JPS63185574A - Polishing control system for semiconductor wafer - Google Patents

Polishing control system for semiconductor wafer

Info

Publication number
JPS63185574A
JPS63185574A JP1701587A JP1701587A JPS63185574A JP S63185574 A JPS63185574 A JP S63185574A JP 1701587 A JP1701587 A JP 1701587A JP 1701587 A JP1701587 A JP 1701587A JP S63185574 A JPS63185574 A JP S63185574A
Authority
JP
Japan
Prior art keywords
polishing
semiconductor wafer
thickness
time
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1701587A
Other languages
Japanese (ja)
Other versions
JPH07100297B2 (en
Inventor
Masahiko Yamaguchi
正彦 山口
Masato Sakai
正人 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Original Assignee
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, Osaka Titanium Co Ltd filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP1701587A priority Critical patent/JPH07100297B2/en
Publication of JPS63185574A publication Critical patent/JPS63185574A/en
Publication of JPH07100297B2 publication Critical patent/JPH07100297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To improve the polishing precision of a finished wafer by installing a controller for calculating the optimum polishing time of a semiconductor based on each accumulative value of the polishing quantity and polishing time in the past cycles. CONSTITUTION:The setting thickness of a semiconductor wafer transported by a transport part 2 is measured by a measurement part 3. Then, the wafer is polished by a polishing device 5, and the finishing thickness of the semiconductor wafer after polishing is measured in a measurement part 7. The values measured by the measurement parts 3 and 7 are input into a controller 8, and the polishing portion is calculated from an aimed thickness of the semiconductor wafer which is previously input in an input device 9 and the measurement values, and a polisher 5 is drive-controlled. The controller 8 successively integrates the polishing quantity and polishing time in each cycle, and the average polishing speed is calculated on the basis of the accumulative value. Then, the optimum polishing time is calculated on the basis of the speed and the polishing portion of the semiconductor wafer in the next cycle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、集積回路の基盤となる半導体ウェハのスライ
シング後や各種洗浄後に、半導体ウェハなミラーボリシ
ング加工(MP加工)する際の半導体ウェハの研磨制御
システムに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applied to semiconductor wafers that are used for mirror boring processing (MP processing) of semiconductor wafers after slicing the semiconductor wafers that are the basis of integrated circuits and after various cleanings. This invention relates to a polishing control system.

(従来の技術) 従来、半導体ウェハは、柱状の単結晶シリコンのインゴ
ットをスライスし、各種洗浄した後、ミラーボリシング
加工により目標厚さに研磨される。この場合、スライス
されたウェハの仕込み厚さを測定し、研磨しろ毎(例え
ば、5μm毎)にウェハを区分し、区分毎に設定された
研磨時間てウェハを研磨するようにしていた。
(Prior Art) Conventionally, a semiconductor wafer is produced by slicing a columnar single-crystal silicon ingot, performing various cleanings, and then polishing it to a target thickness by mirror boring. In this case, the preparation thickness of the sliced wafer is measured, the wafer is divided into polishing margins (for example, every 5 μm), and the wafer is polished for a polishing time set for each division.

(発明か解決しようとする問題点) ところか、従来においては、予め区分毎に設定される研
磨時間て一律に研磨するようにしていたので、各区分内
てのウェハの厚みの違いや、研磨工程ての砥液、クロス
等の研磨材料の消耗状況によっては、同じ区分のウェハ
てあっても研eIaか変化して一様に研磨されないとい
うおそれかあった。その結果、研磨作業てのロスタイム
を惹起゛し生産性か低下するとともに、仕上り厚さにば
らつきを生し、仕上り精度を向上するには限度を有して
いた。
(Problem to be solved by the invention) However, in the past, polishing was performed uniformly using a polishing time set in advance for each division, so the difference in wafer thickness within each division and polishing Depending on the consumption of polishing materials such as abrasive liquid and cloth during the process, even if wafers are in the same category, the polishing eIa may change and the polishing may not be uniform. As a result, there is a loss of time during polishing operations, which reduces productivity, and also causes variations in finished thickness, which limits the ability to improve finishing accuracy.

そこて1本発明では各データの累積値を用いて、ウェハ
の研磨しるや研磨材料の消耗状況を考慮した研磨時間を
決定することにより、半導体ウェハの仕上り厚さのばら
つきを低減して精度の向ヒを図るとともに、研磨時間の
ロスタイムの低減を図り生産性を高めることを目的とす
る。
Therefore, in the present invention, the cumulative value of each data is used to determine the polishing time that takes into consideration the polishing of the wafer and the consumption status of the polishing material, thereby reducing the variation in the finished thickness of the semiconductor wafer and improving accuracy. The purpose is to improve productivity by reducing polishing loss time and increasing productivity.

(問題点の解決手段及びその作用) 本発明に係る半導体ウェハの研磨制御システムは、半導
体ウェハの目標厚さ等のデータを入力する入力装置と、
搬送装置により搬送される半導体ウェハの仕込み厚さを
測定する仕込み厚さ測定部と、半導体ウェハを目標厚さ
に研磨する研磨装置と、研磨後の半導体ウェハの仕上り
厚さを測定する仕上り厚さ測定部と、前記入力装置のデ
ータと仕込み厚さ測定部からの測定値とにより研磨しろ
を演算して前記研磨装置を駆動制御する制御装置とを備
え、この制御装置により、各サイクルての研磨(よ及び
研磨時間を1llft次累積し、これらの累積値に基づ
いて平均研磨速度を演算し、この平均研磨速度と次回の
サイクルての半導体ウェハの研磨しろとに基づいて最適
研磨時間を演算し、この最適研磨時間に基づいて前記研
磨装置により次回のサイクルの半導体ウェハを研磨する
ようにした構成である。
(Means for Solving Problems and Their Effects) A semiconductor wafer polishing control system according to the present invention includes an input device for inputting data such as a target thickness of a semiconductor wafer;
A preparation thickness measurement unit that measures the preparation thickness of the semiconductor wafer carried by the transfer device, a polishing device that polishes the semiconductor wafer to a target thickness, and a finishing thickness measurement unit that measures the finished thickness of the semiconductor wafer after polishing. It is equipped with a measuring section and a control device that calculates a polishing margin based on the data of the input device and the measured value from the preparation thickness measuring section and drives and controls the polishing device, and the control device controls the polishing in each cycle. (Accumulate the polishing time by 1llft, calculate the average polishing speed based on these cumulative values, and calculate the optimal polishing time based on this average polishing speed and the polishing margin of the semiconductor wafer in the next cycle. , the semiconductor wafer of the next cycle is polished by the polishing apparatus based on this optimum polishing time.

したがって、次回サイクルの平均研磨速度を前回まての
研磨量及び研磨時間の累積に基いて求めているため、研
磨時間か研磨材の消耗変化度合に対応してサイクルが増
すごとに次第に増大する時間として得られることになり
、仕上りウェハのばらつきか減少して仕上り精度か向上
するとともに、研磨作業ての時間ロスが低減され生産性
か向上する。
Therefore, since the average polishing speed for the next cycle is calculated based on the cumulative amount of polishing and polishing time from the previous cycle, the polishing time gradually increases as the number of cycles increases, corresponding to the degree of wear and tear of the polishing material. As a result, variations in finished wafers are reduced and finishing accuracy is improved, and time loss during polishing operations is reduced and productivity is improved.

(実施例) 以下に本発明の一実施例を図面に基づき説明する。(Example) An embodiment of the present invention will be described below based on the drawings.

第1図は本実施例の研磨システムの概略図てあり、図中
左から右ヘウエハの供給を行うローダ部l、搬送部2、
ウェハの仕込み厚さを測定する仕込み厚さ測定部3、搬
送部4.ウェハな研磨する研磨装置5、搬送部6及び研
磨後の仕上り厚さを測定する仕上り厚さ測定部7か順次
配設され、これらの各々には制御装置8が電気的に接続
されており、また制御装置8には目標厚さ等の仕様デー
タを入力する入力装置9か接続されている。上記制御装
置8は、第2図に示すようにA/D変換器ll、マイク
ロコンピュータ(CPU)12、ドライブユニット13
から構成され、各測定部3,7からの検出信号d、d、
がA/D変換器11を介し、またキーボード(入力装置
)9からの入力信号d。かそれぞれマイクロコンピュー
タ12に入力される。上記マイクロコンピュータ12は
I10ボート、メモリ、演算部、制御部等からなり、第
2図に示すように、目標厚さd。と仕込み厚さdとから
△d=d−d0により研磨しろ△dを演算する研磨しろ
演算手段12aと、過去の実績データから累積記憶され
た研磨ff1Dn (実際に研磨された厚さてd−d、
により得られる)と同様に累積記憶された研磨時間Tn
とから平均研磨速度を演算する研磨速度演算手段12b
と、前記双方の演算手段の出力信号△d、マからtn=
 (d−d o ) / vにより、今回の研磨時間t
。を演算する研磨時間演算手段12cとを構成している
FIG. 1 is a schematic diagram of the polishing system of this embodiment. From left to right in the figure, there is a loader section l that supplies wafers, a transport section 2,
A charging thickness measuring section 3 for measuring the charging thickness of a wafer, a transport section 4. A polishing device 5 for polishing a wafer, a transport section 6, and a finished thickness measuring section 7 for measuring the finished thickness after polishing are arranged in sequence, and a control device 8 is electrically connected to each of these. Also connected to the control device 8 is an input device 9 for inputting specification data such as target thickness. As shown in FIG. 2, the control device 8 includes an A/D converter 11, a microcomputer (CPU) 12, and a drive unit 13.
Detection signals d, d, from each measuring section 3, 7,
is an input signal d from the keyboard (input device) 9 via the A/D converter 11. are respectively input to the microcomputer 12. The microcomputer 12 includes an I10 board, a memory, a calculation section, a control section, etc., and has a target thickness d as shown in FIG. A polishing margin calculation means 12a calculates polishing margin Δd from Δd=d−d0 from ,
), the cumulatively stored polishing time Tn
Polishing rate calculation means 12b that calculates the average polishing rate from
and the output signal Δd of both arithmetic means, tn=
(d-do)/v, the current polishing time t
. and a polishing time calculating means 12c for calculating the polishing time.

尚、上記平均研磨速度マは、9=(研磨量の累積値Dn
)/(研磨時間の累積イめTn)なる演算式により得ら
れる。また、研磨材料の交換時には、上記平均研磨速度
9としては、当該材料別に予め設定された初期値v1に
より演算される。そして、上記マイクロコンピュータ1
2からドライブユニット13に制御信号t。を出力する
。このドライブユニット13は、例えばトランジスタ回
路等により構成され、研磨量ご5の駆動部を制御信号t
。に基づく研磨時間て研磨制御し、研磨時間tnか順次
メモリに記憶される。
The above average polishing speed is 9=(cumulative value of polishing amount Dn
)/(cumulative polishing time Tn). Furthermore, when replacing the polishing material, the average polishing speed 9 is calculated using an initial value v1 that is preset for each material. And the above microcomputer 1
2 to the drive unit 13. Output. This drive unit 13 is constituted by, for example, a transistor circuit, etc., and controls the drive unit for each polishing amount by a control signal t.
. The polishing is controlled based on the polishing time tn, and the polishing time tn is sequentially stored in the memory.

次に本システムの作用を第3図に基づき説明する。Next, the operation of this system will be explained based on FIG.

第3図はマイクロコンピュータにおける研磨制御処理の
概略を示すフローチャートである。
FIG. 3 is a flowchart showing an outline of polishing control processing in the microcomputer.

まず、全体のシステムに電源か投入されると。First, when power is applied to the entire system.

ステップP、てマイクロコンピュータては各レジスタ、
RAM内のデータかクリアされ、サイクル回数を示す指
数nかn=oにセットされる。第1回目の研磨サイクル
では、ステップP2てn=1にし、ステップP、てウェ
ハの目標厚さd。、仕込み厚さdか読み込まれ、ステッ
プP、で△d=d−doなる処理により研磨しろ△dを
求める。
Step P, the microcomputer has each register,
The data in the RAM is cleared and an index indicating the number of cycles is set to n or n=o. In the first polishing cycle, n=1 in step P2, and target thickness d of the wafer in step P. , the preparation thickness d is read, and in step P, the polishing amount Δd is determined by processing Δd=d−do.

ステップP5ては、n=1であるかが判別され、n=1
のとき、すなわち第1回目の場合にはステップP6へ進
み、予め設定された研磨速度の初期値v1と研磨しろ△
dとからtn=△d / v 、なる処理をし、研磨時
間t。を求める。尚、研磨材を交換した場合にも、指数
n=oにリセットして上記同様の研磨速度初期値v1を
用いてtnか求められる。そして、ステップP、で研磨
時間t。
In step P5, it is determined whether n=1.
In the case of , that is, in the case of the first time, proceed to step P6 and polish with the preset polishing speed initial value v1.
d and then tn=Δd/v, and the polishing time is t. seek. Note that even when the abrasive is replaced, tn can be determined by resetting the index n=o and using the initial polishing speed value v1 similar to the above. Then, in step P, the polishing time is t.

に基づいて研磨装置5を駆動し、このサイクルのウェハ
の研磨作業を終了する。その後、ステップP、で研磨後
のウェハの仕上り厚さd□を読込み、ステップP9てd
n=d−d、なる処理を行ない、このサイクルで実際に
研磨された研磨量dnを求め、ステップP1oにおいて
研磨nd。及び研磨時間t。をそれぞれ累積値Dn、T
、として記憶してステップP2に戻る。
The polishing device 5 is driven based on this, and the wafer polishing work of this cycle is completed. After that, in step P, the finished thickness d□ of the wafer after polishing is read, and in step P9, d
A process is performed in which n=dd, and the polishing amount dn actually polished in this cycle is determined, and the polishing nd is performed in step P1o. and polishing time t. are cumulative values Dn and T, respectively.
, and return to step P2.

さらに、次回の研磨サイクルに移行すると、ステップP
2てn=2にして、上記同様、ステップP3てd。、d
を読込み、ステップP、て今回サイクルの△dを求める
。ステップP5において、2回目以後のサイクルてはス
テップpHに進む。
Furthermore, when moving to the next polishing cycle, step P
2, set n=2, and perform step P3 as above. ,d
is read, and in step P, Δd of the current cycle is determined. In step P5, the process proceeds to step pH in the second and subsequent cycles.

ステップpHにおいては、前回サイクルまてに累積的に
記憶された研磨量の累積値Dnと研磨時間の累hi (
# T。とによりv=Dn/Tnなる演算を行ない、平
均研磨速度Qを求める。ステップPI2においては、平
均研磨速度Qと今回の研磨しろ△dにより、to=△d
 / 9なる演算を行ない、今回の研磨時間tnを求め
、ステップP、て今回求められた研磨時間tnて研磨作
業か行なわれる。そして、ステップP8で今回の仕上り
厚さdヨを読込み、ステップP9て研磨量d。を求め、
ステップPIQて各データを累積的に記憶して次回のサ
イクルに移行する。したかって、研磨サイクルか増すに
伴って、研磨材の消耗か増大するか、第4図に示すよう
に、研磨サイクルが増加するに伴って、研磨時間tnを
研磨材の消耗に対応するように、次第に増大した時間と
して得ることかてきる。
At the step pH, the cumulative value Dn of the polishing amount stored cumulatively up to the previous cycle and the cumulative value Dn of the polishing time hi (
#T. Then, the calculation v=Dn/Tn is performed to find the average polishing rate Q. In step PI2, to=△d based on the average polishing speed Q and the current polishing margin △d
/9 is performed to obtain the current polishing time tn, and in step P, the polishing operation is performed using the currently determined polishing time tn. Then, in step P8, the current finished thickness d is read, and in step P9, the polishing amount d is determined. seek,
In step PIQ, each data is stored cumulatively and the process moves to the next cycle. Therefore, as the polishing cycle increases, the consumption of the abrasive material increases.As shown in FIG. 4, as the polishing cycle increases, the polishing time tn is adjusted to correspond to the consumption of the abrasive material. , it can be gained as time gradually increases.

このように本実施例ては、二回目以降の研磨作業からは
、平均研磨速度を過去の各サイクルでの研磨ldnと研
磨時間t。どのそれぞれの累積(1fiD、、Tnに基
づいて求めていることにより、研磨サイクルの増加に伴
う研磨材の消耗の変化度合に対応した正確な研磨時間t
nを得ることか可使となり、仕上りウェハの厚みのばら
つきを低減でき、研磨精度を向上することができる。ま
た、研磨時間t。か各サイクルでのウェハの研磨しるに
対して得られるので、研磨ロスや研磨稼動ロスか減少し
、生産性の向上を図ることか可能となる。
In this way, in this embodiment, from the second and subsequent polishing operations, the average polishing speed is calculated based on the polishing ldn and polishing time t of each past cycle. Accurate polishing time t corresponding to the degree of change in wear of the abrasive material with increase in polishing cycles can be determined by calculating based on each accumulation (1fiD, , Tn).
By obtaining n, the wafer can be used, and variations in the thickness of finished wafers can be reduced, and polishing accuracy can be improved. Also, the polishing time t. Since the wafer is polished in each cycle, polishing loss and polishing operation loss are reduced, and productivity can be improved.

(発明の効果) 以上説明したように本発明によれば、半導体ウェハの研
磨時間を過去のサイクルの研磨量及び研磨時間のそれぞ
れの累積値に基づいて求めたことにより、ウェハの研磨
しろ及び研磨材の消耗変化度合に対応した研磨時間とし
て得ることかてき。
(Effects of the Invention) As explained above, according to the present invention, the polishing time of the semiconductor wafer is determined based on the respective cumulative values of the polishing amount and the polishing time of the past cycles, so that the wafer polishing margin and polishing time can be reduced. It can be obtained as a polishing time corresponding to the degree of wear and tear of the material.

その結果、仕上りウェハの研磨精度の向上及び生産性の
向上を図ることかてきる。
As a result, it is possible to improve the polishing accuracy of finished wafers and to improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示し、第1図
は研磨制御システムの概略図、第2図は制御装置のブロ
ック構成図、第3図は研磨制御処理の概略を示すフロー
チャート、第4図は研磨サイクルと研七時聞との関係を
示す図。 2・・・搬送装置    3・・・仕込み厚さ測定部5
・・・研磨量21   7・・・仕上り厚さ測定部8・
・・制御装置    9・・・入力装置do・・・目標
厚さ   d・・・仕上り厚さ△d・・・研磨しろ  
 マ・・・平均研磨速度dn、D、・・・研磨量及びそ
の累積値tn 、To・・・研磨時間及びその累積値特
許出願人 九州電子金属株式会社 (541j!3)
1 to 4 show an embodiment of the present invention, FIG. 1 is a schematic diagram of a polishing control system, FIG. 2 is a block diagram of a control device, and FIG. 3 is a schematic diagram of polishing control processing. Flowchart, FIG. 4 is a diagram showing the relationship between the polishing cycle and the polishing time. 2... Conveyance device 3... Preparation thickness measuring section 5
...Amount of polishing 21 7. Finished thickness measuring section 8.
...Control device 9...Input device do...Target thickness d...Finish thickness △d...Polish
Ma... Average polishing speed dn, D,... Polishing amount and its cumulative value tn, To... Polishing time and its cumulative value Patent applicant: Kyushu Electronic Metals Co., Ltd. (541j!3)

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェハの目標厚さ等のデータを入力する入力装置
と、搬送装置により搬送される半導体ウェハの仕込み厚
さを測定する仕込み厚さ測定部と、半導体ウェハを目標
厚さに研磨する研磨装置と、研磨後の半導体ウェハの仕
上り厚さを測定する仕上り厚さ測定部と、前記入力装置
のデータと仕込み厚さ測定部からの測定値とにより研磨
しろを演算して前記研磨装置を駆動制御する制御装置と
を備え、この制御装置により、各サイクルでの研磨量及
び研磨時間を順次累積し、これらの累積値に基づいて平
均研磨速度を演算し、この平均研磨速度と次回のサイク
ルでの半導体ウェハの研磨しろとに基づいて最適研磨時
間を演算し、この最適研磨時間に基づいて前記研磨装置
により次回のサイクルの半導体ウェハを研磨するように
した半導体ウェハの研磨制御システム。
An input device for inputting data such as a target thickness of a semiconductor wafer, a preparation thickness measuring section for measuring the preparation thickness of a semiconductor wafer transported by a transport device, and a polishing device for polishing a semiconductor wafer to a target thickness. , a finished thickness measuring section that measures the finished thickness of the semiconductor wafer after polishing, and a polishing margin calculated based on the data of the input device and the measurement value from the preparation thickness measuring section, and driving and controlling the polishing device. The control device sequentially accumulates the polishing amount and polishing time in each cycle, calculates the average polishing speed based on these accumulated values, and calculates the average polishing speed and the semiconductor polishing rate in the next cycle. A semiconductor wafer polishing control system that calculates an optimum polishing time based on a wafer polishing margin, and causes the polishing apparatus to polish a semiconductor wafer in the next cycle based on the optimum polishing time.
JP1701587A 1987-01-27 1987-01-27 Semiconductor wafer polishing controller Expired - Fee Related JPH07100297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1701587A JPH07100297B2 (en) 1987-01-27 1987-01-27 Semiconductor wafer polishing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1701587A JPH07100297B2 (en) 1987-01-27 1987-01-27 Semiconductor wafer polishing controller

Publications (2)

Publication Number Publication Date
JPS63185574A true JPS63185574A (en) 1988-08-01
JPH07100297B2 JPH07100297B2 (en) 1995-11-01

Family

ID=11932171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1701587A Expired - Fee Related JPH07100297B2 (en) 1987-01-27 1987-01-27 Semiconductor wafer polishing controller

Country Status (1)

Country Link
JP (1) JPH07100297B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695601A (en) * 1995-12-27 1997-12-09 Kabushiki Kaisha Toshiba Method for planarizing a semiconductor body by CMP method and an apparatus for manufacturing a semiconductor device using the method
WO2005004218A1 (en) * 2003-07-02 2005-01-13 Ebara Corporation Polishing apparatus and polishing method
JP2006066891A (en) * 2004-07-26 2006-03-09 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2007123687A (en) * 2005-10-31 2007-05-17 Tokyo Seimitsu Co Ltd Grinding method for underside of semiconductor wafer and grinding apparatus for semiconductor wafer
CN102049706A (en) * 2010-10-22 2011-05-11 厦门大学 Device for performing precise supercooled polishing to tiny spheres
WO2013031090A1 (en) * 2011-09-01 2013-03-07 信越半導体株式会社 Silicon wafer polishing method and polishing device
JP2020168701A (en) * 2019-04-05 2020-10-15 株式会社ディスコ Grinding device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004556B4 (en) * 2004-01-29 2008-12-24 Siltronic Ag Method for producing a semiconductor wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695601A (en) * 1995-12-27 1997-12-09 Kabushiki Kaisha Toshiba Method for planarizing a semiconductor body by CMP method and an apparatus for manufacturing a semiconductor device using the method
WO2005004218A1 (en) * 2003-07-02 2005-01-13 Ebara Corporation Polishing apparatus and polishing method
US8025759B2 (en) 2003-07-02 2011-09-27 Ebara Corporation Polishing apparatus and polishing method
US8398811B2 (en) 2003-07-02 2013-03-19 Ebara Corporation Polishing apparatus and polishing method
JP2006066891A (en) * 2004-07-26 2006-03-09 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2007123687A (en) * 2005-10-31 2007-05-17 Tokyo Seimitsu Co Ltd Grinding method for underside of semiconductor wafer and grinding apparatus for semiconductor wafer
CN102049706A (en) * 2010-10-22 2011-05-11 厦门大学 Device for performing precise supercooled polishing to tiny spheres
WO2013031090A1 (en) * 2011-09-01 2013-03-07 信越半導体株式会社 Silicon wafer polishing method and polishing device
JP2020168701A (en) * 2019-04-05 2020-10-15 株式会社ディスコ Grinding device

Also Published As

Publication number Publication date
JPH07100297B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
US6594542B1 (en) Method and system for controlling chemical mechanical polishing thickness removal
CN101549476B (en) Post-process sizing control device for grinding machine
EP0687526A1 (en) Polishing method and apparatus for automatic reduction of wafer taper in single-wafer polishing
JP3077656B2 (en) Method of correcting recipe in semiconductor manufacturing equipment
JPS63185574A (en) Polishing control system for semiconductor wafer
Hu et al. Application of run by run controller to the chemical-mechanical planarization process. II
JP2846881B2 (en) Numerically controlled grinding machine
JPS61226261A (en) Numerically controlled grinding machine
JPH0557562A (en) Gauge zero point compensation method in auto-sizing grinding
JP3102123B2 (en) Thermal displacement compensation method for machine tools
JP3809670B2 (en) Grinding machine and control method thereof
JP2002224954A (en) Control system for machine tool and its recording medium
JP2672640B2 (en) Dressing control method for grinding wheel
JP2002103202A (en) Polishing method and polishing device
JPH06335859A (en) Grinding device
JP3413938B2 (en) Grinding equipment
SU1024245A1 (en) Apparatus for grinding
JP3391856B2 (en) Work size control method and apparatus in grinding
JP2672644B2 (en) Dressing control method for grinding wheel
JP3120578B2 (en) Grinding equipment
JP2000015574A (en) Polishing system and finish control method
JPS62218060A (en) Device for grinding end surface of crank shaft
JPH02100858A (en) Control method for dimension of machine tool
JP3163792B2 (en) Numerical control grinding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees