を巻鉄心J1内部に有効に蓄熱
することができる。
14 and heat insulating members J'5, 76 to suppress heat radiation from the wound core 11, the amount of heat generated can be effectively stored inside the wound core J1.

ここで、熱反射材13.δ4による輻射放熱抑制および
断熱部材1.5+16による対流放熱抑制について述べ
る。まず熱輻射については、熱輻射に関するキルヒ、ホ
ップの法則にょシ、5−1定温度の面から発する熱輻射
線が他の同一、温度にある面に投射するとき、被投射面
が示す吸怪率aはその面の輻射率8に略等しい関係にあ
る@このため、熱反射板13.14は輻、耐重ε=が小
さい材料を用いるととKよシ、前記(3)式の第2項の
輻射放熱量を小さくして輻射による放熱を抑制すること
ができる。熱反射板JJ、74の材料は前記したように
アルミニウム、黄銅、銅などが適してお)、さらに反町
面を研摩加工することによシさらに、輻射率を小さくす
ることができ、一般の絶縁物に比してIA〜1/30の
輻射放熱量とすることができる。次に対流放熱について
みると、断熱部材J 5 、2.6は前記(3)式第1
項で示す表面i度θ。を低(する必要があ、シ、このた
め前記(5)式で示す熱漬、導率λ3が小さh材料で、
しかも熱的に400℃に耐え得る材料を使用する。例え
ば前記の実施例で用いた上2ミックス繊維は、耐熱的に
は充分であシ、熱伝導率がアルミナとシリカの組成比率
により異るが400℃近くで0.05〜o、 13 (
km/mhtl:)と小さく、充分な温度降工が期待で
きる。この温度降下量については、たとえば巻鉄心11
の断面寸法t−0,1(へ)Xo、1(へ)、巻鉄心発
熱量を500に、4/h−に9としたときに断熱部材厚
さδ=0.002(へ)で約300 dsgの温度降下
量となる。仁のため、断熱部材13.14の表面温度θ
。が約100℃以下となり、(3)式よシ巻鉄心11か
らの放熱量di約174となって発熱量を有効に巻鉄心
11の内部に蓄熱することができるaまた、間隔絶縁物
17により巻鉄心1、Jの両端面と熱反射板13との間
に空気層が形成されている。このため、焼鈍温度400
℃付近での雰囲気ガスの熱伝導率λ1 # 0.044
 km/m−h ・℃、空気層厚さδ1 =0.001
2N%鉄心発熱量200 km/h−kli+としても
、断熱部材25.16の温度降下量は約10、Odeg
となる。
Here, heat reflective material 13. The suppression of radiant heat radiation by δ4 and the suppression of convective heat radiation by the heat insulating member 1.5+16 will be described. First of all, regarding thermal radiation, Kirch and Hopf's law regarding thermal radiation, 5-1 When thermal radiation emitted from a surface at a constant temperature is projected onto another surface at the same temperature, The rate a is approximately equal to the emissivity 8 of that surface. Therefore, if the heat reflecting plates 13 and 14 are made of a material with small radiation and weight resistance ε=, then the second equation of the above equation (3) Heat dissipation due to radiation can be suppressed by reducing the amount of heat dissipated by radiation. As mentioned above, aluminum, brass, copper, etc. are suitable materials for the heat reflecting plate JJ, 74), and the emissivity can be lowered by polishing the reversed surface. The amount of radiant heat dissipated can be IA to 1/30 of that of a physical object. Next, regarding convective heat radiation, the heat insulating member J 5 , 2.6 is
The surface i degree θ is expressed in terms. It is necessary to make it low (for this reason, the heat soaking shown in the above equation (5), the conductivity λ3 is small h material,
Furthermore, a material that can withstand temperatures of 400°C is used. For example, the upper 2 mix fiber used in the above example has sufficient heat resistance, and the thermal conductivity varies depending on the composition ratio of alumina and silica, but it is 0.05 to 13 (
km/mhtl:), and a sufficient temperature drop can be expected. Regarding this temperature drop amount, for example,
When the cross-sectional dimension t-0, 1 (to) This results in a temperature drop of 300 dsg. Therefore, the surface temperature θ of the heat insulating member 13.14
. is approximately 100°C or less, and according to equation (3), the amount of heat dissipated from the wound core 11 is approximately 174, and the calorific value can be effectively stored inside the wound core 11. An air layer is formed between both end surfaces of the wound cores 1 and J and the heat reflecting plate 13. For this reason, the annealing temperature is 400
Thermal conductivity of atmospheric gas around °C λ1 # 0.044
km/m-h ・℃, air layer thickness δ1 = 0.001
Even if the heat generation value of the 2N% iron core is 200 km/h-kli+, the temperature drop of the insulation member 25.16 is approximately 10, Odeg.
becomes.

このように熱反射材J’J、14および断熱部材J5t
J6が巻鉄心110発熱を巻鉄心11内部に蓄熱すると
、(2)式より鉄心単位重量W1単位時間当シの発熱量
q!夫々を一定とした場合に、巻鉄心11を400℃程
度まで昇温させるに必要な仮巻コイル19への通電時間
tが大幅に短縮されて焼鈍を能率的に行なえる。また仮
巻コイル19への通電時間tを一定とした場合には、前
述の発熱量q1を小さくできq 、 =fn −Bnで
あることによって周波数fが低くしてもよく、また同一
鉄心重量の場合には電源容量が小さな設備で良いという
利点がある。また巻鉄心11の放熱量が減少すると、鉄
心内部の温度分布がよシ均−化される。さらに断熱部材
15.16の表面温度を低く抑制、すなわち前記のよう
に絶縁物の耐熱温度以下となるように抑制することがで
きるので、巻鉄心13.IJに巻回した変圧器コイルJ
8t−はじめとする巻鉄心11゜4 Jに近接する絶縁
物の熱的損傷を防止でき、これら絶縁物に耐熱グレード
の屍いものを使用する必要がない・ さらに巻鉄心1ノの表面を覆う熱反射板λ3゜14およ
び断熱部材15.16は、焼鈍により脆化した巻鉄心1
1の非晶質磁性合金薄板12を補強し保護する役目を有
している。このため、変圧器中身として組立てた巻鉄心
11に対して外力が加わりた場合に、非晶質磁性合金薄
板12が破損することを防止でき、薄板の破片による絶
縁破壊を防止できる。
In this way, the heat reflecting material J'J, 14 and the heat insulating member J5t
When J6 stores the heat generated by the wound core 110 inside the wound core 11, from equation (2), the amount of heat generated per unit time of the core unit weight W1 is q! When each of these is constant, the time t for applying current to the pre-wound coil 19 required to raise the temperature of the wound core 11 to about 400° C. is significantly shortened, and annealing can be performed efficiently. Furthermore, if the energization time t to the temporary coil 19 is constant, the above-mentioned heat generation amount q1 can be made small, and the frequency f can be made low because q = fn - Bn. In some cases, the advantage is that equipment with a small power supply capacity is sufficient. Furthermore, when the amount of heat dissipated from the wound core 11 is reduced, the temperature distribution inside the core is more evenly distributed. Furthermore, since the surface temperature of the heat insulating members 15 and 16 can be suppressed to a low level, that is, below the heat resistance temperature of the insulator as described above, the wound iron core 13. Transformer coil J wound around IJ
8t - Thermal damage to the insulators in the vicinity of the wound core 11゜4 J can be prevented, and there is no need to use heat-resistant grade scraps for these insulators. Additionally, the surface of the wound core 1 is covered. The heat reflecting plate λ3゜14 and the heat insulating member 15.16 are made of the wound core 1 which has become brittle due to annealing.
It has the role of reinforcing and protecting the amorphous magnetic alloy thin plate 12 of No. 1. Therefore, when an external force is applied to the wound core 11 assembled as the contents of the transformer, the amorphous magnetic alloy thin plate 12 can be prevented from being damaged, and dielectric breakdown due to fragments of the thin plate can be prevented.

さらにまた断熱部材13.14は、非晶質磁性合金薄板
12からなる巻鉄心11から発生する騒音を吸音および
遮音する役目を有している。
Furthermore, the heat insulating members 13 and 14 have the role of absorbing and insulating noise generated from the wound core 11 made of the amorphous magnetic alloy thin plate 12.

すなわち、非晶質磁性合金薄板は従来のけい素鋼板に比
べて磁気歪が大きいので、この磁気歪が起因して巻鉄心
IJが騒音を発生する。一般に吸音作用は空気の粒子運
動による摩擦と吸音層の振動による機械的損失即ち、音
の一部が熱、え# 4− K□:・ヶゎ5゜1あ、、□
ヮ維からなる断熱部材J5.J 6は繊維間に多量の微
空間を有しているために、吸音率も高く巻鉄心11表面
と相対する部材間の音の乱反射による音圧上昇を小さく
できる。また断熱部材J’5.76の遮音作用としては
、質量法則゛によシ面密度に応じた透過損失による減音
があり、−上記の吸音作用と合せ騒音を低減できる利点
を断熱部材15.16が有している。このことは変圧器
運転時のみならず巻鉄心7ノを高周波励磁により焼鈍す
る時に発生する騒音を低減できる効果も得られ、特に周
波数の高い領域でその効果は顕著である。
That is, since the amorphous magnetic alloy thin plate has a larger magnetostriction than the conventional silicon steel plate, the wound core IJ generates noise due to this magnetostriction. In general, sound absorption is caused by mechanical loss due to friction due to the movement of air particles and vibration of the sound absorption layer, i.e., part of the sound is heat, etc.
Heat insulating member J5 made of fiber. Since J6 has a large amount of microspaces between fibers, it has a high sound absorption coefficient and can reduce the increase in sound pressure due to diffuse reflection of sound between members facing the surface of the wound core 11. In addition, the sound insulation effect of the heat insulation member J'5.76 is based on the law of mass, and there is sound reduction due to transmission loss according to the surface density. 16 have. This has the effect of reducing the noise generated not only during transformer operation but also when the winding core 7 is annealed by high frequency excitation, and this effect is particularly noticeable in the high frequency range.

次に本発明の他の実施例について説明すると、第5図お
よび第6図は断熱部材の他の実施例を示している。第5
図で示す断熱部材25は巻鉄心11の外周面と両端@を
囲むもので、2分割構造となっている。断熱部材25の
内側面には熱反射材23と間隔絶縁物27が設けである
Next, another embodiment of the present invention will be described. FIGS. 5 and 6 show another embodiment of the heat insulating member. Fifth
The heat insulating member 25 shown in the figure surrounds the outer peripheral surface and both ends of the wound core 11, and has a two-part structure. A heat reflecting material 23 and a spacing insulator 27 are provided on the inner surface of the heat insulating member 25.

第6図で示す断熱部材26は巻鉄心IJの内周面を囲む
もので、その外側面には熱反射材24が設けである。
A heat insulating member 26 shown in FIG. 6 surrounds the inner peripheral surface of the wound core IJ, and a heat reflecting material 24 is provided on the outer surface thereof.

第7図はさらに異なる他の実施例における巻鉄心の横断
rMt−示している。この実施例では、前記の各実施例
のように断熱部材1B(2B)の内側面に間隔絶縁物J
v(pv)を設けて、巻鉄心11の両端面と熱反射材J
3(23)との間に空気層を形成するのではなく、間隔
絶縁物1y(zy)を設けずに1断熱部材xi(:ts
)に設けた熱反射材xs(zs)を巻鉄心J1の両端面
に直接接触させる構造としたものである。
FIG. 7 shows the cross section rMt of the wound core in yet another different embodiment. In this embodiment, as in each of the above embodiments, a spacer insulator J is provided on the inner surface of the heat insulating member 1B (2B).
v (pv), and both end faces of the wound core 11 and the heat reflecting material J
3 (23), instead of forming an air layer between the insulation member xi (:ts
) has a structure in which the heat reflecting material xs (zs) provided in the winding core J1 is brought into direct contact with both end surfaces of the wound core J1.

この構造では巻鉄心IJとして巻回した非晶質磁性合金
薄板12の各端面間が熱反射材xsにts)Kよシ短絡
されるので、焼鈍時に仮巻コイル19.19に通電する
ことKよシ巻鉄心JJK生ずるうず電流損を増加させて
鉄心内部の発熱を大きくし、同一鉄心重量の場合に巻鉄
心11を400℃程度まで昇温させるのに必要な通電時
間を一層短縮できるとともに、電源周波数の低下および
電源容量の縮小化を図れる。巻鉄心IJの端面を短絡さ
せた時のうず電流損W・は、非晶質磁性合金薄板22の
板厚をt、薄板巻回数をn、端面短絡の程度によシ定ま
る係数をαとすると、W@ol:(αn1)2・f2で
表わされるから端面短絡とすることによシ、うず電流損
が大1[K増加する。なお、巻鉄心11を変圧器として
組立てる場合には、端面短絡を行なっている熱反射板を
取り除き、変圧器運転時における巻鉄心J1のうず電流
増加を回避する・ また、巻鉄心J1を変圧器として組立てる時には、必要
に応じて巻鉄心7Jから断熱部材J5(25)、16(
26)を取外しても良い。
In this structure, each end face of the amorphous magnetic alloy thin plate 12 wound as the wound core IJ is short-circuited to the heat reflecting material It is possible to increase the eddy current loss generated in the well-wound core JJK, increase the heat generation inside the core, and further shorten the energization time required to raise the temperature of the wound core 11 to about 400° C. for the same core weight. It is possible to lower the power supply frequency and reduce the power supply capacity. The eddy current loss W when the end face of the wound core IJ is short-circuited is calculated as follows: where t is the thickness of the amorphous magnetic alloy thin plate 22, n is the number of turns of the thin plate, and α is a coefficient determined by the degree of end face short-circuiting. , W@ol: (αn1)2·f2, so by shorting the end face, the eddy current loss increases by a large 1[K. In addition, when assembling the wound core 11 as a transformer, remove the heat reflecting plate that short-circuits the end face to avoid an increase in eddy current in the wound core J1 during transformer operation. When assembling it, remove the insulation members J5 (25), 16 (
26) may be removed.

断熱部材はセラミック繊維で形成するものに限らず、ガ
ラス繊維、ロッククール繊維、アスベストなどの耐熱性
を有する断熱材で形成することもできる6tた、断熱部
材は、第3図ないし第6図で示す成形品に限らず、テー
プ状のものを巻鉄心1】に巻付けたシ、シート状のもの
を巻鉄心J7に被せることによシ構成しても良いO なお、前述した実施例では巻鉄心を高周波励磁するため
に巻鉄心に仮巻した仮巻コイルを用いているが、これに
限定されず巻鉄心に巻回した変圧器コイルを利用しても
良い。但し、この場合高圧用では変圧器コイルの絶縁の
問題が生じるので、低圧用の変圧器に採用することが可
能である。
The heat insulating members are not limited to those made of ceramic fibers, but may also be made of heat-resistant heat insulating materials such as glass fibers, rock cool fibers, and asbestos. The molded product is not limited to the one shown, but may also be constructed by wrapping a tape-like material around the wound core J7, or by wrapping a sheet-like material over the wound core J7. Although a temporarily wound coil temporarily wound around a wound iron core is used to excite the iron core at high frequency, the present invention is not limited to this, and a transformer coil wound around a wound iron core may also be used. However, in this case, there is a problem with the insulation of the transformer coil in high-voltage applications, so it can be used in low-voltage transformers.

また巻鉄心を冷却する時に1巻鉄心に直流磁界を付与す
るため罠は、仮巻コイルを利用する方法の他に、変圧器
コイルを利用することも可能であ)、さらに、巻鉄心を
加熱させる過程から巻鉄心に直流磁界を付与することも
可能である。
In addition, in order to apply a DC magnetic field to the first core when cooling the core, in addition to using a temporary winding coil, it is also possible to use a transformer coil. It is also possible to apply a DC magnetic field to the wound core during this process.

焼鈍を行なう鉄心は巻鉄心に限定されず、非晶質磁性合
金薄板を積層してなる積層鉄心も対象にして同等の効果
を得ることができる。
The core to be annealed is not limited to a wound core, and the same effect can be obtained with a laminated core made of laminated amorphous magnetic alloy thin plates.

焼鈍を行なう場合には、鉄心に変圧器コイルを巻回して
おくことが品質上および製造上′有利である。しかし必
ずしもこれに限らず、鉄心に変圧器コイルを巻回し、な
いで焼鈍することも可能である。
When annealing is performed, it is advantageous in terms of quality and manufacturing to wind the transformer coil around the core. However, the present invention is not limited to this, and it is also possible to wind the transformer coil around the iron core and perform annealing without winding the transformer coil.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の鉄心の製造方法によれば、
非晶質磁性合金薄板からなる鉄心を励2磁して鉄心自身
を発熱させることにより、鉄心を均一な温度分布で温度
上昇させて焼鈍を行なうことが可能で、焼鈍による非晶
質磁性合金薄板の磁気特性の低下を防止できる。そして
、鉄心の表面を覆う熱反射材により鉄心からの輻射熱を
抑制するととも忙、熱反射板の外側を囲む断熱部材によ
シ鉄心からの対流放熱を抑制して鉄心における発熱を有
効忙鉄心内部に蓄積し、鉄心−の焼鈍を迅速に行なうこ
とができる。また巻鉄心を励磁して発熱させることと、
熱反射板および断熱部材の断熱作用とKより、鉄心に変
圧器コイルを巻回した状態でも変圧器コイルを損傷する
ことなく焼鈍を行なうことが可能であシ、焼鈍後に行な
う組立工数を減少し、非晶質磁性合金薄板の脆化による
破損を防止できる。
As explained above, according to the method of manufacturing the iron core of the present invention,
By exciting an iron core made of an amorphous magnetic alloy thin plate and generating heat in the iron core itself, it is possible to increase the temperature of the iron core with a uniform temperature distribution and perform annealing. can prevent deterioration of magnetic properties. The heat reflecting material covering the surface of the core suppresses radiant heat from the core, and the heat insulating material surrounding the outside of the heat reflecting plate suppresses convective heat radiation from the core, effectively distributing heat inside the core. The iron core can be annealed quickly. Also, exciting the wound iron core to generate heat,
Due to the heat insulating effect of the heat reflector and the heat insulating member and the K, it is possible to perform annealing without damaging the transformer coil even when the transformer coil is wound around the iron core, reducing the number of assembly steps required after annealing. , it is possible to prevent damage due to embrittlement of the amorphous magnetic alloy thin plate.

従って、磁気特性に優れた品質の良い鉄心を得ることが
できる。さらに1熱反射材および断熱部材は非晶質磁性
合金薄板からなる鉄心の剛性を高め、且つ鉄心の騒音の
発生を抑制できるという効果もある。
Therefore, a high quality iron core with excellent magnetic properties can be obtained. Furthermore, the heat reflecting material and the heat insulating member have the effect of increasing the rigidity of the iron core made of the amorphous magnetic alloy thin plate and suppressing the noise generation of the iron core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発FIi1による巻鉄心の製造方法の一実施
例を示す説明図、第2図は第1図で示す巻鉄心の横断面
図、第3図および第4図は断熱部材および熱反射材の一
例を示すもので、第3図□ (a) (b)および第4図(、) (b)は各々斜視
図および横断縮図、第5図および第6図は断熱部材およ
び熱反射材の他の例を示すもので、第5図(、) (b
)および第6図(、)(b)は各々斜視図および横断面
図、第7図は鉄心と熱反射材との接触状態を示す横断面
図、第8図は従来の巻鉄心の製造方法を示す説明図であ
る。 1・・・鉄心、2・・・非晶質磁性合金薄板、11・・
・巻鉄心、12・・・非晶質磁性合金薄板、13.14
・・・熱反射材、15.16・・・断熱部材、17・・
・間隔絶縁物、18・・・変圧器コイル、19・・・仮
巻コイル、20・・・交流電源、2ノ・・・直流電源、
23゜24・・・熱反射材、25.26・・・断熱部材
、27・・・間隔絶縁物。 第1区 第2図
Fig. 1 is an explanatory diagram showing an example of the method for manufacturing a wound core using the FIi1 of the present invention, Fig. 2 is a cross-sectional view of the wound iron core shown in Fig. 1, and Figs. An example of a reflective material is shown in Figure 3 (a) (b) and Figure 4 (,) (b) are perspective views and cross-sectional scales, respectively, and Figures 5 and 6 are heat insulating members and heat reflectors. Another example of the material is shown in Figure 5 (,) (b
) and 6(,)(b) are respectively a perspective view and a cross-sectional view, FIG. 7 is a cross-sectional view showing the state of contact between the core and the heat reflecting material, and FIG. 8 is a conventional method for manufacturing a wound core. FIG. 1... Iron core, 2... Amorphous magnetic alloy thin plate, 11...
・Wound core, 12...Amorphous magnetic alloy thin plate, 13.14
...Heat reflecting material, 15.16...Insulating material, 17...
- Spacing insulator, 18...Transformer coil, 19...Temporarily wound coil, 20...AC power supply, 2...DC power supply,
23° 24... Heat reflecting material, 25.26... Heat insulating member, 27... Spacing insulator. District 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非晶質磁性合金薄板からなる鉄心の外表面を熱反射材で
覆うとともに、この熱反射材の外側を断熱部材で囲い、
この鉄心に巻回したコイルに励磁用交流電流を通して前
記鉄心を励磁し、この励磁に伴う前記鉄心に生ずる損失
により前記鉄心自身を発熱させて焼鈍を行なうことを特
徴とする鉄心の製造方法。
The outer surface of the iron core made of amorphous magnetic alloy thin plate is covered with a heat reflecting material, and the outside of this heat reflecting material is surrounded by a heat insulating material.
A method for manufacturing an iron core, characterized in that the iron core is excited by passing an excitation alternating current through a coil wound around the iron core, and the iron core itself is heated and annealed by a loss generated in the iron core due to this excitation.
JP16053984A 1984-07-31 1984-07-31 Manufacture of core Pending JPS6140015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16053984A JPS6140015A (en) 1984-07-31 1984-07-31 Manufacture of core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16053984A JPS6140015A (en) 1984-07-31 1984-07-31 Manufacture of core

Publications (1)

Publication Number Publication Date
JPS6140015A true JPS6140015A (en) 1986-02-26

Family

ID=15717164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16053984A Pending JPS6140015A (en) 1984-07-31 1984-07-31 Manufacture of core

Country Status (1)

Country Link
JP (1) JPS6140015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186506A (en) * 1986-02-12 1987-08-14 Meidensha Electric Mfg Co Ltd Annealing method of amorphous iron core
JP2018160502A (en) * 2017-03-22 2018-10-11 東芝産業機器システム株式会社 Method of manufacturing wound core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186506A (en) * 1986-02-12 1987-08-14 Meidensha Electric Mfg Co Ltd Annealing method of amorphous iron core
JP2018160502A (en) * 2017-03-22 2018-10-11 東芝産業機器システム株式会社 Method of manufacturing wound core

Similar Documents

Publication Publication Date Title
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
TWI443198B (en) Annealing method of amorphous core
US4168013A (en) High temperature insulating container
JPS6140015A (en) Manufacture of core
JPS6140016A (en) Manufacture of core
JPH0552652B2 (en)
US4832763A (en) Method of stress-relief annealing a magnetic core containing amorphous material
JPS6345318A (en) Partially heat insulated annealing method of amorphous alloy
JPS61179507A (en) Manufacture of iron core
JPS61179519A (en) Manufacture of iron core
JPS6154612A (en) Manufacture of core
JP2001192728A (en) Apparatus and method for heating cylindrical metallic coil
JPS6265312A (en) Method for annealing iron core
JPS61181116A (en) Manufacture of rolled iron core
JPS62210609A (en) Manufacture of wound core
JPH0559177B2 (en)
JPS61292907A (en) Manufacture of wound core
JPS6174315A (en) Manufacture of iron core
JPS59151403A (en) Method for annealing iron core
JPS61174612A (en) Manufacture of iron core
JPH03263309A (en) Manufacture of static electrical equipment provided with wound iron core
JP2924156B2 (en) Manufacturing method of three-phase wound core
JP3639712B2 (en) Coil heating device
JPS60233811A (en) Heat treatment of wound core
JPS61181115A (en) Manufacture of rolled iron core