JP3710575B2 - Grinding control method of grinder - Google Patents

Grinding control method of grinder Download PDF

Info

Publication number
JP3710575B2
JP3710575B2 JP30127196A JP30127196A JP3710575B2 JP 3710575 B2 JP3710575 B2 JP 3710575B2 JP 30127196 A JP30127196 A JP 30127196A JP 30127196 A JP30127196 A JP 30127196A JP 3710575 B2 JP3710575 B2 JP 3710575B2
Authority
JP
Japan
Prior art keywords
grinding
machining
finishing
cutting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30127196A
Other languages
Japanese (ja)
Other versions
JPH10128661A (en
Inventor
誠 小野田
祐三 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP30127196A priority Critical patent/JP3710575B2/en
Priority to US08/936,814 priority patent/US6113461A/en
Priority to DE19743139A priority patent/DE19743139B4/en
Publication of JPH10128661A publication Critical patent/JPH10128661A/en
Application granted granted Critical
Publication of JP3710575B2 publication Critical patent/JP3710575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、加工系の剛性の弱い研削盤、例えば内面研削盤や、工作物剛性,支持系剛性の弱い研削盤等において、加工力による撓みが大きくなる場合に、粗加工の後に撓みを開放するために切込を後退させる制御を行う研削盤の研削制御方法に関する。特に、多量の同じ工作物を連続して加工する場合の研削制御方法に関する。
【0002】
【従来の技術】
研削盤では一個の工作物を加工するのに、粗加工と仕上加工を行って加工能率と加工精度を確保している。研削系の剛性の弱い、特に内面研削盤では粗加工の後に微少量の切込後退を行い、研削系の撓みを解放して仕上げ切込を行っている。このように、仕上加工の前に切り込み後退を行うことで、仕上時間が短くできる。
図9には、研削系の撓みの状態を誇張して描いてある。内面研削では、加工力によって砥石軸9aが曲がり、切込X1(t)に対して、工作物Wには撓みδに相当する切り残しが発生する。加工寸法X2(t)は切込X1(t)と研削時定数τ(sec)の関数として以下のように表現される。
dX2(t)/dt=(1/τ)・(X1(t)−X2(t)) ……▲1▼
ここで、研削時定数τは、砥石の切れ味(加工効率)、工作物材料、工作物形状等によって異なる。
【0003】
切込後退を入れて撓みを解放した場合と入れない場合との加工状態(プロセス)を、図10(A),(B)に比較して示す。
研削精度を維持するためには切込最終時点の撓みδ(t)を一定値以下にする必要がある。切込後退が無い場合には仕上加工中の撓みの回復に研削時定数の3倍程度の時間がかかる。切込後退を入れた場合には粗加工での切込を余分に取ることが可能であり、かつ仕上加工前に撓みを回復できるために、仕上加工で撓みを早く回復できる。これによって加工時間を短くすることが可能となる。
今までの研削盤では、この切込後退量の決め方に2つの代表的な方法がある。
1つは、研削実験を繰り返しながら、加工サイクルと加工精度が安定するように切込後退量を決めていく方法であり、最も一般的なものである。
2つ目は、加工力や加工動力の制御を行っている場合に、例えば動力制御で、粗加工設定動力Pr(kW)、仕上設定動力Pf(kW)の場合、
切込後退量Xbo=制御系の定数×(Pr−Pf)
として、自動的に切り込み後退を行うものである。
【0004】
ところが、これらの切込後退量では、仕上切込速度を遅くしたり、仕上設定動力を低くするとするとサイクルが不安定となり、仕上時間のばらつきが非常に大きくなる。このために、切込後退量が少なめになるように、仕上げ取代を増やして切込時間を長くしなければならない。また、CBN砥石のように、ドレッシング前後で砥石切れ味が大きく変化したり、加工取代がばらつく場合にもサイクルが不安定となる。
【0005】
【発明が解決しようとする課題】
上記の現状に鑑み、これらの不安定の原因に対しても、安定した研削サイクルが実現できる切込後退量の決定方法の開発が望まれる。そこで、次のように切込後退量を決定する方法を考えた。
研削加工の基本的特性は、
工作物寸法生成速度V(t)=dX2(t)/dt であり、
研削撓み δ(t)=X1(t) −X2(t) であるので、
▲1▼式は V(t)=δ(t)/τ ……▲2▼
と変形できる。
これは、δ(t)=τ・V(t)とも解釈できるので、研削撓みは工作物寸法生成速度(これは撓みが安定している場合には切込速度dX1(t)/dtにほぼ等しい)に研削時定数を乗じたものになる。
さて、切込後退量は粗研削撓みを仕上研削撓みにするために入れるわけであるので、粗加工中において、▲2▼式の工作物寸法生成速度V(t)、あるいは切込速度dX1(t)/dtと研削時定数τが分かれば撓みδ(t)が計算可能であり、仕上加工に移行する最適な切込後退量Xboが計算できる。
【0006】
しかし、このように計算した切込後退量Xboを利用して制御するにつき、切込中に切込後退量を変更できるNC装置が無いという問題がある。NC装置は、加工開始時にパスを決めるために、速度はオーバーライド等で切り替えることが可能であるが、位置を加工中に変更できるものは無い。
そのため、粗加工中に粗加工完了後の切込後退量を変更できるNC装置の開発が必要となる。
また、粗加工中に仕上加工を予測して制御するわけであるので、制御系と機械系の遅れも大きな問題となっている。勿論、研削時定数は急激に変わることは少ないので、一個前の加工中の値を使用することも可能であるが、精度向上のためには、現在加工中の工作物についての研削時定数を求めることが望ましい。
【0007】
そこで、現在加工中の工作物の研削時定数を得るインプロセス計測法を考察する。研削加工では工具である砥粒の摩滅・脱落によって、研削効率いわゆる「砥石切れ味」が変化する。この切れ味変化によって研削時定数が変わり、研削系の制御ゲインが変わることになる。加工プロセスの制御を行う場合には、この変化を的確に捉える必要がある。
さて、研削時定数τは以下のように表される。
τ=α/〔(研削系剛性Kg)×(砥石切れ味Λ)〕
ここで α:工作物によって決まる定数
Λ=(加工能率Z(mm3 /sec))/(研削力Fn(N))
すなわち、研削時定数τは、砥石切れ味Λに反比例することになる。
同じ工作物を連続して加工する場合には、定数α,Kgは同じと考えられ、砥石切れ味Λが分かれば、研削時定数τが分かる。
【0008】
砥石切れ味Λの変化を考察する。工作物によって、基準の砥石切れ味Λ0 での研削時定数をτ0 とすると、加工中に砥石切れ味がΛaになった場合の研削時定数τtは、
τt=τ0 ×(Λa/Λ0 )
となる。
加工中の砥石切れ味の具体的な計算方法については、後に発明の実施形態の説明欄で説明する。
【0009】
切込速度V(t)の算出方法を説明する。切込速度V(t)は工作物の加工速度であり、dX2 (t)/dtであることは容易に理解できる。インプロセスゲージの有る場合にはこの寸法信号を微分することによって容易に切り込み速度を求めることができる。
インプロセスゲージが無く、動力または加工力の検出のみが行われている場合には次のように求める。すなわち、図10で撓みδ(t)は、研削動力や研削抵抗と同じであり、これが定常状態となったところでは、dX1(t)≒dX2(t)であるので、動力または加工力が定常になった事を判断してdX1(t)/dtを求めればよい。
【0010】
切込後退量の決定方法を考察する。研削時定数τと切込速度Vが検出できると、研削撓みδ(t)は、δ(t)=τ×V(t)によって計算が可能となる。この研削撓みδ(t)を切込後退量とすれば良い。
前述の課題の一つとして説明した粗加工中に粗加工完了後の切込後退量を変更できるNC装置が開発できた場合、粗加工中に、前記の研削撓みδ(t)の値を切込後退量XboとしてNCの設定値をメモリーし直す。
【0011】
しかし、この時、切込系の遅れが大きな問題となる。一般的なNC装置では、粗加工から切込後退や仕上加工に移る場合に数十msec の遅れ時間が出てしまう。これは、ばらつきは小さいが、機械系の遅れと電気制御系の遅れが合わさったものである。さらに、研削時定数の変化が加わり、仕上時間がばらつく等の研削サイクルの不安定現象が起こる。サイクルが不安定な場合は加工精度のばらつきとなるので切込速度を遅くするなどの調整を行う必要がある。
【0012】
この発明は、上記の現状に鑑み、仕上切込速度や仕上設定動力の変更等の不安定要素に対しても、安定した研削サイクルが実現できる切込後退量の設定が可能な研削盤の研削制御方法を提供することを目的とする。
この発明の他の目的は、機械系,電気制御系の応答遅れを考慮して、切込後退量が決定できて、加工能率を落とすことなく、精度の安定した加工が実現できる研削盤の研削制御方法を提供することである。
【0013】
【課題を解決するための手段】
この発明の研削盤の研削制御方法は、粗研削加工の完了時に切込後退を行い、その後に仕上研削加工を行うように切込を制御する研削制御方法において、粗研削加工中に工作物と研削盤についての所定項目の計測を行いながらその計測値により前記切込後退を行うべき切込後退量を計算し、粗研削加工の完了時に前記の計算された切込後退量で切込後退を行う方法である。
このように、粗研削加工中の計測値により、粗研削加工完了時の切込後退量を計算し、切込後退を行うため、砥石切れ味の変化等に応じた最適の切込後退量とすることができる。また、仕上切込速度や仕上設定動力の変更等の不安定要素に影響されずに、最適の切込後退量とでき、安定した研削サイクルが実現できる。したがって、無駄に仕上げ取代を大きくする必要がなく、高速加工を実現することができる。
【0014】
この研削制御方法において、次のように、切込後退量の計算に用いる加工寸法の値として、インプロセスゲージで得られる工作物の加工寸法を工作物熱膨張量によって補正した実質加工寸法を用いることが望ましい。
すなわち、前記切込後退量の計算過程で、αを工作物によっ決まる定数として、次式
τ=α/〔(研削系剛性)×(砥石切れ味Λ)〕
で示される研削時定数τを用いる。
前記砥石切れ味Λは、
Λ=(加工力)/(加工能率)
で示される値であり、加工力は研削動力または研削力の値とする。加工能率は、加工寸法の単位時間当たりの変化量と加工円周長の積で示される値である。
この計算に用いる加工寸法の値として、前記の工作物熱膨張量の補正を行った実質加工寸法を用いる。
これにより、砥石切れ味Λの正確な評価が行え、正確な研削時定数が得られて、一層適切な切込後退量を計算することができる。
【0015】
また、これらの制御方法において、研削時定数τと、粗研削速度Vrと、機械の応答遅れ時間t2,t3と、仕上切込速度Vfまたは仕上研削設定動力Pfで求められる仕上加工条件とから、前記切込後退量Xboを、次式の関係で求めるようにしても良い。
Xbo=δr×exp(−t2/τ)−δf×exp(t3/τ)
=Vr×τ×exp(−t2/τ)−δf×exp(t3/τ)
ただし、 仕上切込速度Vfを設定する場合: δf=Vf×τ
仕上研削動力Pfを設定する場合: δf=δr×Pf/Pr
t2:粗研削後に切込後退に移るまでの遅れ時間
t3:切込後退の後、仕上研削が開始されるまでの遅れ時間
δr:粗研削終了時の撓み(=Vr×τ)
δf:仕上時の撓
r:粗加工設定動力
この研削制御方法は、粗加工中に仕上げ加工を予測して切込後退量Xboの制御を行う方法であるため、制御系と機械系の応答遅れが大きな問題となるが、上記の関係式で示すように、各遅れ時間を考慮して切込後退量Xboを定めることにより、一層適正な切込後退量Xboの設定が行える。したがって、加工能率を落とすことなく、精度の安定した加工が実現できる。
【0018】
【発明の実施の形態】
この発明の一実施形態を図1ないし図7と共に説明する。図1は、この研削盤の研削制御方法を適用する研削装置の平面図であり、研削盤1と制御盤2とを備える。研削盤1は内面研削盤からなり、主軸台3を搭載した進退台4が、主軸5と直交する切込方向(X軸方向)に進退自在なように、ベッド6上に設置されている。主軸台3は、進退台4と共に切込駆動モータ7で進退駆動される。砥石台8は、砥石9を回転させる砥石駆動モータ10を搭載したものであり、主軸台3の所定の加工位置に対応して、主軸3の軸方向(Z軸方向)に進退自在にベッド6上に設置され、砥石台駆動モータ11により進退駆動される。主軸台3を設置した進退台4上には、ドレス装置12と、工作物Wの内径計測用のインプロセスゲージ13が、そのゲージ挿脱装置14を介して設置されている。
【0019】
工作物Wは、玉軸受等の転がり軸受の外輪であり、図7と共に前述した工作物下面および側面のシュー15a,15bからなる回転支持台15上に回転自在に支持され、主軸5の先端の電磁石を有するドライビングプレート16に吸着されて主軸5と共に回転駆動される。また、加工位置の主軸5に対して、新たな工作物Wの供給および加工済み工作物Wの排出をするワーク供給排出装置17が設けられている。砥石9は、工作物W内に位置し、回転しながら工作物水平方向に切り込みを行う。この工作物Wの加工寸法を、工作物W内のゲージコンタクト13aで捉え、インプロセスゲージ13で計測する。加工力(研削力)は、砥石駆動モータ10(図1,図2)の研削動力計34や、砥石軸9aの撓みセンサ19で計測される。
【0020】
制御盤2は、研削盤1の全体を制御するものであり、制御盤2の中の切込制御を行う研削制御装置部分を、図2に概念図で示す。この研削制御装置は、コンピュータ式のNC装置からなる切込制御装置21と、この切込制御装置21の上位制御手段となる別のコンピュータからなる測定・制御装置22とで構成される。
【0021】
この研削制御装置につき、概要を説明した後、個々の構成要素の説明をする。この研削制御装置は、図5,図6に加工プロセスを示すように、粗研削加工の後、切込後退を行って仕上げ研削加工を行うものであり、適切な切込後退量Xboを粗研削加工中に演算する切込後退演算手段29を測定・制御装置22に備える。また、切込後退の高速応答を実現するために、切込制御装置21には粗研削加工中に切込後退量の外部入力を監視して設定切込後退量を書き換える切込後退量書換手段24が設けてある。測定・制御装置22には、さらに、加工精度の確保を図りながら仕上げ加工時間を目標時間内に納める高速加工化の手段として、仕上加工動力制御手段30と、時間ずれ量対応取代変更手段32と、粗加工切込停止判定手段31を設けてある。仕上加工動力制御手段30は、図6に直線部分Pt4で示すように、仕上げ加工時の動力P(t)を直線的に低下させる手段である。時間ずれ量対応取代変更手段32は、仕上加工時間の目標値と実際の仕上加工時間とのずれ量に応じて、粗研削の完了判定を行う仕上取代g1の設定値を変更させる手段である。粗加工切込停止判定手段31は、加工寸法が前記設定値である完了判定仕上取代g1になると、粗加工停止信号s1を切込制御装置21に出力する手段である。
【0022】
これら切込後退演算手段29および仕上加工動力制御手段30は、後に説明するように、演算式中に砥石切れ味Λや研削時定数τを用いるものであり、切込後退演算手段29は、予演算部29a,切込後退量演算部29b,およびデータベース部29cを有する。予演算部29aには砥石切れ味Λの演算部29aaと、研削時定数τおよび切込速度の演算部29abが含まれる。仕上加工動力制御手段30および時間ずれ量対応取代変更手段32は、切込後退演算手段29における予演算部29aおよびデータベース29cを共有し、あるいは独自にこれら砥石切れ味Λおよび研削時定数τを演算する手段およびデータベースを有するものとされる。
【0023】
NC装置からなる切込制御装置21は、切込制御手段23および切込後退量書換手段24を備える。切込制御手段23は、粗研削加工の完了時に設定切込後退量だけ切込後退を行い、その後に仕上研削加工を行うように切込を数値制御する手段であり、粗加工制御部25,切込後退制御部26,および仕上加工制御部27で構成される。各制御部25,26,27は、各々加工プログラムの位置指令および速度指令に従って、粗加工サイクル,切込後退サイクル,および仕上加工サイクルにおける切込の制御を行うものであり、速度オーバライドは可能とされている。各制御部25,26,27の切込指令の出力は、サーボコントローラ28を介して切込駆動モータ7に与えられる。
切込後退量書換手段24は、粗研削加工中に切込後退量の外部入力を監視して外部入力値が変更される度にその外部入力値に前記切込制御手段の設定切込後退量を書き換える手段であり、図3に示すように、粗加工制御部25における制御サイクル中に組み込まれている。
【0024】
図3は、図2の研削制御装置における切込後退の制御に関連する部分を示した概念構成図である。同図に示すように、切込後退量書換手段24は、外部入力である切込後退量Xboを読み込むステップS1と、読み込んだ切込後退量Xboの値に切込後退制御部26の切込後退量設定値を書き換えるステップS2と、粗加工の完了信号が得られるまで前記読み込みステップS1に戻る判定ステップS3とで構成される。I/O装置35は、計測・測定装置22から排出される切込後退量Xboを常に読み込み、切込後退量書換手段24に転送する。
【0025】
計測・測定装置22における切込後退量演算手段29の予演算部29aは、研削盤1の所定のモニタリング項目の計測値と、データベース29cの記憶データとから、後に示す計算式によって砥石切れ味(加工効率)Λ,研削時定数τ、および砥石速度を計算する手段である。切込後退量演算部29bは、予演算部29aで計算された研削時定数τおよび切削速度と、データベース29cの記憶データとから、後に示す計算式に従って切込後退量Xboを計算し、切込制御装置21に排出する手段である。データベース29cは、各演算部29a,29bでの演算に必要なデータ、例えば基準砥石切れ味での研削時定数τ0や、機械の応答遅れ時間、仕上げ加工条件(設定切込速度や動力等)を記憶した手段からなる。
【0026】
上記構成による加工プロセスにつき、切込後退を主に図5に従って説明する。
切込X1(t)が開始されると工作物の加工が開始され、工作物寸法g(t)は徐々に変化していく。この時、研削撓みδ(t)=X1(t)−g(t)であり、撓みδ(t)も徐々に大きくなり、やがて一定値に収束する。
このようにして、工作物寸法が完了判定仕上取代g1になったことをインプロセスゲージ13で検出すると、測定・制御装置(図2,図3)22は切込を切込後退に移るように切込制御装置21に指令する。しかし、切込速度が切り替わるまでには、粗研削で加工している時間t1、および切込後退に移るまで停止する時間t2が遅れる。切込後退を行って仕上切込を開始するまでの間にも時間t3の遅れがある。勿論、研削終了時にもインプロセスゲージ13が完了寸法g0を検出して切込を終了するまでt5の時間遅れがあり、仕上がり寸法gaは完了寸法g0とは異なったものとなる。これらの遅れ時間t1〜t3は機械によって一定であり、既知の値として計算に使用できる。
【0027】
さて、粗研削速度Vr、仕上研削速度Vf(これは、研削サイクルの設計値である)、粗研削終了時の撓みδr、仕上時の撓みδf(これも、研削サイクルの設計値)とすると、
時間t1での研削取代r1と撓み量δrは、
r1=Vr×t1
δr=Vr×τ
時間t2での取代r2と撓み量δ2は、
r2=Vr×τ×(1−exp(−t2/τ))
δ2=δr×exp(−t2/τ)
時間t3での取代r3と撓み量δ3は、
δ3=(δr×exp(−t2/τ)−Xbo)×exp(−t3/τ)=δf
r3=δ2−δ3−Xbo
∴ Xbo=δr×exp(−t2/τ)−δf×exp(t3/τ)
=Vr×τ×exp(−t2/τ)−δf×exp(t3/τ)
となる。
δfは仕上加工条件によって決まるものであり、例えば、
※仕上切込速度Vfを設定する場合: δf=Vf×τ
※仕上研削動力Pfを設定する場合: δf=δr×Pf/Pr
等で計算できる。
【0028】
このようにして、粗加工中に切込後退量Xboの計算が可能であり、NC切込制御装置21の切込後退量Xboを切込後退の直前に切り替えて最適な切込サイクルを構築することができる。
なお、ユーザマクロ等を使用して、NC装置からなる切込制御装置21で実行させる加工プログラムとして前記切込後退量Xboの計算および設定を行うこともできるが、その場合、切込応答の遅れ時間と、そのばらつきが大きくなり、多量の工作物を連続加工する場合には好ましくない。
高速応答を実現するには、NC装置からなる切込制御装置21において、加工プログラムを実行するための数値制御システムに前記の切込後退量Xboの計算および設定方法を組み込むことが好ましいが、その場合、NC装置が汎用性のないものとなり、非常に高価なものとなる。
これに対して、この発明では、NC切込制御装置21と独立して、加工条件の計算は別置きのコンピュータ装置からなる計測・制御装置22で行い、NC切込制御装置21は粗研削加工の切込を行っている間に、常に切込後退量の外部入力を監視し、設定切込後退量を書き換えるものとしたため、高速応答を実現しながら、NC切込制御装置21を汎用性の高いものとできる。
【0029】
つぎに、仕上研削プロセスの制御につき説明する。この仕上加工の研削制御方法は、取代変化や砥石の切れ味(加工効率)の変化が有っても、研削加工時間を目標値に制御し、かつ、加工精度を安定させるために加工抵抗制御等を行う方法である。
まず、一般の仕上げ加工の問題点を説明し、その後にこの実施形態の仕上げ研削加工制御方法を説明する。
【0030】
図5において、前記のように切込後退を行った後、残りの取代Xf(=g3)は、
Xf=g1−r1−r2−r3である。
この時に、μm単位では有るが、切込後退量のばらつきやインプロセスゲージ13の測定誤差等がある。誤差が5μm程度で有っても、仕上切込速度が5μm/sec ならば1秒の加工時間のばらつきが生じてしまう。これでは、加工現場の管理が困難であり加工条件の標準化が困難である。切込の遅れが大きく、仕上取代g1の値を小さくすると仕上加工ができないことも起こりうる。
今までの研削作業では、このような不具合に対して、仕上取代を大きくして仕上切込速度を早めに設定してきた。
また、仕上加工終了時にも切込の遅れがあるので、加工抵抗が大きかったり、工作物加工速度が早かったりすると、加工精度が劣化してしまう。今までは、加工精度を維持するために切込を停止していわゆるスパークアウト研削を行っているが、これでは余分な加工時間がかかってしまう。
【0031】
そこで、この実施形態では、切込後退の後の残り取代を計測して加工時間が一定になるように、かつ工作物精度を向上させるように、仕上加工終了時の加工抵抗を低い値にする制御を行う。すなわち、この実施形態では、仕上切込の開始前に工作物仕上研削残り取代を計測し、最適な仕上切込パターンを決定して切込を行う。
前述の問題点で明らかになったように、現在の研削盤では仕上加工開始時には仕上取代のばらつきは必然的に起こるものであり、仕上加工取代は多めに設定せざるを得ない。この多めの加工取代を最短時間で取り去り、かつ仕上加工終了時に加工精度を向上させるために加工抵抗を限りなく零に近い状態にする必要がある。そこで加工状態を図6のように設定した。
【0032】
図6に示すように、粗加工の動力Pr、切込速度Vr(=dX2(t)/dt)、で粗加工を行っていくと、インプロセスゲージ信号g(t)=g1で粗加工を終了し、切込後退から仕上切込へとサイクルを切り替えるように制御される。前記g(t)=g1のゲージ信号が出ても、遅れ時間t1,t2,t3があり、すぐには仕上加工に変わらない。また計測や制御のばらつきがあり、仕上取代g3にはばらつきがでてしまう。仕上取代g3が加工寸法g0以下となって仕上加工が入らないことが無いような状態も生じる。
そこで、仕上加工は、仕上加工の開始時の加工動力Phから仕上加工最終時点での加工動力Pl まで、加工動力が一直線に下がるように切込を制御する。
【0033】
仕上研削で加工動力(切削力)をPhからPl に一直線に低下させる切込は、研削系の基本特性方程式
dX2(t)/dt=(X1(t)−X2(t))/τ
また、
dP(t) /dt=(Ph−Pl )/t4=一定 とすれば、
2 X2(t)/d2 t=k×(Ph−Pl )/t4
これらを、初期条件t=0で、X1(0)=Xr dX2(t)/dt=Vr
として解くと、

Figure 0003710575
となる。即ち切込は2次曲線となることがわかる。
【0034】
また、切込後退量Xboは、前記のように
Xbo=δr×exp(−t2/τ)−δf×exp(t3/τ)
=Vr×τ×exp(−t2/τ)−δf×exp(t3/τ)
粗研削完了寸法g1は
Ph+Pl
g1=Vr×t1+(Vr−Vf)×τ−Xbo+─────×t4
2・k
となる。
【0035】
この実施形態では、切込後退を行った後の加工寸法g3の値をインプロセスゲージ13で計測し、仕上切込を次式のように制御することによって、安定した精度と加工サイクルを実現するものである。
Figure 0003710575
このような切込を行うことによって、仕上加工終了時の加工抵抗が低い状態で安定する。なお、砥石の切れ味(加工効率)Λが徐々に変化すると上式kの値が変化してくるので加工時間が徐々に変化してくる。これを防止するためには、砥石切れ味Λが悪くなったときにはkの値を大きく、良くなったときにはkの値を小さく変えれば良い。砥石切れ味Λは、後に説明するように、粗研削加工中に精度良く行えるので、前記のようなkの値の変更は容易に行える。
【0036】
このように、加工寸法g3の値を計測して、加工動力(切削力)をPhからPl に一直線に低下させる切込の制御を行う手段が、図2の測定・制御装置22における仕上加工動力制御手段30である。この手段30による仕上加工速度の指令s2は、切込制御装置21の仕上加工制御部27に、速度オーバライドの指令として与えられる。
【0037】
この実施形態では、さらに、仕上時間を狙いの時間に制御することも可能としている。これは、上記粗研削完了寸法g1にオフセットを与えることによって容易に実現出来る。
これは、粗研削中にインプロセスゲージ13で得られる加工寸法の測定値g(t)に対して、粗研削の完了判定を行う仕上研削取代の設定値g1を、仕上加工時間の目標値Tsec と実際の仕上加工時間Taとのずれ量Δに応じた所定の計算値で変更する。例えば、仕上加工時間の目標値Tsec に対して実際の仕上加工時間Taが遅い場合、そのずれ量(差分)△sec に比例する量を設定値g1から減じる。
詳しくは、次式
Figure 0003710575
により計算されるg1の値に設定する。
定数αの値は、ハンチングを防止するために1以下の値に設定する。差分Δは、1個前の工作物の仕上加工時間、または所定個数前までの工作物の平均仕上加工時等の所定の統計的計算値とする。
【0038】
図2の時間ずれ量対応取代変更手段32は、前記仕上加工時間の目標値Tsec と実際の仕上加工時間Taとのずれ量Δを測定して、上記の式に従い、粗加工切込停止判定手段31の設定値g1を変更する手段である。粗加工切込停止判定手段31は、粗研削中にインプロセスゲージ13で得られる加工寸法の測定値g(t)を監視し、設定値g1に達すると粗加工停止信号を切込制御装置21の仕上加工制御部27に送る手段である。
【0039】
つぎに、砥石切れ味Λの評価方法を説明する。砥石切れ味Λは、
Λ=(加工力)/(加工能率)
として定められる加工効率のことであり、研削時定数τの計算等に必要となる。
しかし、従来の砥石切れ味Λの評価方法では、研削途中で精度良く砥石切れ味Λを求めることが難しい。そこで、この実施形態では、次のように砥石切れ味Λの評価方法を案出して採用した。
まず、従来の砥石切れ味Λの評価方法の問題点を説明し、つぎにこの実施形態で採用する砥石切れ味評価方法を説明する。
【0040】
図7に示すように、工作物Wの加工寸法を、工作物W内のゲージコンタクト13aで捉え、インプロセスゲージ13で計測するときに、砥石9の加工位置(加工点)とインプロセスゲージ13による測定点は一致しておらず、工作物Wの熱膨張によってインプロセスゲージ13の計測値には誤差が生じる。このため、次の問題が生じる。
図8に加工プロセスを示すように、切込Xによって粗加工が開始されると、加工力Pが上昇し、加工寸法(観測値)gが変化していく。加工力Pは粗加工終了時にはほぼ一定値になるが、研削摩擦熱が工作物に流入して、加工寸法は実際より余分に加工されているように成ってしまう。観測できる加工寸法はgであるが、工作物熱膨張σ(同図に縦軸を拡大して表示)を含んだ寸法が計測されるために、実際の加工寸法はg−σ(点線で表示)のようになっている。
工作物Wの熱膨張量σは、加工力に比べて時間遅れが大きく、同図に示されるように仕上げ加工中に膨張収縮が大きく起こる。例えば、油性クーラントでは10μm以上、水溶性クーラントでも5μm程度の熱膨張が起こっている。
【0041】
加工力は、研削動力や研削抵抗を計測することによって得られるが、加工能率Zを計算するには、工作物加工直径Dとすると、一般には
Z=π×D×(dg/dt) mm3/ (mm・sec)
とされ、工作物熱膨張の影響が無視される。そのため、正確な砥石切れ味評価がなされない。特に、粗加工完了前から仕上げ加工中には工作物Wの膨張収縮が大きく、砥石切れ味(加工効率)の計算値は不正確の程度が著しくなっている。
砥石切れ味の誤差は、低速加工の場合には大きな問題とはならないが、例えば軸受軌道輪等のように、多量の工作物を高速加工し、かつ厳しい精度上の要求を満足するためには、正確な砥石切れ味の算出が必要となる。特に、高速加工のために前記のように切込後退量の制御や、仕上加工時等の切込速度の変更等の制御を行う場合に、正確な砥石切れ味が得られなければ、安定した制御が不可能となる。
【0042】
そこで、この実施形態では、次のように砥石切れ味Λを定めることとした。
図4は、図2の砥石切れ味演算部29aaの詳細を示し、この演算部29aaは、次のように、熱膨張補正を行った正確な砥石切れ味Λが演算されるものとしてある。すなわち、砥石切れ味Λは、
Λ=(加工力)/(加工能率)
として計算し、加工力は研削動力または研削力の値とする。加工能率は、加工寸法の単位時間当たりの変化量と加工円周長の積で示される値である。この場合に、前記加工寸法の値として、インプロセスゲージ13で得られる工作物の加工寸法を工作物熱膨張量によって補正した工作物実質加工寸法を用い、かつ前記工作物熱膨張量は研削動力から計算するものとする。また、工作物熱膨張量は、工作物に対して流入する熱量と流出する熱量とから計算するものとする。
これによれば、加工中の工作物熱膨張量をリアルタイムに精度良く算出可能であり、インプロセスゲージ信号を補正して、実際の加工能率を求めることができる。その詳細を説明する。
【0043】
研削加工中の工作物温度θ(t)は以下の式で表される。
dθ(t)/dt=α・P(t)−β・θ(t)
ここで、α : 熱流入定数
β : 熱流出定数
P(t): 研削動力
θ(t): 工作物温度
加工中に、研削動力を計測して上式で工作物温度θ(t)を計算できる。
この工作物温度から、工作物熱膨張δ(t)は
δ(t)=(工作物熱膨張係数)×加工直径×θ(t)
によって求めることができるので、加工中の実質寸法 g(t)realは、加工中のインプロセスゲージによる工作物寸法g(t)からδ(t)を減じて求められる。
g(t)real= g(t)−δ(t)
加工能率Zは
Z=π×D×(dg(t)real/dt)
で求まるので、砥石切れ味(加工効率)Aは研削動力の関数としては、
A=P(t)/Z
となる。法線方向研削力Fnについては、
A=Fn/Z
である。
このように工作物熱膨張を補正することによって、砥石切れ味(加工効率)Λの評価は正確なものとなり、加工プロセスの評価や制御のパラメータとして有効なものとなる。
なお、研削中の研削動力と熱流入定数及び熱流出定数から工作物の熱膨張量を演算する方法については、本出願人が提案した自動定寸研削加工におけるゲージ零点補正方法(特願平3−219728)に記載されている。
【0044】
【発明の効果】
この発明の研削盤の研削制御方法は、粗研削加工中の計測値により、粗研削加工完了時の切込後退量を計算し、切込後退を行うため、砥石切れ味の変化、あるいは仕上切込速度や仕上設定動力の変更等の不安定要素に対しても、安定した研削サイクルが実現可能な最適の切込後退量の設定が行える。
また、機械系,電気制御系の応答遅れを考慮して、切込後退量が決定できて、加工能率を落とすことなく、精度の安定した加工が実現できる。
の発明の請求項2記載の研削制御方法は、切込後退量の計算に用いる砥石切れ味算出のための加工寸法の値として、インプロセスゲージで得られる工作物の加工寸法を工作物熱膨張量によって補正した工作物実質加工寸法を用いるため、正確な砥石切れ味が算出できて、一層適正な切込後退量の設定が行える。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる研削盤の研削制御方法および装置を適用する研削装置の平面図である。
【図2】同研削盤制御装置の概念構成の説明図である。
【図3】同研削盤制御装置の切込後退の制御に関連する部分を示す概念構成の説明図である。
【図4】同研削盤制御装置の砥石切れ味(加工効率)を計算する部分の概念構成の説明図である。
【図5】切込後退を含む加工プロセスの説明図である。
【図6】仕上研削の加工プロセスを示す説明図である。
【図7】砥石とインプロセスゲージとの関係を示す正面図および断面図である。
【図8】熱膨張を示す研削加工の加工プロセスの説明図である。
【図9】研削加工における撓みを強調して示す説明図である。
【図10】切込後退の有無を比較して示す研削加工の加工プロセスの説明図である。
【符号の説明】
1…研削盤 29aa…砥石切れ味演算部
2…制御盤 30…仕上加工動力制御手段
5…主軸 31…粗加工切込停止判定手段
7…切込駆動モータ 32…時間ずれ量対応取代変更手段
9…砥石 W…工作物
10…砥石駆動モータ X…切込
13…インプロセスゲージ Xbo…切込後退量
21…切込制御装置 Z…加工能率
22…測定・制御装置 Λ…砥石切れ味(加工効率)
23…切込制御手段 τ…研削時定数
24…切込後退量書換手段
29…切込後退量演算手段[0001]
BACKGROUND OF THE INVENTION
  The present invention releases the bending after rough machining when the bending due to the processing force becomes large in a grinding machine with low machining system rigidity, such as an internal grinding machine or a grinding machine with low workpiece rigidity or support system rigidity. Grinding control method for controlling the retreat of the notchTo the lawRelated. Especially for grinding control when machining a large amount of the same workpiece continuously.To the lawRelated.
[0002]
[Prior art]
A grinding machine processes a single workpiece, and performs roughing and finishing to ensure machining efficiency and machining accuracy. Grinding systems with weak rigidity, especially internal grinding machines, perform a small amount of incision and retreat after roughing to release the flexure of the grinding system and finish cutting. In this way, the finishing time can be shortened by performing the cutting and retreating before finishing.
In FIG. 9, the state of bending of the grinding system is exaggerated. In the internal grinding, the grindstone shaft 9a is bent by the processing force, and the uncut portion corresponding to the bending δ is generated in the workpiece W with respect to the cut X1 (t). The machining dimension X2 (t) is expressed as a function of the cut X1 (t) and the grinding time constant τ (sec) as follows.
dX2 (t) / dt = (1 / τ) · (X1 (t) −X2 (t)) (1)
Here, the grinding time constant τ varies depending on the sharpness (processing efficiency) of the grindstone, the workpiece material, the workpiece shape, and the like.
[0003]
The machining states (processes) in the case where the cutting is retracted and the bending is released and the case where the bending is not entered are shown in comparison with FIGS. 10 (A) and 10 (B).
In order to maintain the grinding accuracy, it is necessary to set the deflection δ (t) at the final cutting point to a certain value or less. When there is no cut-back, it takes about 3 times the grinding time constant to recover the bending during finishing. When the recession is inserted, it is possible to make an extra cut in the roughing process and to recover the bending before the finishing process, so that the bending can be quickly recovered in the finishing process. This makes it possible to shorten the processing time.
In conventional grinders, there are two typical methods for determining the amount of cut back.
One is a method in which the amount of cut and retreat is determined so as to stabilize the machining cycle and machining accuracy while repeating the grinding experiment, and is the most common one.
Second, when the machining force and machining power are controlled, for example, in power control, when rough machining setting power Pr (kW) and finishing setting power Pf (kW),
Cut back amount Xbo = control system constant × (Pr−Pf)
Are automatically cut and retracted.
[0004]
However, with these cutting retreat amounts, if the finishing cutting speed is slowed or the finishing setting power is lowered, the cycle becomes unstable, and the variation in finishing time becomes very large. For this reason, it is necessary to increase the finishing allowance and lengthen the cutting time so that the amount of cutting retreat is small. In addition, the cycle becomes unstable even when the sharpness of the grindstone greatly changes before and after dressing or the machining allowance varies as in the case of the CBN grindstone.
[0005]
[Problems to be solved by the invention]
In view of the above-described present situation, it is desired to develop a method for determining the amount of cutback that can realize a stable grinding cycle even for these causes of instability. Therefore, a method for determining the amount of cut back was considered as follows.
The basic characteristics of grinding are:
Workpiece dimension generation speed V (t) = dX2 (t) / dt
Grinding deflection δ (t) = X1 (t) −X2 (t)
(1) The formula is V (t) = δ (t) / τ (2)
And can be transformed.
Since this can be interpreted as δ (t) = τ · V (t), the grinding deflection is approximately equal to the workpiece dimension generation speed (this is approximately equal to the cutting speed dX1 (t) / dt when the deflection is stable). Equal)) times the grinding time constant.
Now, since the cutting retraction amount is added to change the rough grinding deflection into the finishing grinding deflection, during rough machining, the workpiece dimension generation speed V (t) of formula (2) or the cutting speed dX1 ( If t) / dt and the grinding time constant τ are known, the deflection δ (t) can be calculated, and the optimum infeed retreat amount Xbo that shifts to finishing can be calculated.
[0006]
However, there is a problem that there is no NC device that can change the cut back amount during the cut when the control is performed using the cut back amount Xbo calculated in this way. The NC device can change the speed by overriding or the like in order to determine the path at the start of machining, but there is nothing that can change the position during machining.
Therefore, it is necessary to develop an NC device that can change the amount of retreat of cutting after completion of rough machining during rough machining.
In addition, since the finish machining is predicted and controlled during rough machining, the delay between the control system and the mechanical system is also a big problem. Of course, since the grinding time constant rarely changes rapidly, it is possible to use the value during the previous machining, but in order to improve accuracy, the grinding time constant for the workpiece currently being machined can be used. Desirable.
[0007]
Therefore, an in-process measurement method for obtaining the grinding time constant of the workpiece currently being processed is considered. In grinding processing, grinding efficiency, so-called “whetstone sharpness” changes due to wear and removal of abrasive grains as a tool. This change in sharpness changes the grinding time constant and changes the control gain of the grinding system. It is necessary to accurately grasp this change when controlling the machining process.
Now, the grinding time constant τ is expressed as follows.
τ = α / [(grinding system rigidity Kg) × (whetstone sharpness Λ)]
Where α is a constant determined by the workpiece
Λ = (Processing efficiency Z (mmThree/ Sec)) / (grinding force Fn (N))
That is, the grinding time constant τ is inversely proportional to the grindstone sharpness Λ.
When machining the same workpiece continuously, the constants α and Kg are considered to be the same, and if the grindstone sharpness Λ is known, the grinding time constant τ can be known.
[0008]
Consider the change in sharpness Λ. If the grinding time constant at the reference grindstone Λ0 is τ0 depending on the workpiece, the grinding time constant τt when the grindstone sharpness becomes Λa during processing is
τt = τ0 × (Λa / Λ0)
It becomes.
A specific method for calculating the sharpness of the grinding wheel during processing will be described later in the explanation section of the embodiment of the invention.
[0009]
A method for calculating the cutting speed V (t) will be described. It can be easily understood that the cutting speed V (t) is the machining speed of the workpiece and is dX2 (t) / dt. When there is an in-process gauge, the cutting speed can be easily obtained by differentiating this dimension signal.
When there is no in-process gauge and only detection of power or machining force is performed, the following is obtained. That is, in FIG. 10, the deflection δ (t) is the same as the grinding power and the grinding resistance, and when this is in a steady state, dX1 (t) ≈dX2 (t), so the power or machining force is steady. DX1 (t) / dt may be obtained by determining that
[0010]
Consider how to determine the amount of retreat. If the grinding time constant τ and the cutting speed V can be detected, the grinding deflection δ (t) can be calculated by δ (t) = τ × V (t). This grinding deflection δ (t) may be used as the amount of cut back.
If an NC device that can change the amount of cutback after roughing has been developed during roughing described as one of the above-mentioned problems, the value of the grinding deflection δ (t) is cut during roughing. Re-register the NC set value as the retracting amount Xbo.
[0011]
At this time, however, the delay in the cutting system becomes a serious problem. In a general NC apparatus, a delay time of several tens of msec occurs when moving from roughing to cutting back and finishing. Although the variation is small, the delay of the mechanical system and the delay of the electric control system are combined. Furthermore, the grinding time constant is changed, and an unstable phenomenon of the grinding cycle such as the finishing time varies. If the cycle is unstable, the machining accuracy will vary, so adjustments such as slowing the cutting speed are required.
[0012]
  In view of the above situation, the present invention provides a grinding machine capable of setting a cutting retreat amount capable of realizing a stable grinding cycle even for unstable elements such as a change in finishing cutting speed and finishing setting power. How to controlThe lawThe purpose is to provide.
  Another object of the present invention is to grind a grinding machine that can determine the amount of infeed retreat in consideration of the response delay of the mechanical system and the electric control system, and can realize stable machining with high accuracy without reducing machining efficiency. How to controlThe lawIs to provideThe
[0013]
[Means for Solving the Problems]
The grinding control method of the grinding machine according to the present invention is a grinding control method for controlling the cutting so as to perform the back-and-forth cutting when the rough grinding process is completed, and then performing the finish grinding process. While measuring the specified items for the grinding machine, calculate the amount of cutback to perform the cutback based on the measured value, and perform the cutback with the calculated cutback amount when the rough grinding process is completed. How to do it.
In this way, the amount of retreat at the time of completion of rough grinding is calculated from the measured value during rough grinding, and the amount of retreat is set to the optimum amount according to the change in sharpness of the grinding wheel. be able to. In addition, it is possible to achieve an optimum cutting back amount without being affected by unstable factors such as changes in finishing cutting speed and finishing setting power, and a stable grinding cycle can be realized. Therefore, it is not necessary to wastefully increase the finishing allowance, and high-speed machining can be realized.
[0014]
In this grinding control method, the actual machining dimension obtained by correcting the machining dimension of the workpiece obtained by the in-process gauge by the workpiece thermal expansion amount is used as the machining dimension value used for calculating the infeed retreat amount as follows. It is desirable.
That is, in the process of calculating the infeed retreat amount, α is a constant determined by the workpiece, and
τ = α / [(grinding system rigidity) × (grinding wheel sharpness Λ)]
The grinding time constant τ shown in FIG.
The whetstone sharpness Λ is:
Λ = (Processing force) / (Processing efficiency)
The processing force is a grinding power or a grinding force value. The machining efficiency is a value indicated by the product of the amount of change in machining dimension per unit time and the machining circumferential length.
As the machining dimension value used for this calculation, the substantial machining dimension obtained by correcting the workpiece thermal expansion amount is used.
As a result, the grindstone sharpness Λ can be accurately evaluated, an accurate grinding time constant can be obtained, and a more appropriate cut back amount can be calculated.
[0015]
  In these control methods, the grinding time constant τ, the rough grinding speed Vr, the machine response delay times t2 and t3, and the finishing cutting conditions determined by the finishing cutting speed Vf or the finishing grinding set power Pf, The infeed retreat amount Xbo may be obtained by the relationship of the following equation.
      Xbo = δr × exp (−t2 / τ) −δf× exp (t3 / τ)
          = Vr * [tau] * exp (-t2 / [tau])-[delta] f * exp (t3 / [tau])
  However, when setting the finishing cutting speed Vf: δf = Vf × τ
            When setting the finishing grinding power Pf: δf = δr × Pf / Pr
            t2: Delay time until transition to cutting back after rough grinding
            t3: Delay time until finishing grinding starts after retreat
            δr: Deflection at the end of rough grinding (= Vr × τ)
            δf: deflection during finishingOnly
            Pr: Power setting for rough machining
  This grinding control method is a method of controlling the cutting retreat amount Xbo by predicting the finishing process during the roughing process. Therefore, the response delay between the control system and the mechanical system becomes a serious problem. As shown, by setting the cutback amount Xbo in consideration of each delay time, a more appropriate cutback amount Xbo can be set. Therefore, it is possible to realize machining with stable accuracy without reducing machining efficiency.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view of a grinding apparatus to which this grinding machine grinding control method is applied, and includes a grinding machine 1 and a control board 2. The grinding machine 1 is composed of an internal grinding machine, and is installed on a bed 6 so that an advance / retreat platform 4 on which a head stock 3 is mounted can advance and retreat in a cutting direction (X-axis direction) perpendicular to the main shaft 5. The headstock 3 is driven forward and backward by a cutting drive motor 7 together with the forward / backward base 4. The grindstone base 8 is equipped with a grindstone drive motor 10 for rotating the grindstone 9, and the bed 6 can be moved forward and backward in the axial direction (Z-axis direction) of the main spindle 3 corresponding to a predetermined processing position of the main spindle 3. It is installed above and is driven forward and backward by the grindstone drive motor 11. A dressing device 12 and an in-process gauge 13 for measuring the inner diameter of the workpiece W are installed on the advancing / retreating platform 4 on which the head stock 3 is installed via the gauge insertion / removal device 14.
[0019]
The workpiece W is an outer ring of a rolling bearing such as a ball bearing, and is rotatably supported on the rotation support base 15 including the shoes 15a and 15b on the workpiece lower surface and side surfaces described above with reference to FIG. It is attracted to a driving plate 16 having an electromagnet and rotated together with the main shaft 5. Further, a workpiece supply / discharge device 17 for supplying a new workpiece W and discharging the processed workpiece W is provided to the spindle 5 at the machining position. The grindstone 9 is located in the workpiece W and cuts in the workpiece horizontal direction while rotating. The machining dimension of the workpiece W is captured by the gauge contact 13 a in the workpiece W and measured by the in-process gauge 13. The processing force (grinding force) is measured by the grinding dynamometer 34 of the grinding wheel drive motor 10 (FIGS. 1 and 2) and the deflection sensor 19 of the grinding wheel shaft 9a.
[0020]
The control panel 2 controls the entire grinding machine 1, and a grinding control device portion for performing the cutting control in the control panel 2 is shown in a conceptual diagram in FIG. 2. This grinding control device includes a cutting control device 21 formed of a computer-type NC device, and a measurement / control device 22 formed of another computer serving as a higher-level control means of the cutting control device 21.
[0021]
About this grinding | polishing control apparatus, after demonstrating an outline | summary, each component is demonstrated. As shown in FIGS. 5 and 6, this grinding control device performs finish grinding by performing cutting and retreating after rough grinding and rough grinding an appropriate cutting retreat amount Xbo. The measurement / control device 22 is provided with a cut / retract calculation means 29 for calculation during machining. Further, in order to realize a high-speed response of the cutback, the cut control device 21 monitors the external input of the cutback amount during rough grinding and rewrites the set cutback amount. 24 is provided. The measuring / controlling device 22 further includes a finishing machining power control means 30 and a time shift amount change allowance changing means 32 as means for high-speed machining that ensures finishing accuracy within a target time while ensuring machining accuracy. In addition, rough machining cut stop determination means 31 is provided. The finishing machining power control means 30 is a means for linearly reducing the power P (t) during finishing as indicated by a straight line portion Pt4 in FIG. The time shift amount corresponding allowance changing means 32 is a means for changing the set value of the finishing allowance g1 for determining whether or not rough grinding is completed, according to the shift amount between the target value of the finishing time and the actual finishing time. The rough machining cut stop determination means 31 is a means for outputting a rough machining stop signal s1 to the cut control device 21 when the machining dimension reaches the completion determination finishing allowance g1 which is the set value.
[0022]
As will be described later, the cutting / retreating calculation means 29 and the finishing machining power control means 30 use a grindstone sharpness Λ and a grinding time constant τ in an arithmetic expression. A section 29a, a cut back / retraction amount calculation section 29b, and a database section 29c. The pre-calculation unit 29a includes a calculation unit 29aa for the grindstone sharpness Λ and a calculation unit 29ab for the grinding time constant τ and the cutting speed. The finishing machining power control means 30 and the time shift amount change allowance changing means 32 share the pre-calculation unit 29a and the database 29c in the infeed / retreat calculating means 29, or independently calculate the grinding wheel sharpness Λ and the grinding time constant τ. It is assumed to have means and a database.
[0023]
The cutting control device 21 composed of an NC device includes a cutting control means 23 and a cutting retraction amount rewriting means 24. The incision control means 23 is means for controlling the incision numerically so as to perform incision retraction by a set infeed retraction amount at the completion of rough grinding, and then perform finish grinding. It comprises a cut back control unit 26 and a finishing processing control unit 27. Each control unit 25, 26, 27 controls the cutting in the rough machining cycle, the cut back movement cycle, and the finishing machining cycle according to the position command and speed command of the machining program, respectively, and speed override is possible. Has been. The output of the cutting command of each control unit 25, 26, 27 is given to the cutting drive motor 7 via the servo controller 28.
The cut back amount rewriting means 24 monitors the external input of the cut back amount during rough grinding, and each time the external input value is changed, the cut back amount set by the cut control means is set to the external input value. As shown in FIG. 3, it is incorporated in the control cycle of the roughing control unit 25.
[0024]
FIG. 3 is a conceptual configuration diagram showing a portion related to the control of the cut and retreat in the grinding control device of FIG. As shown in the figure, the cutting retraction amount rewriting means 24 reads the cutting retraction amount Xbo which is an external input, and the cutting retreat control unit 26 sets the cutting retreat amount Xbo to the value of the read cutting retraction amount Xbo. Step S2 for rewriting the set amount of retraction amount and determination step S3 for returning to the reading step S1 until a roughing completion signal is obtained. The I / O device 35 always reads the cut back amount Xbo discharged from the measuring / measuring device 22 and transfers it to the cut back amount rewriting means 24.
[0025]
The pre-calculation unit 29a of the cutting retraction amount calculating means 29 in the measuring / measuring device 22 uses a calculation value shown later from the measured value of the predetermined monitoring item of the grinding machine 1 and the data stored in the database 29c to calculate the sharpness of the grindstone (machining). Efficiency) means to calculate Λ, grinding time constant τ, and grinding wheel speed. The cut back amount calculation unit 29b calculates the cut back amount Xbo from the grinding time constant τ and the cutting speed calculated by the pre-calculation unit 29a and the data stored in the database 29c according to the calculation formula shown later. It is means for discharging to the control device 21. The database 29c stores data necessary for calculation in each of the calculation units 29a and 29b, for example, a grinding time constant τ0 with a sharpness of the reference wheel, machine response delay time, finishing processing conditions (set cutting speed, power, etc.). It consists of means.
[0026]
With respect to the machining process having the above-described configuration, the infeed retreat will be described mainly with reference to FIG.
When the cut X1 (t) is started, the machining of the workpiece is started, and the workpiece dimension g (t) is gradually changed. At this time, the grinding deflection δ (t) = X1 (t) −g (t), and the deflection δ (t) gradually increases and eventually converges to a constant value.
In this way, when the in-process gauge 13 detects that the workpiece size has reached the finish determination finishing allowance g1, the measurement / control device (FIGS. 2 and 3) 22 shifts the cut to the cut back. Commands the cutting control device 21. However, before the cutting speed is switched, the time t1 during the rough grinding and the time t2 to stop until the cutting retreat is delayed. There is also a delay of time t3 from when the cut back is performed until the finish cut is started. Of course, at the end of grinding, there is a time delay of t5 until the in-process gauge 13 detects the completed dimension g0 and completes the cutting, and the finished dimension ga is different from the completed dimension g0. These delay times t1 to t3 are constant depending on the machine, and can be used for calculation as known values.
[0027]
  Now, assuming that the rough grinding speed Vr, the finish grinding speed Vf (this is the design value of the grinding cycle), the deflection δr at the end of the rough grinding, and the deflection δf at the finish (also the design value of the grinding cycle)
  The grinding allowance r1 and the deflection amount δr at time t1 are
      r1 = Vr × t1
      δr = Vr × τ
  The machining allowance r2 and the deflection amount δ2 at time t2 are
      r2 = Vr × τ × (1-exp (−t2 / τ))
      δ2 = δr × exp (−t2 / τ)
  The machining allowance r3 and the deflection amount δ3 at time t3 are:
      δ3 = (δr × exp (−t2 / τ) −Xbo) × exp (−t3 / τ) = δf
      r3 = δ2-δ3-Xbo
  Bo Xbo = δr × exp (-t2 / τ)-δf× exp (t3 / τ)
          = Vr × τ × exp (−t2 / τ) −δf ×exp (t3 / τ)
It becomes.
  δf is determined by finishing processing conditions, for example,
    * When setting the finishing cutting speed Vf: δf = Vf × τ
    * When setting the finishing grinding power Pf: δf = δr × Pf / Pr
Etc.
[0028]
In this way, the cutting retraction amount Xbo can be calculated during rough machining, and the optimum cutting cycle is constructed by switching the cutting retraction amount Xbo of the NC cutting control device 21 immediately before the cutting retraction. be able to.
Note that the user can use a user macro or the like to calculate and set the cutting retraction amount Xbo as a machining program to be executed by the cutting control device 21 including an NC device. The time and the variation thereof are large, which is not preferable when a large amount of workpieces are continuously processed.
In order to achieve a high-speed response, it is preferable to incorporate the calculation and setting method of the cut back amount Xbo in the numerical control system for executing the machining program in the cut control device 21 composed of an NC device. In this case, the NC device is not versatile and very expensive.
On the other hand, in the present invention, the machining conditions are calculated by the measurement / control device 22 including a separate computer device independently of the NC cutting control device 21, and the NC cutting control device 21 performs rough grinding. Since the external input of the cut back amount is always monitored and the set cut back amount is rewritten while the cutting is performed, the NC cutting control device 21 is made to be versatile while realizing a high-speed response. It can be expensive.
[0029]
Next, control of the finish grinding process will be described. This finishing grinding control method controls the grinding time to the target value and controls the machining resistance to stabilize the machining accuracy even if there is a change in machining allowance or sharpness (machining efficiency) of the grinding wheel. It is a method to do.
First, problems in general finishing will be described, and then the finish grinding control method of this embodiment will be described.
[0030]
In FIG. 5, after performing the cutting and retreating as described above, the remaining allowance Xf (= g3) is
Xf = g1-r1-r2-r3.
At this time, although there are units of μm, there are variations in the amount of cut and retreat, measurement errors of the in-process gauge 13, and the like. Even if the error is about 5 μm, if the finishing cutting speed is 5 μm / sec, the processing time varies by 1 second. This makes it difficult to manage the processing site and to standardize the processing conditions. If the delay in cutting is large and the value of the finishing allowance g1 is reduced, finishing may not be possible.
In conventional grinding operations, the finishing allowance has been increased and the finishing cutting speed has been set faster to deal with such problems.
In addition, since there is a delay in cutting even when finishing is finished, if the machining resistance is large or the workpiece machining speed is fast, the machining accuracy deteriorates. Up to now, in order to maintain the machining accuracy, the cutting is stopped and so-called spark-out grinding is performed, but this requires extra machining time.
[0031]
Therefore, in this embodiment, the machining resistance at the end of finish machining is set to a low value so that the machining allowance is measured by measuring the remaining machining allowance after the cutting and retreating, and the workpiece accuracy is improved. Take control. In other words, in this embodiment, the remaining workpiece finishing grinding allowance is measured before the start of finishing cutting, and an optimum finishing cutting pattern is determined and cutting is performed.
As has been clarified by the above-mentioned problems, in the current grinding machine, the finishing allowance varies inevitably at the start of finishing, and the finishing allowance must be set to a large amount. In order to remove this large machining allowance in the shortest time and to improve machining accuracy at the end of finishing machining, it is necessary to make machining resistance as close to zero as possible. Therefore, the machining state was set as shown in FIG.
[0032]
As shown in FIG. 6, when roughing is performed with the power Pr of roughing and the cutting speed Vr (= dX2 (t) / dt), roughing is performed with an in-process gauge signal g (t) = g1. It is controlled to end and switch the cycle from the cut back to the finish cut. Even when the g (t) = g1 gauge signal is output, there are delay times t1, t2, and t3, and the processing is not immediately changed to finishing. In addition, there are variations in measurement and control, and the finishing allowance g3 varies. There is also a situation in which the finishing allowance g3 is less than or equal to the machining dimension g0 and the finishing process does not occur.
Therefore, in the finishing process, the cutting is controlled so that the machining power decreases in a straight line from the machining power Ph at the start of the finishing process to the machining power Pl at the final finishing time.
[0033]
Cutting that reduces the machining power (cutting force) in a straight line from Ph to Pl in finish grinding is the basic characteristic equation of the grinding system.
dX2 (t) / dt = (X1 (t) -X2 (t)) / τ
Also,
If dP (t) / dt = (Ph-Pl) / t4 = constant,
d2X2 (t) / d2t = k × (Ph−Pl) / t4
These are the initial conditions t = 0, X1 (0) = Xr dX2 (t) / dt = Vr
As
Figure 0003710575
It becomes. That is, it turns out that a notch becomes a quadratic curve.
[0034]
Also, the infeed retraction amount Xbo is as described above.
    Xbo = δr × exp (−t2 / τ) −δf× exp (t3 / τ)
        = Vr × τ × exp (−t2 / τ) −δf ×exp (t3 / τ)
The rough grinding completion dimension g1 is
                                                Ph + Pl
    g1 = Vr × t1 + (Vr−Vf) × τ−Xbo + ───── × t4
                                                 2 ・ k
It becomes.
[0035]
In this embodiment, by measuring the value of the machining dimension g3 after performing the cutting back with the in-process gauge 13, and controlling the finishing cutting according to the following equation, a stable accuracy and a machining cycle are realized. Is.
Figure 0003710575
By performing such incision, the machining resistance at the end of finish machining is stabilized in a low state. If the sharpness (machining efficiency) Λ of the grindstone changes gradually, the value of the above equation k changes, so that the machining time gradually changes. In order to prevent this, the value of k is increased when the grindstone sharpness Λ is deteriorated, and the value of k is decreased when it is improved. As will be described later, since the sharpness Λ of the grinding wheel can be accurately performed during the rough grinding process, the value of k as described above can be easily changed.
[0036]
Thus, the means for controlling the cutting to measure the value of the machining dimension g3 and reduce the machining power (cutting force) in a straight line from Ph to Pl is the finishing machining power in the measurement / control device 22 of FIG. Control means 30. The finishing processing speed command s2 by the means 30 is given to the finishing processing control unit 27 of the cutting control device 21 as a speed override command.
[0037]
In this embodiment, it is also possible to control the finishing time to a target time. This can be easily realized by giving an offset to the rough grinding completion dimension g1.
This is because the finish grinding allowance setting value g1 for determining the completion of rough grinding is set to the finish grinding time target value Tsec with respect to the measured value g (t) of the processing dimension obtained by the in-process gauge 13 during rough grinding. And a predetermined calculated value corresponding to the deviation Δ between the actual finishing time Ta and the actual finishing time Ta. For example, when the actual finishing time Ta is late with respect to the target value Tsec of the finishing time, an amount proportional to the deviation (difference) Δsec is subtracted from the set value g1.
Specifically, the following formula
Figure 0003710575
Is set to the value of g1 calculated by.
The value of the constant α is set to a value of 1 or less in order to prevent hunting. The difference Δ is a predetermined statistical calculation value such as the finishing time of the previous workpiece or the average finishing of the workpiece up to a predetermined number.
[0038]
The time deviation amount change allowance changing means 32 in FIG. 2 measures a deviation amount Δ between the target value Tsec of the finishing machining time and the actual finishing machining time Ta, and according to the above equation, rough machining cut stop judging means. 31 is a means for changing the set value g1. The rough machining incision stop judging means 31 monitors the measured value g (t) of the machining dimension obtained by the in-process gauge 13 during rough grinding, and when the set value g1 is reached, a rough machining stop signal is sent to the infeed control device 21. It is a means to send to the finishing process control part 27.
[0039]
Next, a method for evaluating the grinding wheel sharpness Λ will be described. Whetstone sharpness Λ is
Λ = (Processing force) / (Processing efficiency)
Is necessary for the calculation of the grinding time constant τ and the like.
However, in the conventional method for evaluating the grinding wheel sharpness Λ, it is difficult to accurately obtain the grinding wheel sharpness Λ during grinding. Therefore, in this embodiment, a method for evaluating the grinding wheel sharpness Λ was devised and adopted as follows.
First, the problems of the conventional method for evaluating the grinding wheel sharpness Λ will be described, and then the grinding wheel sharpness evaluation method employed in this embodiment will be described.
[0040]
As shown in FIG. 7, when the machining dimension of the workpiece W is captured by the gauge contact 13 a in the workpiece W and measured by the in-process gauge 13, the machining position (machining point) of the grindstone 9 and the in-process gauge 13 are measured. The measurement points by are not coincident, and an error occurs in the measured value of the in-process gauge 13 due to the thermal expansion of the workpiece W. For this reason, the following problem arises.
As shown in the machining process in FIG. 8, when the rough machining is started by the incision X, the machining force P increases and the machining dimension (observed value) g changes. The machining force P becomes a substantially constant value at the end of the rough machining, but grinding frictional heat flows into the workpiece, and the machining dimension is made to be machined more than the actual machining. The observable machining dimension is g, but since the dimension including the workpiece thermal expansion σ (shown with the vertical axis enlarged in the figure) is measured, the actual machining dimension is g-σ (displayed with a dotted line) ).
The thermal expansion amount σ of the workpiece W has a large time delay compared to the machining force, and as shown in the figure, expansion and contraction occur greatly during the finishing process. For example, thermal expansion of about 10 μm or more occurs for oil-based coolant and about 5 μm for water-soluble coolant.
[0041]
The machining force can be obtained by measuring the grinding power and grinding resistance. To calculate the machining efficiency Z, the workpiece machining diameter D is generally used.
Z = π × D × (dg / dt) mmThree/ (Mm · sec)
The influence of workpiece thermal expansion is ignored. Therefore, an accurate grinding wheel sharpness evaluation is not performed. In particular, the workpiece W is greatly expanded and contracted during the finishing process from the completion of the roughing process, and the calculated value of the grindstone sharpness (machining efficiency) is remarkably inaccurate.
Grinding wheel error is not a big problem in low-speed machining, but to process a large amount of workpieces at high speed, such as bearing races, and to satisfy strict accuracy requirements, It is necessary to calculate the sharpness of the grinding wheel accurately. In particular, when controlling the amount of cut back as described above for high speed machining, or changing the cutting speed during finishing, etc., stable control is achieved unless an accurate grinding wheel sharpness is obtained. Is impossible.
[0042]
Therefore, in this embodiment, the grindstone sharpness Λ is determined as follows.
FIG. 4 shows the details of the grindstone sharpness calculation unit 29aa of FIG. 2, and the calculation unit 29aa calculates an accurate grindstone sharpness Λ subjected to thermal expansion correction as follows. That is, whetstone sharpness Λ is
Λ = (Processing force) / (Processing efficiency)
The processing force is the value of grinding power or grinding force. The machining efficiency is a value indicated by the product of the amount of change in machining dimension per unit time and the machining circumferential length. In this case, as the value of the machining dimension, a workpiece substantial machining dimension obtained by correcting the machining dimension of the workpiece obtained by the in-process gauge 13 by the workpiece thermal expansion amount is used, and the workpiece thermal expansion amount is the grinding power. It shall be calculated from Further, the thermal expansion amount of the workpiece is calculated from the amount of heat flowing into and out of the workpiece.
According to this, the thermal expansion amount of the workpiece being processed can be accurately calculated in real time, and the actual machining efficiency can be obtained by correcting the in-process gauge signal. Details will be described.
[0043]
The workpiece temperature θ (t) during grinding is expressed by the following equation.
dθ (t) / dt = α · P (t) −β · θ (t)
Where α is the heat inflow constant
β: Heat outflow constant
P (t): Grinding power
θ (t): Workpiece temperature
During machining, the grinding power can be measured and the workpiece temperature θ (t) can be calculated using the above equation.
From this workpiece temperature, the workpiece thermal expansion δ (t) is
δ (t) = (workpiece thermal expansion coefficient) × working diameter × θ (t)
The actual dimension during processing g (t)realIs obtained by subtracting δ (t) from the workpiece dimension g (t) by the in-process gauge during machining.
g (t)real= G (t) -δ (t)
Processing efficiency Z is
Z = π × D × (dg (t)real/ Dt)
Therefore, the grindstone sharpness (processing efficiency) A is a function of grinding power,
A = P (t) / Z
It becomes. About normal grinding force Fn
A = Fn / Z
It is.
By correcting the workpiece thermal expansion in this way, the evaluation of the grinding wheel sharpness (machining efficiency) Λ becomes accurate and becomes effective as a parameter for evaluating and controlling the machining process.
Regarding the method for calculating the thermal expansion amount of the workpiece from the grinding power during grinding, the heat inflow constant and the heat outflow constant, the gauge zero point correction method in the automatic sizing grinding proposed by the present applicant (Japanese Patent Application No. 3). -219728).
[0044]
【The invention's effect】
  The grinding control method of the grinding machine according to the present invention calculates the amount of retreat at the time of the rough grinding process based on the measured value during the rough grinding process, and performs the retreat, so that the change in the grinding wheel sharpness or the finish cutting Even for unstable elements such as changes in speed and finish setting power, the optimal amount of cutback can be set to achieve a stable grinding cycle.The
  In addition, considering the delay in response of the mechanical system and electrical control system, the amount of cut back can be determined, and stable machining can be realized without reducing machining efficiency.
  ThisIn the grinding control method according to claim 2 of the present invention, the machining dimension of the workpiece obtained by the in-process gauge is used as the machining dimension value for calculating the sharpness of the grindstone used for the calculation of the infeed retreat amount. Therefore, the sharpness of the grinding wheel can be calculated accurately, and a more appropriate setting of the retreating depth can be performed.
[Brief description of the drawings]
FIG. 1 is a plan view of a grinding apparatus to which a grinding control method and apparatus for a grinding machine according to an embodiment of the present invention is applied.
FIG. 2 is an explanatory diagram of a conceptual configuration of the grinding machine control device.
FIG. 3 is an explanatory diagram of a conceptual configuration showing a part related to the control of the cutting and retreating of the grinding machine control device.
FIG. 4 is an explanatory diagram of a conceptual configuration of a portion for calculating a grindstone sharpness (processing efficiency) of the grinding machine control device.
FIG. 5 is an explanatory diagram of a machining process including cutting back and forth.
FIG. 6 is an explanatory diagram showing a finishing grinding process.
FIGS. 7A and 7B are a front view and a cross-sectional view showing a relationship between a grindstone and an in-process gauge.
FIG. 8 is an explanatory diagram of a grinding process showing thermal expansion.
FIG. 9 is an explanatory diagram highlighting bending in grinding.
FIG. 10 is an explanatory diagram of a grinding process that compares the presence or absence of incision retreat.
[Explanation of symbols]
1 ... Grinding machine 29aa ... Whetstone sharpness calculator
2 ... Control panel 30 ... Finish machining power control means
5 ... Spindle 31 ... Rough cutting cut stop judging means
7 ... Cutting drive motor 32 ... Tolerance changing means corresponding to the amount of time deviation
9 ... Whetstone W ... Workpiece
10 ... Wheel drive motor X ... Cutting
13 ... In-process gauge Xbo ... Retraction amount
21 ... Cutting control device Z ... Machining efficiency
22 ... Measurement / control device Λ ... Whetstone sharpness (processing efficiency)
23 ... Cutting control means τ ... Grinding time constant
24 ... Recessing amount rewriting means
29 ... Cutting retraction amount calculation means

Claims (2)

粗研削加工の完了時に切込後退を行い、その後に仕上研削加工を行うように切込を制御する研削盤の研削制御方法において、粗研削加工中に工作物と研削盤についての所定項目の計測を行いながらその計測値により前記切込後退を行うべき切込後退量を計算し、粗研削加工の完了時に前記の計算された切込後退量で切込後退を行い、
前記切込後退量の計算過程で、αを工作物によって決まる定数として、次式
τ=α/〔(研削系剛性)×(砥石切れ味Λ)〕
で示される研削時定数τを用い、
前記切れ味Λは、
Λ=(加工力)/(加工能率)
で示される値であって、前記加工力は研削動力または研削力の値とし、前記加工能率は、加工寸法の単位時間当たりの変化量と加工円周長の積で示される値であって、
研削時定数τと、粗研削速度Vrと、機械の応答遅れ時間t2,t3と、仕上切込速度Vfまたは仕上研削設定動力Pfで求められる仕上加工条件とから、前記切込後退量Xboを、次式の関係で求める研削盤の研削制御方法。
Xbo=δr×exp(−t2/τ)−δf×exp(t3/τ)
=Vr×τ×exp(−t2/τ)−δf×exp(t3/τ)
ただし、 仕上切込速度Vfを設定する場合: δf=Vf×τ
仕上研削動力Pfを設定する場合: δf=δr×Pf/Pr
t2:粗研削後に切込後退に移るまでの遅れ時間
t3:切込後退の後、仕上研削が開始されるまでの遅れ時間
δr:粗研削終了時の撓み(=Vr×τ)
δf:仕上研削開始時の撓
r:粗加工設定動力
In the grinding control method of a grinding machine that controls the incision so that the incision is retracted when the rough grinding process is completed and then the finish grinding process is performed, measurement of predetermined items for the workpiece and the grinding machine during the rough grinding process. The amount of cut back to be cut back is calculated according to the measured value while performing the above, and the back cut is performed with the calculated cut back amount when the rough grinding process is completed,
In the calculation process of the cutting retraction amount, as determined circle constant I by the workpieces alpha, equation tau = alpha / [(grinding system stiffness) × (grindstone sharpness lambda)]
Using the grinding time constant τ shown by
The sharpness Λ is
Λ = (Processing force) / (Processing efficiency)
The machining force is a value of grinding power or grinding force, and the machining efficiency is a value represented by a product of a change amount of machining dimensions per unit time and a machining circumferential length,
From the grinding time constant τ, the rough grinding speed Vr, the machine response delay times t2 and t3, and the finishing cutting conditions determined by the finishing cutting speed Vf or the finishing grinding setting power Pf, the cutting retraction amount Xbo is Grinding control method for grinders calculated by the following formula.
Xbo = δr × exp (-t2 / τ) - δf × exp (t3 / τ)
= Vr * [tau] * exp (-t2 / [tau])-[delta] f * exp (t3 / [tau])
However, when setting the finishing cutting speed Vf: δf = Vf × τ
When setting the finishing grinding power Pf: δf = δr × Pf / Pr
t2: Delay time until transition to cutting back after rough grinding
t3: Delay time until finishing grinding starts after retreat
δr: Deflection at the end of rough grinding (= Vr × τ)
δf: Try wrinkles at the finish grinding start
P r: roughing setting power
前記加工寸法の値として、インプロセスゲージで得られる工作物の加工寸法を工作物熱膨張量によって補正した実質加工寸法を用いる請求項1記載の研削盤の研削制御方法。  2. The grinding control method for a grinding machine according to claim 1, wherein a substantial machining dimension obtained by correcting a machining dimension of a workpiece obtained by an in-process gauge by a workpiece thermal expansion amount is used as the machining dimension value.
JP30127196A 1996-09-30 1996-10-25 Grinding control method of grinder Expired - Lifetime JP3710575B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30127196A JP3710575B2 (en) 1996-10-25 1996-10-25 Grinding control method of grinder
US08/936,814 US6113461A (en) 1996-09-30 1997-09-24 Grinding method utilizing grinding sharpness of grinding element
DE19743139A DE19743139B4 (en) 1996-09-30 1997-09-30 Apparatus for performing a grinding process and method thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30127196A JP3710575B2 (en) 1996-10-25 1996-10-25 Grinding control method of grinder

Publications (2)

Publication Number Publication Date
JPH10128661A JPH10128661A (en) 1998-05-19
JP3710575B2 true JP3710575B2 (en) 2005-10-26

Family

ID=17894817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30127196A Expired - Lifetime JP3710575B2 (en) 1996-09-30 1996-10-25 Grinding control method of grinder

Country Status (1)

Country Link
JP (1) JP3710575B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296179C (en) * 2004-05-22 2007-01-24 宁波摩士集团股份有限公司 Grinding machine parameter testing and analytical system
JP5857692B2 (en) * 2011-12-05 2016-02-10 株式会社ジェイテクト Grinding method and grinding machine
JP5935568B2 (en) * 2012-07-24 2016-06-15 株式会社ジェイテクト Grinding machine and grinding method
JP6186739B2 (en) * 2013-02-15 2017-08-30 株式会社ジェイテクト Grinding machine and grinding method
JP6102502B2 (en) * 2013-05-21 2017-03-29 株式会社ジェイテクト Grinding machine and grinding method
CN105058238B (en) * 2015-07-24 2017-07-04 天通吉成机器技术有限公司 A kind of on-line measurement system for periphery grinding machine processing blades
CN115647937B (en) * 2022-08-10 2024-04-09 昆山市恒达精密机械工业有限公司 Control method and system for improving grinding quality of product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574674B2 (en) * 1987-01-13 1997-01-22 トーヨーエイテック株式会社 Grinding machine cutting device
JPH06320419A (en) * 1993-05-19 1994-11-22 Ntn Corp Work dimension control method and device in grinding
JPH0839427A (en) * 1994-07-22 1996-02-13 Toyoda Mach Works Ltd Grinding device

Also Published As

Publication number Publication date
JPH10128661A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP2637488B2 (en) Numerically controlled grinding machine
JP3467807B2 (en) Grinding equipment
JP7305945B2 (en) Machine Tools
JP4733947B2 (en) Method and apparatus for aligning a workpiece with pre-cut teeth on a gear finishing machine
JP3710575B2 (en) Grinding control method of grinder
JPH10118926A (en) Grinding control method of grinder
JP2012168742A (en) Machining center provided with grindstone wear correction function
JPH08168957A (en) Grinding device
JP3344064B2 (en) Grinding equipment
JPH10118924A (en) Grinding control method of grinding machine
JP2940435B2 (en) Adjustment method of retraction amount in grinding
JPH0839427A (en) Grinding device
JP3627225B2 (en) Truing device for grinding wheel
JP7271983B2 (en) Thermal displacement estimation device and grinder
JPS6017660B2 (en) Grinding machine with grinding wheel wear compensation device
WO2023047437A1 (en) Processing estimation device
JP2000108031A (en) Grinding machine provided with wheel dressing device
JP4581647B2 (en) Truing method and grinding machine
JPH09314439A (en) Grinding method
WO2024075303A1 (en) Workpiece mass determination device, machining estimation device, and machining system
JP3413938B2 (en) Grinding equipment
JP3104357B2 (en) Adjustment method for the amount of retraction in internal grinding
JP3143656B2 (en) Grinding equipment
JP6903876B2 (en) Grinding device and grinding method
JP3651082B2 (en) Grinding equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term