JPH0557562A - Gauge zero point compensation method in auto-sizing grinding - Google Patents

Gauge zero point compensation method in auto-sizing grinding

Info

Publication number
JPH0557562A
JPH0557562A JP21972891A JP21972891A JPH0557562A JP H0557562 A JPH0557562 A JP H0557562A JP 21972891 A JP21972891 A JP 21972891A JP 21972891 A JP21972891 A JP 21972891A JP H0557562 A JPH0557562 A JP H0557562A
Authority
JP
Japan
Prior art keywords
grinding
size
work
power
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21972891A
Other languages
Japanese (ja)
Inventor
Makoto Onoda
誠 小野田
Ikuo Yamada
郁夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP21972891A priority Critical patent/JPH0557562A/en
Publication of JPH0557562A publication Critical patent/JPH0557562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To improve the size accuracy by calculating a work expansion value from those of grinding power and both heat inflow and outflow constants in grinding operation, and making a zero point of an in-process gauge so as to be compensated as far as a portion of size equivalent to the expansion value. CONSTITUTION:An infeed driving part 6 is controlled by a feed driving control signal A out of an infeed control part 5, thus grinding takes place with a wheel spindle driving motor 4. In addition, a wheel spindle driving motor power signal B is inputted into a measuring device operational part 8 and the infeed control part 5 from the wheel spindle driving motor 4 via a grinding power measuring part 7. In succession, a size signal C is inputted into the measuring device operational part 8 from a size measuring part 10. This measuring device operational part 8 finds a work expansion value out of the extent of grinding power, compensating the size signal C, and it outputs a compensation size D to the infeed control part 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動定寸研削加工に
おいて、研削加工熱によるワークの熱膨張に起因する加
工誤差をなくするためのゲージ零点補正の方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gauge zero point correcting method for eliminating a machining error caused by thermal expansion of a work due to grinding heat in automatic constant-size grinding.

【0002】[0002]

【従来の技術】自動定寸装置を装備した研削盤では、加
工中のワークの寸法をインプロセスゲージで連続的に測
定し、その測定値を研削盤の制御機構にフィードバック
して研削砥石の切り込み動作を自動的に制御するように
している。この時、インプロセスゲージの設定値(ワー
ク仕上げ寸法)は研削加工熱による温度上昇に伴うワー
クの膨張量を見込んで設定されている。
2. Description of the Related Art In a grinding machine equipped with an automatic sizing device, the dimensions of a workpiece being machined are continuously measured with an in-process gauge, and the measured value is fed back to the control mechanism of the grinding machine to cut the grinding wheel. The operation is controlled automatically. At this time, the set value (work finish dimension) of the in-process gauge is set in consideration of the expansion amount of the work due to the temperature rise due to the grinding heat.

【0003】ところが、研削仕上がり時のワーク温度に
種々の原因からバラツキが生じ、ワークの最終仕上がり
寸法にバラツキが生じて加工不良が発生することがあ
る。このような最終仕上げ寸法のバラツキを抑えるた
め、粗研削と精研削を繰り返す2回研削や、粗研削後の
スパークアウトを長くして冷却期間を設けるなどして、
研削仕上がり時のワーク温度のバラツキをなくする試み
がなされているが、研削工程が増したり、サイクルタイ
ムが長くかかったりするなどの欠点があった。
However, the work temperature at the time of finishing the grinding may vary due to various causes, and the final finished dimension of the work may vary, resulting in defective machining. In order to suppress such variations in the final finishing dimensions, rough grinding and fine grinding are repeated twice, or sparking after rough grinding is lengthened to provide a cooling period.
Attempts have been made to eliminate variations in the work temperature at the finish of grinding, but there were drawbacks such as an increase in the number of grinding processes and a long cycle time.

【0004】これらの欠点を除去するものとして、特開
昭59−209759号公報には次のような従来技術が
開示されている。すなわち、研削仕事のほとんどが熱に
変換され、そのうち何割かがワークに流入するが、この
研削により発生する熱は接線研削抵抗に比例することが
知られており、研削動力から研削加工熱を演算により求
めることができる。そこで、研削中に研削動力を検出し
てこれから研削加工熱を演算し、そうして求めた研削加
工熱からワークの膨張量を演算し、このワークの膨張量
に相当する寸法をインプロセスゲージにフィードバック
してゲージ零点補正をするというものである。
In order to eliminate these drawbacks, Japanese Patent Application Laid-Open No. 59-209759 discloses the following conventional technique. In other words, most of the grinding work is converted into heat, and some of that flows into the work, but the heat generated by this grinding is known to be proportional to the tangential grinding resistance, and the grinding heat is calculated from the grinding power. Can be obtained by Therefore, the grinding power is detected during grinding, the grinding heat is calculated from this, the expansion amount of the work is calculated from the grinding heat thus obtained, and the dimension corresponding to the expansion amount of this work is set as the in-process gauge. The feedback is used to correct the gauge zero point.

【0005】なお、ここで切り込み送り時の研削動力変
動に着目すると、短時間の自動研削では粗研削動力量と
精研後のワーク仕上がり寸法はほぼ比例の関係にある。
すなわち、粗研削時の研削電力量が増すと仕上がり時に
測定されるワーク寸法はワーク温度に比例して膨張して
おり、このため加工を終えた冷却後のワークはマイナス
寸法に仕上がってしまう。精研削に入ると徐々にワーク
温度が下降するが、粗研削時のワーク温度によるバラツ
キをほぼ残したまま精研削を終了する。したがって、粗
研削終了までにゲージの零点を補正するようにすれば熱
膨張による最終仕上がり寸法のバラツキを小さく抑える
ことができる。このような知見に基づいて、上記従来技
術は粗研削終了までにインプロセスゲージの零点を補正
するようにしている。
Here, focusing on the fluctuation of grinding power during cutting feed, the amount of rough grinding power and the finished size of the work after fine polishing are in a substantially proportional relationship in short-time automatic grinding.
That is, when the grinding power amount during rough grinding increases, the work size measured at the time of finishing expands in proportion to the work temperature, so that the work after cooling after cooling is finished to a negative size. When the fine grinding is started, the work temperature is gradually lowered, but the fine grinding is completed while leaving the variation due to the work temperature at the time of the rough grinding. Therefore, if the zero point of the gauge is corrected by the end of rough grinding, it is possible to suppress variations in final finished dimensions due to thermal expansion. Based on such knowledge, the above-mentioned conventional technique corrects the zero point of the in-process gauge by the end of rough grinding.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、研削
動力と研削加工熱が比例関係にあることに基づいて、ワ
ーク温度を直接測定することなく研削動力から研削加工
熱、ひいてはワークの熱膨張量を演算してゲージ零点補
正を行なうものであるが、ワークへの流入熱量しか考慮
されておらず、クーラント等によるワーク表面からの流
出熱量が考慮されていない。しかも、図1に示すように
ワークの温度上昇量は研削動力に対して少し遅れる曲線
を描くものである。したがって、研削動力のみからでは
真の熱膨張量は求められない。
The above-mentioned prior art is based on the fact that the grinding power and the grinding heat are in a proportional relationship, so that the grinding power can be directly calculated from the grinding power without the work temperature being directly measured, and the thermal expansion of the work. Although the amount of heat is calculated to correct the gauge zero point, only the amount of heat flowing into the work is taken into consideration, and the amount of heat flowing out of the work surface due to coolant or the like is not taken into consideration. Moreover, as shown in FIG. 1, the amount of temperature rise of the work draws a curve that is slightly behind the grinding power. Therefore, the true amount of thermal expansion cannot be obtained only from the grinding power.

【0007】この発明の目的は、熱影響による寸法バラ
ツキをさらに小さく抑えて一層高精度の研削加工を可能
にすることである。
An object of the present invention is to further suppress the dimensional variation due to the influence of heat and enable the grinding process with higher accuracy.

【0008】[0008]

【課題を解決するための手段】この発明の特徴は、ワー
ク表面からの流出熱量分をも考慮に入れゲージ零点補正
をするようにしたことにある。すなわち、この発明は、
研削中のワークの寸法をインプロセスゲージで測定して
砥石軸駆動モータ電力のフィードバック制御を行なうこ
とにより、所定寸法になった時点で研削を自動的に終了
させるようにした自動定寸研削加工において、研削中の
研削動力と熱流入定数および熱流出定数からワークの膨
張量を計算し、このワークの膨張量に相当する寸法分だ
けインプロセスゲージの零点を補正する。
The feature of the present invention resides in that the gauge zero point is corrected in consideration of the amount of heat flowing out from the surface of the work. That is, this invention is
In automatic sizing grinding that measures the size of the workpiece being ground with an in-process gauge and performs feedback control of the motor power of the grindstone axis drive motor so that grinding is automatically terminated when the specified size is reached. The expansion amount of the work is calculated from the grinding power during grinding, the heat inflow constant, and the heat outflow constant, and the zero point of the in-process gauge is corrected by the dimension corresponding to the expansion amount of the work.

【0009】[0009]

【作用】ワーク表面からの流出熱量分を考慮に入れるこ
とによって、より精度の高い寸法制御が可能になる。研
削加工中のワークの温度上昇勾配は式dθ/dt=αP
−βθで表される。ここに、 α:熱流入定数 β:熱流出定数 P:研削動力 θ:工作物温度 αP:ワークへの流入熱量 βθ:ワーク表面からの流出熱量。
[Function] By taking into account the amount of heat flowing out from the surface of the work, more precise dimensional control becomes possible. The temperature rise gradient of the workpiece during grinding is the formula dθ / dt = αP
It is represented by -βθ. Here, α: heat inflow constant β: heat outflow constant P: grinding power θ: workpiece temperature αP: heat flow into the work βθ: heat flow out from the work surface

【0010】上式に基づき、加工中の温度上昇量を逐次
計算{(熱膨張量)=(工作物径)×(線膨張係数)×
θ}して熱膨張量を求め、それより加工後の冷えた状態
におけるワーク寸法(=ゲージ寸法−熱膨張量)を求め
る。このように流入熱量のみならず流出熱量分をも考慮
することによって、より正確なワークの熱膨張量が把握
され、これにより実寸法における機械制御が可能とな
る。なお、熱流入定数αはワーク材料や加工条件によっ
て決まる。また、熱流出定数βはワーク材料やクーラン
トによって決まるものである。
Sequential calculation of the temperature rise during processing based on the above equation {(thermal expansion amount) = (workpiece diameter) × (linear expansion coefficient) ×
θ} to obtain the amount of thermal expansion, and from that the work size (= gauge size-thermal expansion amount) in the cold state after processing is determined. Thus, by considering not only the inflowing heat amount but also the outflowing heat amount, a more accurate thermal expansion amount of the work can be grasped, and thereby machine control in an actual dimension becomes possible. The heat inflow constant α is determined by the work material and processing conditions. The heat outflow constant β is determined by the work material and the coolant.

【0011】[0011]

【実施例】この発明は、研削加工熱の影響によるワーク
の熱膨張に基づく加工誤差をなくするためにゲージの零
点補正をするにあたり流入熱量だけでなく流出熱量をも
考慮に入れるというものであるから、各種の寸法制御方
法に適用できるものである。以下では特開昭59−20
9759号公報に記載されている寸法制御方法すなわ
ち、粗研削動力を一定のレベルにコントロールすること
によって粗研削時の研削動力量を時間に置き換え、一定
時間ごとにゲージ零点補正をする方法に適用した実施例
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to take into consideration not only the inflowing heat amount but also the outflowing heat amount when performing the zero point correction of the gauge in order to eliminate a processing error due to the thermal expansion of the work due to the influence of the grinding processing heat. Therefore, it can be applied to various dimension control methods. In the following, JP-A-59-20
It was applied to the dimension control method described in Japanese Patent Publication No. 9759, that is, by controlling the rough grinding power to a constant level to replace the amount of grinding power at the time of rough grinding with time and correcting the gauge zero point at regular intervals. Examples will be described.

【0012】まず、図2のブロック図に従って説明する
と、砥石1は機械ベッド2上をスライド可能な砥石台3
に取り付けられ、砥石軸駆動モータ4により駆動され、
切り込み送り制御部5からの送り駆動制御信号Aで制御
される切り込み送り駆動部6によって切り込み動作を与
えられる。砥石軸駆動モータ4が研削開始すると砥石軸
駆動モータ動力信号Bを出力し、この信号Bは研削動力
測定部7を介して測定装置演算部8および切り込み送り
制御部5へ入力される。一方、寸法測定部(インプロセ
スゲージ)10は寸法信号Cを出力して測定装置演算部
8を介し切り込み送り制御部5に入力させる。この時、
測定装置演算部8では、研削動力から工作物熱膨張量を
計算し、これにより寸法信号Cを補正して補正寸法Dを
演算する。
First, referring to the block diagram of FIG. 2, the grindstone 1 has a grindstone base 3 slidable on a machine bed 2.
Mounted on the wheel, driven by the whetstone shaft drive motor 4,
A cutting operation is given by a cutting feed drive unit 6 controlled by a feed drive control signal A from the cutting feed control unit 5. When the grindstone shaft driving motor 4 starts grinding, a grindstone shaft driving motor power signal B is output, and this signal B is input to the measuring device computing unit 8 and the cutting feed control unit 5 via the grinding power measuring unit 7. On the other hand, the dimension measuring unit (in-process gauge) 10 outputs a dimension signal C and inputs it to the cutting feed control unit 5 via the measuring device computing unit 8. At this time,
The measuring device calculator 8 calculates the amount of thermal expansion of the workpiece from the grinding power and corrects the dimension signal C to calculate the corrected dimension D.

【0013】次に、図3に従って寸法制御方法を説明す
る。同図は横軸が時間、縦軸が砥石軸駆動モータ4の動
力(研削動力)を表している。
Next, the dimension control method will be described with reference to FIG. In the figure, the horizontal axis represents time and the vertical axis represents the power of the grindstone shaft drive motor 4 (grinding power).

【0014】サイクルをスタートさせ、砥石1を動力零
レベルホールド点aまで切り込み急送りし、ここで砥石
軸駆動モータ4の動力をホールドして動力零レベルと
し、切り込み早送りに切り換える。砥石1研削動力が研
削開始点bに達すると、切り込み粗研送りに切り換え、
実研削を開始する。これに伴い砥石軸駆動モータ4の動
力が上昇し、砥石軸駆動モータ4の動力がピークパワー
コントロールレベルdまで上昇したら、切り込み粗研送
りを通常より遅くして動力を下降させ、動力がゲージ零
点補正レベルまで下降したら通常の切り込み粗研送りに
戻して動力を上昇させる、という操作を繰り返すことに
より研削動力を一定レベルにコントロールする。そうし
て、予め定められている時間Δtごとに研削完了点gま
で寸法測定部(インプロセスゲージ)10の零点補正を
繰り返し行なう。その際の補正量は、既述のとおり式d
θ/dt=αP−βθに基づいて求めたワークの熱膨張
量である。かかるゲージ零点補正により、加工後の冷え
た状態におけるワーク寸法(=ゲージ寸法−熱膨張量)
に基づく制御が行なわれることになる。以後、切り込み
後退、といった動作を経てサイクルが完了する。
The cycle is started, and the grindstone 1 is rapidly cut by cutting to the power zero level hold point a, where the power of the grindstone shaft drive motor 4 is held to bring the power to zero level, and the cutting fast feed is switched. When the grinding wheel 1 grinding power reaches the grinding start point b, it switches to the cutting rough feed,
Start actual grinding. Along with this, when the power of the grindstone shaft driving motor 4 rises and the power of the grindstone shaft driving motor 4 rises to the peak power control level d, the cutting and roughing feed is made slower than usual to lower the power, so that the power is zero gauge. The grinding power is controlled to a constant level by repeating the operation of returning to the normal cutting and roughing feed and increasing the power when the level has fallen to the correction level. Then, the zero point correction of the dimension measuring unit (in-process gauge) 10 is repeatedly performed until the grinding completion point g at every predetermined time Δt. The correction amount at that time is calculated by the formula d as described above.
θ / dt = the amount of thermal expansion of the work obtained based on αP−βθ. By such gauge zero point correction, the work size in the cold state after processing (= gauge size-thermal expansion amount)
Will be controlled based on. After that, the cycle is completed through operations such as cutting back.

【0015】[0015]

【発明の効果】以上説明したようにこの発明は、研削中
のワークの寸法をインプロセスゲージで測定して砥石駆
動モータ動力のフィードバック制御を行なうことにより
所定寸法になった時点で研削を自動的に終了させる自動
定寸研削加工において、研削中の研削動力と熱流入定数
および熱流出定数からワークの膨張量を計算し、このワ
ークの膨張量に相当する寸法分だけインプロセスゲージ
の零点補正をするようにしたものであるから、研削仕上
がり時のワーク温度のバラツキによる仕上げ後のワーク
仕上がり寸法のバラツキを非常に小さく抑えることがで
きる。とくに流出熱量分をも考慮したことによって、よ
り正確なワークの熱膨張量を把握でき、実寸法における
機械制御が可能となるから、流入熱量のみ考慮した従来
の寸法制御に比べて一層精度の高い研削加工が可能とな
った。
As described above, according to the present invention, the size of a workpiece being ground is measured by an in-process gauge, and the grinding wheel drive motor power is feedback-controlled to automatically perform grinding when a predetermined size is reached. In the automatic sizing grinding that is finished at the above step, the expansion amount of the work is calculated from the grinding power during grinding, the heat inflow constant and the heat outflow constant, and the zero point of the in-process gauge is corrected by the dimension corresponding to this work expansion amount. Therefore, it is possible to extremely reduce the variation in the finished work dimension after finishing due to the variation in the work temperature during the grinding finish. In particular, by taking into account the outflow heat amount as well, more accurate thermal expansion of the work can be grasped, and machine control in actual dimensions becomes possible, so that it is more accurate than the conventional dimension control that only considers the inflow heat amount. Grinding has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】研削切り込み量と研削動力と温度上昇量を対応
づけて示す線図
FIG. 1 is a diagram showing the grinding depth, the grinding power, and the temperature rise in association with each other.

【図2】研削盤の制御ブロック図[Fig. 2] Control block diagram of the grinding machine

【図3】研削動力線図[Fig. 3] Grinding power diagram

【符号の説明】[Explanation of symbols]

1 砥石 2 機械ベッド 3 砥石台 4 駆動モータ 5 制御部 6 送り駆動部 7 研削動力測定部 8 測定装置演算部 9 ワーク 10 寸法測定部(インプロセスゲージ) 1 Grindstone 2 Machine bed 3 Grindstone base 4 Drive motor 5 Control unit 6 Feed drive unit 7 Grinding power measuring unit 8 Measuring device arithmetic unit 9 Workpiece 10 Dimension measuring unit (in-process gauge)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 研削中のワークの寸法をインプロセスゲ
ージで測定して砥石駆動モータ電力のフィードバック制
御を行なうことにより所定寸法になった時点で研削を自
動的に終了させるようにした自動定寸研削加工におい
て、研削中の研削動力と熱流入定数および熱流出定数か
らワークの膨張量を計算し、このワークの膨張量に相当
する寸法分だけインプロセスゲージの零点を補正するこ
とを特徴とする自動定寸研削加工におけるゲージ零点補
正方法。
1. Automatic sizing in which the size of a workpiece being ground is measured with an in-process gauge and the grinding wheel drive motor power is feedback-controlled so that the grinding is automatically terminated when the size reaches a predetermined size. In the grinding process, the expansion amount of the work is calculated from the grinding power during grinding, the heat inflow constant and the heat outflow constant, and the zero point of the in-process gauge is corrected by the dimension corresponding to this work expansion amount. Gauge zero correction method in automatic constant-size grinding.
JP21972891A 1991-08-30 1991-08-30 Gauge zero point compensation method in auto-sizing grinding Pending JPH0557562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21972891A JPH0557562A (en) 1991-08-30 1991-08-30 Gauge zero point compensation method in auto-sizing grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21972891A JPH0557562A (en) 1991-08-30 1991-08-30 Gauge zero point compensation method in auto-sizing grinding

Publications (1)

Publication Number Publication Date
JPH0557562A true JPH0557562A (en) 1993-03-09

Family

ID=16740046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21972891A Pending JPH0557562A (en) 1991-08-30 1991-08-30 Gauge zero point compensation method in auto-sizing grinding

Country Status (1)

Country Link
JP (1) JPH0557562A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093787A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder
US7581712B2 (en) 2004-01-29 2009-09-01 Asahi Organic Chemicals Industry Co., Ltd. Valve
WO2009079368A3 (en) * 2007-12-14 2009-10-01 Rolls-Royce Corporation Method for processing a work-piece
DE19743139B4 (en) * 1996-09-30 2009-10-01 Ntn Corp. Apparatus for performing a grinding process and method thereto
CN114800278A (en) * 2022-04-29 2022-07-29 重庆猛荣机电有限公司 Intelligent grinding machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743139B4 (en) * 1996-09-30 2009-10-01 Ntn Corp. Apparatus for performing a grinding process and method thereto
US7581712B2 (en) 2004-01-29 2009-09-01 Asahi Organic Chemicals Industry Co., Ltd. Valve
JP2008093787A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder
WO2009079368A3 (en) * 2007-12-14 2009-10-01 Rolls-Royce Corporation Method for processing a work-piece
US8277279B2 (en) 2007-12-14 2012-10-02 Rolls-Royce Corporation Method for processing a work-piece
CN114800278A (en) * 2022-04-29 2022-07-29 重庆猛荣机电有限公司 Intelligent grinding machine
CN114800278B (en) * 2022-04-29 2024-06-11 重庆猛荣机电有限公司 Intelligent grinding machine

Similar Documents

Publication Publication Date Title
JP5277692B2 (en) Post-process sizing controller
JPH0241872A (en) Numerical control grinder
US4905417A (en) Numerical control grinding machine
JPH0557562A (en) Gauge zero point compensation method in auto-sizing grinding
JP2005021998A (en) Grinding device and grinding method
US4223484A (en) Electronic control device for grinding machines, based on the evaluation of truing diamond position relative to workpiece
JP3710575B2 (en) Grinding control method of grinder
JPS63185574A (en) Polishing control system for semiconductor wafer
JP3344064B2 (en) Grinding equipment
JPH06320419A (en) Work dimension control method and device in grinding
JP3391856B2 (en) Work size control method and apparatus in grinding
JPH07108457A (en) Sizing device with thermal displacement correcting function
JP3282871B2 (en) Dimension control method of workpiece in grinding
JPH0768456A (en) Method for corrective grinding
JPH0557563A (en) Dimensional control method in auto-sizing grinding
JPS59209759A (en) Size control method in cutting
JPH02269562A (en) Method for controlling dressing of grinding wheel
JP3120578B2 (en) Grinding equipment
JP2672644B2 (en) Dressing control method for grinding wheel
JP5133770B2 (en) Workpiece grinding method using a grinding machine
JP3413938B2 (en) Grinding equipment
JP3809670B2 (en) Grinding machine and control method thereof
JP2003094335A (en) Grinding fluid feed method and device in grinder
JP3104357B2 (en) Adjustment method for the amount of retraction in internal grinding
JP3435971B2 (en) Honing method and processing device