JPH0768456A - Method for corrective grinding - Google Patents

Method for corrective grinding

Info

Publication number
JPH0768456A
JPH0768456A JP5219418A JP21941893A JPH0768456A JP H0768456 A JPH0768456 A JP H0768456A JP 5219418 A JP5219418 A JP 5219418A JP 21941893 A JP21941893 A JP 21941893A JP H0768456 A JPH0768456 A JP H0768456A
Authority
JP
Japan
Prior art keywords
polishing
amount
measurement
machine
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219418A
Other languages
Japanese (ja)
Inventor
Seido Koda
盛堂 幸田
Yoshihiko Ishida
佳彦 石田
Takashi Takebe
隆 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP5219418A priority Critical patent/JPH0768456A/en
Publication of JPH0768456A publication Critical patent/JPH0768456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for corrective grinding where the grinding and of a unsymmetrical, highly precise die, a non-spherical lens or the like can be automated with high precision. CONSTITUTION:A self-copying grinding device 1 and an automatic measuring instrument 2 are provided on a spindle head 4 of an NC machine tool to be controlled by a control device 3 to execute the measurement and the corrective grinding of the surface of a work, and during the measurement, the moving error and the thermal drift of the machine is corrected, and at the same time, the real grinding quantity per pass is monitored from the results of measurement, the following grinding quantity is presumed thereby, the number of the following grinding is set, and the correction factor is introduced to prevent the overshoot due to the variance of the grinding quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軸対称でない高精度の
精密金型や非球面レンズ等の研磨加工を自動化・高精度
化し得る修正研磨加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a correction polishing method capable of automating and highly precise polishing of a precision metal mold, aspherical lens or the like having high precision which is not axially symmetric.

【0002】[0002]

【従来の技術】従来、軸対称の非球面レンズについて
は、主軸回転型(旋盤タイプ)の超精密加工機によって
自動加工が可能な技術レベルにある。しかしながら、軸
対称でない非球面の場合には、上記の加工機では加工不
可能であり、このため3次元測定機による計測と、その
計測結果にもとずいて人手による手仕上げ研磨が行なわ
れている。
2. Description of the Related Art Conventionally, an axially symmetric aspherical lens is at a technical level capable of being automatically processed by a spindle rotating type (lathe type) ultra-precision processing machine. However, in the case of an aspherical surface which is not axially symmetric, it cannot be processed by the above-mentioned processing machine, and therefore, the measurement by the three-dimensional measuring machine and the manual finish polishing based on the measurement result are performed. There is.

【0003】[0003]

【発明が解決しようとする課題】軸対称でない非球面レ
ンズの研磨加工は、従来、研磨作業そのものが、手作業
に依存しているため研磨量(研磨深さ)が一定せず、こ
のため計測作業及び手仕上げによる研磨作業を何回も繰
り返すことによって、はじめて所定の最終形状を得てい
る。これら一連の工程は極めて煩雑、かつ根気のいる作
業であり、それだけ非能率的な加工法であり、自動化が
切望されていた。
In the polishing process of aspherical lenses which are not axially symmetric, the polishing amount itself (polishing depth) is not constant because the polishing process itself is dependent on manual work. The predetermined final shape is obtained for the first time by repeating the work and the polishing work by hand finishing many times. These series of steps are extremely complicated and patient work, which is an inefficient processing method, and automation has long been desired.

【0004】そこで、本発明は、軸対称でない高精度の
精密金型や非球面レンズ等の研磨加工を自動化・高精度
化し得る修正研磨加工方法を提供することを目的として
いる。
Therefore, it is an object of the present invention to provide a modified polishing method capable of automating and improving the precision of precision dies and aspherical lenses having high precision which are not axially symmetric.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、数値制御及び倣い制御装置により動作制
御される自己倣い研磨装置に自動計測装置を設置し、主
軸回転数、送り速度、研磨圧、ピック量、研磨工具、砥
粒の種類、1パス当りの研磨量、目標形状を予め制御装
置内に格納し、工作物の表面の研磨領域を格子状に分割
し、各格子点に対応する機械の移動誤差(平面度)を予
め測定して機械誤差マップを作りこれを制御装置内に記
憶させておき、加工に先立って各格子点を自動計測装置
で計測し、当該格子点毎の目標形状に対する偏差を求
め、この偏差を予め格納してある機械誤差マップ上の当
該格子点に対応する機械の移動誤差で補正させ、かつ、
計測の都度、任意の位置の計測値の差から熱ドリフト補
正を行なわせ、これに修正係数を積算して次回の研磨量
とし、この研磨量を1パス当りの研磨量で除算して研磨
回数(繰り返しパス回数)を求め、この研磨回数に基い
て当該各格子点を含む領域の修正研磨加工を行い、この
加工終了後、再度計測して目標形状に対する偏差を求
め、この偏差を機械の移動誤差補正及び熱ドリフト補正
を行なわせ、これと共に計測結果から1パス当りの実研
磨量を監視し、この実研磨量から次回の研磨量を推定す
ると共に研磨回数を前記と同様に求めて加工を行なわ
せ、これを上記偏差が予め設定した許容値以下になるま
で反復するようにしたものである。
In order to achieve the above object, the present invention is to install an automatic measuring device in a self-profiling polishing device whose operation is controlled by a numerical control and a copying control device, and to set a spindle rotation speed, a feed speed, The polishing pressure, pick amount, polishing tool, abrasive grain type, polishing amount per pass, and target shape are stored in advance in the control device, and the polishing area on the surface of the workpiece is divided into grids, and each grid point The movement error (flatness) of the corresponding machine is measured in advance and a machine error map is created and stored in the control device. Prior to machining, each grid point is measured by the automatic measuring device, and each grid point is measured. The deviation from the target shape is corrected, and the deviation is corrected by the movement error of the machine corresponding to the grid point on the machine error map stored in advance, and
Each time measurement is performed, thermal drift correction is performed based on the difference between the measured values at arbitrary positions, the correction coefficient is added to this to make the next polishing amount, and this polishing amount is divided by the polishing amount per pass to obtain the number of polishing times. Obtain the (number of repeated passes), perform the corrective polishing process on the area including each grid point based on this polishing number, and after the completion of this process, measure again to find the deviation from the target shape, and move this deviation to the machine movement. Perform the error correction and the thermal drift correction, monitor the actual polishing amount per pass from the measurement result together with this, estimate the next polishing amount from this actual polishing amount, and calculate the number of polishing in the same manner as described above. This is performed and this is repeated until the deviation becomes equal to or less than a preset allowable value.

【0006】[0006]

【作用】本発明は、機械の移動誤差補正及び熱ドリフト
補正を自動化することができ、かつ、計測結果から1パ
ス当りの実研磨量を監視し、この実研磨量から次回の研
磨回数を設定すると同時に、修正係数を導入したことに
より、磨き過ぎによるオーバシュートを防止することが
できる。
According to the present invention, the machine movement error correction and the thermal drift correction can be automated, and the actual polishing amount per pass is monitored from the measurement result, and the next polishing number is set from this actual polishing amount. At the same time, by introducing the correction coefficient, it is possible to prevent overshoot due to excessive polishing.

【0007】[0007]

【実施例】図1は非球面レンズの表面研磨方法の説明図
であって、非球面レンズの目標形状f(x,y)は理論
的に算出されており、研磨領域を図1に示すようにxy
平面内で格子状に分割し、前加工面形状g0(x,y)
と目標形状f(x,y)との偏差h(x,y)を各格子
点毎に自動計測装置により測定する。
EXAMPLE FIG. 1 is an explanatory view of a surface polishing method for an aspherical lens, in which a target shape f (x, y) of the aspherical lens is theoretically calculated, and the polishing area is as shown in FIG. To xy
Pre-processed surface shape g 0 (x, y) by dividing into a grid in the plane
The deviation h (x, y) between the target shape f (x, y) and the target shape f (x, y) is measured by an automatic measuring device for each grid point.

【0008】図2は、本発明の方法を実施する装置の要
部概略説明図であって、制御装置(3)により動作制御
される自己倣い研磨装置(1)に自動計測装置(2)を
設置している。自己倣い研磨装置(1)は、エアモータ
等の駆動手段を内蔵し、先端に研磨工具(1a)を装着
した回転主軸(1b)を回転可能に支持する1軸定圧自
己倣い研磨ヘッド(1c)をNC工作機械(以下、単に
機械と称す。)の主軸頭(4)に装着している。この自
己倣い研磨ヘッド(1c)は、特公平4−48578号
公報に記載のものを使用するのが望ましい。この特公平
4−48578号公報に記載の自己倣い研磨ヘッドは、
回転主軸をXYZ軸方向に弾性変位可能に支持した状態
で機械の主軸頭に装着し、研磨工具を加工物表面に一定
圧力で押圧し、機械の主軸頭を倣い動作させ、研磨工具
と加工物との接触による回転主軸のXYZ軸方向の弾性
変位量を検出し、この検出変位量の合成値が一定値とな
るように上記機械の主軸頭の倣い動作を制御して加工物
表面を定圧研磨するものである。
FIG. 2 is a schematic explanatory view of an essential part of an apparatus for carrying out the method of the present invention. An automatic measuring apparatus (2) is attached to a self-copy polishing apparatus (1) whose operation is controlled by a control apparatus (3). It is installed. The self-profiling polishing device (1) includes a uniaxial constant-pressure self-profiling polishing head (1c), which has a driving means such as an air motor built therein and rotatably supports a rotating spindle (1b) having a polishing tool (1a) mounted at its tip. It is mounted on the spindle head (4) of an NC machine tool (hereinafter simply referred to as a machine). It is desirable to use the self-copying polishing head (1c) described in Japanese Patent Publication No. 4-48578. The self-profiling polishing head disclosed in Japanese Patent Publication No. 4-48578 is
It is attached to the spindle head of the machine while the rotating spindle is supported so that it can be elastically displaced in the XYZ directions, the polishing tool is pressed against the surface of the workpiece with a constant pressure, and the spindle head of the machine is made to follow the movement. The amount of elastic displacement of the rotating spindle in the XYZ axis directions due to contact with the workpiece is detected, and the copying operation of the spindle head of the machine is controlled so that the combined value of the detected displacements becomes a constant value, and the surface of the workpiece is ground under constant pressure. To do.

【0009】自動計測装置(2)は、リトラクト機能
(上下退避動作)付き計測ヘッド(2a)が主軸頭
(4)に取り付けられており、パソコン等の制御装置
(3)により自動的に計測が行われる。即ち、自動計測
装置(2)の計測動作は、図2に示すように2段に伸縮
動作し、計測工程において先ず計測ヘッド(2a)が下
降して計測ヘッド(2a)の位置決めを行い、計測位置
毎に測定子(2b)がリトラクトシリンダにより下降
し、工作物の表面位置を適当な変位センサにより測定す
る構成となっている。この構成によれば、計測時に機械
の移動が伴わないので測定誤差を極小化できる。上記リ
トラクトストロークは、例えば、100mmとされる。
In the automatic measuring device (2), a measuring head (2a) with a retract function (up and down retracting operation) is attached to the spindle head (4), and measurement is automatically performed by a control device (3) such as a personal computer. Done. That is, the measurement operation of the automatic measuring device (2) expands / contracts in two stages as shown in FIG. 2, and the measurement head (2a) is first lowered to position the measurement head (2a) in the measurement process. The probe (2b) is lowered by the retract cylinder at each position, and the surface position of the workpiece is measured by an appropriate displacement sensor. According to this configuration, since the machine does not move during measurement, the measurement error can be minimized. The retract stroke is, for example, 100 mm.

【0010】図3は本発明の修正研磨加工フローを示し
ている。修正研磨による研磨量の制御方法としては、
研磨回数制御、滞留時間(倣い速度)制御、研磨圧
可変制御及び研磨条件(ピック量の設定)の変更など
により可能であるが、本発明では表面性状を均一化する
ため研磨回数制御による方法を採用している。ここで
特徴的なのは、(a)機械の移動精度及び測定の際の熱
ドリフト補正を自動化したこと、(b)計測結果から1
パス当りの実研磨量を監視し、これから次回の研磨回数
を設定すると同時に、研磨量のバラツキによるオーバシ
ュートを防止するため修正係数αを導入したことが挙げ
られる。
FIG. 3 shows a correction polishing processing flow of the present invention. As a control method of the polishing amount by the correction polishing,
This can be achieved by controlling the number of polishing operations, controlling the residence time (scanning speed), varying the polishing pressure, and changing the polishing conditions (setting the pick amount). In the present invention, however, a method of controlling the number of polishing operations is used to make the surface properties uniform. It is adopted. What is characteristic here is that (a) the movement accuracy of the machine and the thermal drift correction at the time of measurement are automated, and (b) 1 from the measurement results.
It can be mentioned that the actual polishing amount per pass is monitored and the next polishing number is set, and at the same time, the correction coefficient α is introduced in order to prevent overshoot due to variation in the polishing amount.

【0011】以下、図3のフローに従って具体的に説明
する。オン・ザ・マシン計測精度には、機械の移動精度
が直接影響することになる。本発明では機械の移動誤差
(平面度)を図1の各格子点に対応して予め測定してお
き、これをもとに機械の移動誤差マップを制御装置
(3)内に記憶させておくと同時に、計測の際の温度変
動による熱ドリフトに対しては、直線補間による補正機
能を付加している。
A detailed description will be given below according to the flow of FIG. On-the-machine measurement accuracy is directly affected by machine movement accuracy. In the present invention, the movement error (flatness) of the machine is measured in advance corresponding to each grid point in FIG. 1, and the movement error map of the machine is stored in the controller (3) based on this. At the same time, a correction function by linear interpolation is added to the thermal drift due to the temperature fluctuation during measurement.

【0012】計測用変位センサによる生の計測データで
は、測定精度に問題を生じる可能性がある。即ち、測定
精度に及ぼす誤差要因として、以下の3項目を考慮する
必要がある。 (1)計測器の測定精度 (2)機械の移動精度(幾何学的誤差):g(x) (3)機械の熱変位(熱ドリフト) :t(x)
Raw measurement data from the measurement displacement sensor may cause a problem in measurement accuracy. That is, it is necessary to consider the following three items as error factors that affect the measurement accuracy. (1) Measuring accuracy of measuring instrument (2) Moving accuracy of machine (geometrical error): g (x) (3) Thermal displacement of machine (thermal drift): t (x)

【0013】ここで、本発明は、変位センサとしてディ
ジタル・リニアスケール(分解能0.1μm)を用いて
いるため、(1)の計測器の測定誤差は無視でき、
(2)、(3)項の誤差をキャンセルする計測方法を採
用している。
Since the present invention uses the digital linear scale (resolution 0.1 μm) as the displacement sensor, the measurement error of the measuring instrument of (1) can be ignored,
The measurement method that cancels the errors in the items (2) and (3) is adopted.

【0014】図4において、真の形状f(x)に対し、
実際に測定される数値は、幾何学的誤差g(x)と熱ド
リフトt(x)が加え合わされたもの、即ち、{f
(x)+g(x)+t(x)}となる。このため、予め
幾何学的誤差g(x)を測定し、誤差マップとして制御
装置(3)内に格納しておき、計測時にg(x)相当分
の誤差補正を行う。
In FIG. 4, for the true shape f (x),
The actually measured value is the sum of the geometric error g (x) and the thermal drift t (x), that is, {f
(X) + g (x) + t (x)}. Therefore, the geometrical error g (x) is measured in advance, stored as an error map in the control device (3), and the error corresponding to g (x) is corrected at the time of measurement.

【0015】熱ドリフトt(x)については、計測時に
始点と終点の差、実際には始点→終点→始点と各格子点
毎に順次測定し、第1回目と第2回目の同一測定点(始
点)における計測値の差から、トレンド補正(直線補間
による補正)を行うことにより補正が可能となる(一種
のマスタリング機能に相当)。なお、熱ドリフトt
(x)については、図5の上側に実際に測定したデータ
を示しているように、ほぼ直線で近似できることが確認
されている。 その他、信頼性向上のため以下の対策を
講じている。 (1)同一測定点で2回のデータ取込を行う。 2回の測定値の差が例えば2μm以内であれば、OKと
判断し次の測定に移る。 (2)過大/過小変位の設定 測定値の上下限を設定し、過大/過小測定値の場合に
は、異常と判断する。
Regarding the thermal drift t (x), the difference between the start point and the end point at the time of measurement, actually, the start point → the end point → the start point, is sequentially measured for each grid point, and the first and second same measurement points ( It becomes possible to perform correction by performing trend correction (correction by linear interpolation) from the difference between the measured values at the (start point) (corresponding to a kind of mastering function). Note that the thermal drift t
It has been confirmed that (x) can be approximated by a substantially straight line as shown in the actually measured data on the upper side of FIG. In addition, the following measures are taken to improve reliability. (1) Data is captured twice at the same measurement point. If the difference between the two measured values is within 2 μm, for example, it is determined to be OK and the next measurement is performed. (2) Over / Under Displacement Setting Set the upper and lower limits of the measured value, and if it is over / under measured value, judge as abnormal.

【0016】図5は機械の移動誤差(平面度)及び熱ド
リフトを工作物取り付け面で測定した結果で、機械のX
Y面内平面度誤差は約14μm、温度変動幅1.8℃で
約17μmの熱ドリフトが発生している。これに対し、
機械精度補正及び熱ドリフト補正を行うことにより図5
の下側に示しているように、0.6μmの補正精度が得
られているのがわかる。測定精度は以上の方法により十
分な精度が保証し得ることが明らかになったので、以下
に本発明の修正研磨方法について説明する。
FIG. 5 shows the results of measuring the movement error (flatness) and thermal drift of the machine on the workpiece mounting surface.
The in-plane flatness error is about 14 μm, and a thermal drift of about 17 μm occurs at a temperature fluctuation width of 1.8 ° C. In contrast,
By performing the mechanical accuracy correction and the thermal drift correction, FIG.
As shown in the lower side of the figure, it can be seen that the correction accuracy of 0.6 μm is obtained. Since it has been clarified that sufficient accuracy of measurement can be guaranteed by the above method, the correction polishing method of the present invention will be described below.

【0017】一度、理想形状との偏差が求められれば、
偏差に対応した誤差量だけ研磨加工で追い込めば所定の
形状に仕上げることが原理的に可能である。しかしなが
ら、現実には研磨工具(1a)の研磨特性(研磨量)は
研磨条件や工具寿命により時々刻々変化することが経験
的に知られている。このため、研磨量を常に一定値とし
て扱った場合には、いつまでも理想形状に収束しない、
または収束に時間がかかるといった不具合が生じること
になる。このため、研磨加工直前の研磨量を測定し、こ
れから次回の研磨量を推定して、より実際に近い研磨量
にその都度修正する方法(一種の学習制御に相当する)
を採用している。
Once the deviation from the ideal shape is obtained,
In principle, it is possible to finish into a predetermined shape by pushing in the amount of error corresponding to the deviation by polishing. However, in reality, it is empirically known that the polishing characteristics (polishing amount) of the polishing tool (1a) change from moment to moment depending on the polishing conditions and tool life. Therefore, when the polishing amount is always treated as a constant value, it does not converge to the ideal shape forever.
Alternatively, a problem that convergence takes time occurs. Therefore, a method of measuring the polishing amount immediately before polishing, estimating the next polishing amount from this, and correcting each time to a polishing amount that is closer to the actual polishing amount (corresponding to a kind of learning control)
Has been adopted.

【0018】1パスの研磨量は主軸回転数、送り速度、
研磨圧、ピック量、研磨工具、砥粒の種類により変化す
るが、ある条件下での1パス当りの研磨量dは実験によ
り予め求められており、制御装置(3)内にデータとし
て格納されているものとする。
The polishing amount for one pass is determined by the spindle speed, feed rate,
Although it varies depending on the polishing pressure, the pick amount, the polishing tool, and the type of abrasive grains, the polishing amount d per pass under a certain condition is obtained in advance by experiments and is stored as data in the control device (3). It is assumed that

【0019】そこで、n回の計測・修正研磨の繰り返し
で所定の形状に仕上げる場合(図1参照)を想定する
と、第1回、2、3・・第n回目(但し、一般的にn≧
3)までの任意の点P(x,y)を中心とする研磨領域
(正方形もしくは円形領域)内での研磨パス回数Ni及
び1パス当りの研磨量diは次のようになる。 第1回目 N1 (x,y)={g0 (x,y)−f (x,y)}/nd 1パス当りの研磨量 d1={g0 (x,y)−g1 (x,y)}
/N1 第2回目 N2 (x,y)={g1 (x,y)−f (x,y)}/nd
1 1パス当りの研磨量 d2={g1 (x,y)−g2 (x,y)}
/N2 第3回目 N3 (x,y)={g2 (x,y)−f (x,y)}/nd
2 1パス当りの研磨量 d3={g2 (x,y)−g3 (x,y)}
/N3 ・ ・ ・ ・ ・ ・ 1パス当りの研磨量 dn-1={gn-2 (x,y)−gn-1
(x,y)}/Nn-1 第n回目 Nn (x,y)={gn-1 (x,y)
−f (x,y)}/ndn-1
Therefore, assuming that a predetermined shape is finished by repeating measurement and correction polishing n times (see FIG. 1), the first, second, third, ..., Nth times (however, generally, n ≧
The number Ni of polishing passes and the polishing amount di per pass in the polishing region (square or circular region) centered on any point P (x, y) up to 3) are as follows. The first N 1 (x, y) = {g 0 (x, y) -f (x, y)} / nd 1 per pass polishing amount d 1 = {g 0 (x , y) -g 1 ( x, y)}
/ N 1 2nd time N 2 (x, y) = {g 1 (x, y) −f (x, y)} / nd
1 polishing amount per one pass d 2 = {g 1 (x , y) -g 2 (x, y)}
/ N 2 3rd time N 3 (x, y) = {g 2 (x, y) −f (x, y)} / nd
Polishing amount per 2 1 pass d 3 = {g 2 (x , y) -g 3 (x, y)}
/ N 3 ······· Polishing amount per pass d n-1 = {g n-2 (x, y) −g n-1
(x, y)} / N n-1 nth time N n (x, y) = {g n-1 (x, y)
-F (x, y)} / nd n-1

【0020】即ち、予め求められている1パス当りの研
磨量dを用いて、最後まで定数として研磨パス数Ni
算出するのではなく、常に前回の実研磨量di-1を監視
し、これをもとに研磨パス数Niを修正する方式を採用
する。この方法によれば、研磨工具(1a)の微妙な変
化による研磨量の変動を取り除くことが可能となり、し
かも実験で求める研磨量dがラフな設定値でよいことに
なり、極めて好都合である。そして、計測結果が次の条
件を満足するとき、 ┃gi(x,y)−f(x,y)┃≦ε 即ち、予め設定した許容値ε以下になれば加工完了と判
断し、その測定点の研磨はスキップする。全測定点が上
記の条件を満足するとき、すべての加工が完了したこと
になる。
That is, instead of calculating the number of polishing passes N i as a constant until the end by using the previously determined polishing amount d per pass, the previous actual polishing amount d i-1 is constantly monitored. A method of correcting the polishing pass number N i based on this is adopted. According to this method, fluctuations in the polishing amount due to subtle changes in the polishing tool (1a) can be eliminated, and the polishing amount d obtained in the experiment can be a rough set value, which is extremely convenient. When the measurement results satisfy the following conditions: ┃gi (x, y) -f (x, y) ┃ ≦ ε That is, if the preset allowable value ε or less, it is judged that the machining is completed and the measurement is performed. Skip point polishing. When all the measurement points satisfy the above conditions, all processing is completed.

【0021】なお、研磨能率を向上させるには、全研磨
量をn等分するのではなく、N1、N2・・Nnと研磨回
数が増加するに従い、1回当りの研磨量を1/2、1/4、1/8
と等比級数的に減少させていくのが加工能率及び磨き過
ぎの防止の観点から得策である。即ち、偏差量に相当す
る誤差量をそのまま100%追い込むのは、磨き過ぎに
よるオーバシュートを発生する危険があり、このため修
正係数αを導入している。
In order to improve the polishing efficiency, the total polishing amount is not divided into n equal parts, but the polishing amount per time is 1 as N 1 , N 2 ... N n increases. / 2, 1/4, 1/8
It is a good idea from the viewpoint of machining efficiency and prevention of over-polishing to reduce it in geometric progression. That is, if the error amount corresponding to the deviation amount is driven in 100% as it is, there is a risk of overshoot due to overpolishing. Therefore, the correction coefficient α is introduced.

【0022】以上の方法による形状偏差の変化例を図6
に示している。研磨回数と共に断面形状が目標形状に近
くなり、研磨回数7回で許容値に達しているが、修正係
数をα=1としたために右下部でオーバシュートによる
磨き過ぎが発生している。図7は、修正係数を変化させ
た場合の形状誤差の残差平方和及び1回当りの研磨量の
変化を示したもので、図7から研磨量は時間と共に変動
しているが、その都度自動的に前回の研磨量を学習して
修正されている。なお形状偏差量100%をそのまま追
い込むのは危険であり、これを修正係数で回避すること
が有効であることがわかる。当然のことながら修正係数
値が大きいほど速く収束するわけで、学習機能を用いて
最短時間で研磨加工を行うことが可能である。また1パ
ス当りの研磨量を小さく、即ち最小分解能を上げること
により0.1μm単位の形状精度の制御も可能である。
An example of changes in the shape deviation by the above method is shown in FIG.
Is shown in. The cross-sectional shape became closer to the target shape with the number of times of polishing, and reached the allowable value after 7 times of polishing, but overcorrection due to overshoot occurred in the lower right portion because the correction coefficient was set to α = 1. FIG. 7 shows the residual sum of squares of the shape error and the change in the polishing amount per time when the correction coefficient is changed. From FIG. 7, the polishing amount changes with time. It is automatically corrected by learning the previous polishing amount. Note that it is dangerous to keep the shape deviation amount of 100% as it is, and it is effective to avoid this with a correction coefficient. As a matter of course, the larger the correction coefficient value, the faster the convergence, and thus the polishing function can be used in the shortest time by using the learning function. Further, it is possible to control the shape accuracy in units of 0.1 μm by reducing the polishing amount per pass, that is, by increasing the minimum resolution.

【0023】[0023]

【発明の効果】従来、軸対称でない高精度の精密金型や
非球面レンズなどの研磨加工においては、主軸回転型の
超精密加工機などが使用できず、このため3次元測定機
による計測と、その計測結果にもとずいて人手による手
仕上げ研磨が行われていたが、本発明によれば、自己倣
い研磨装置に自動計測装置を設置し、上記の計測及び修
正研磨加工を含めた一連の作業の自動化・無人化を図る
ことができ、この種研磨加工の自動化・高精度化を可能
とできる。
EFFECTS OF THE INVENTION Conventionally, in the polishing processing of high precision precision molds and aspherical lenses which are not axially symmetric, a spindle rotating type super precision processing machine or the like cannot be used. According to the present invention, an automatic measuring device is installed in a self-copying polishing device, and a series of processes including the above-mentioned measurement and correction polishing process are performed. The work can be automated and unmanned, and this type of polishing process can be automated and highly accurate.

【図面の簡単な説明】[Brief description of drawings]

【図1】非球面レンズの表面研磨方法の説明図。FIG. 1 is an explanatory diagram of a surface polishing method for an aspherical lens.

【図2】本発明の方法を実施する装置の要部概略説明
図。
FIG. 2 is a schematic explanatory view of a main part of an apparatus for carrying out the method of the present invention.

【図3】本発明の修正研磨加工方法のフロー図。FIG. 3 is a flow chart of a correction polishing processing method of the present invention.

【図4】計測誤差の説明図。FIG. 4 is an explanatory diagram of measurement error.

【図5】異なる室温におけるX方向位置での加工物の表
面形状測定値及び機械精度補正と熱ドリフト補正の説明
図。
FIG. 5 is an explanatory diagram of surface shape measurement values of a workpiece at different room temperature X-direction positions and mechanical accuracy correction and thermal drift correction.

【図6】研磨回数と加工物の研磨断面形状の変化を示す
説明図。
FIG. 6 is an explanatory view showing changes in the number of times of polishing and the polishing cross-sectional shape of a workpiece.

【図7】各種の修正係数における残差平方和と1パス当
りの研磨量の変化を示す説明図。
FIG. 7 is an explanatory diagram showing changes in the residual sum of squares and the polishing amount per pass for various correction coefficients.

【符号の説明】[Explanation of symbols]

1 自己倣い研磨装置 2 自動計測装置 3 制御装置 4 NC工作機械の主軸頭 5 表示器 1 Self-copying polishing device 2 Automatic measuring device 3 Control device 4 NC machine tool spindle head 5 Indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 数値制御及び倣い制御装置により動作制
御される自己倣い研磨装置に自動計測装置を設置し、主
軸回転数、送り速度、研磨圧、ピック量、研磨工具、砥
粒の種類、1パス当りの研磨量、目標形状を予め制御装
置内に格納し、工作物の表面の研磨領域を格子状に分割
し、各格子点に対応する機械の移動誤差(平面度)を予
め測定して機械誤差マップを作りこれを制御装置内に記
憶させておき、加工に先立って各格子点を自動計測装置
で計測し、当該格子点毎の目標形状に対する偏差を求
め、この偏差を予め格納してある機械誤差マップ上の当
該格子点に対応する機械の移動誤差で補正させ、かつ、
計測の都度、任意の位置の計測値の差から熱ドリフト補
正を行なわせ、これに修正係数を積算して次回の研磨量
とし、この研磨量を1パス当りの研磨量で除算して研磨
回数(繰り返しパス回数)を求め、この研磨回数に基い
て当該各格子点を含む領域の修正研磨加工を行い、この
加工終了後、再度計測して目標形状に対する偏差を求
め、この偏差を機械の移動誤差補正及び熱ドリフト補正
を行なわせ、これと共に計測結果から1パス当りの実研
磨量を監視し、この実研磨量から次回の研磨量を推定す
ると共に研磨回数を前記と同様に求めて加工を行なわ
せ、これを上記偏差が予め設定した許容値以下になるま
で反復することを特徴とする修正研磨加工方法。
1. An automatic measuring device is installed in a self-copying polishing device whose operation is controlled by a numerical control and a copying control device, and the spindle rotation speed, feed rate, polishing pressure, pick amount, polishing tool, abrasive grain type, 1 The amount of polishing per pass and the target shape are stored in advance in the controller, the polishing area on the surface of the workpiece is divided into a grid, and the movement error (flatness) of the machine corresponding to each grid point is measured in advance. A machine error map is created and stored in the control device, each grid point is measured with an automatic measuring device prior to machining, the deviation from the target shape for each grid point is calculated, and this deviation is stored in advance. It is corrected by the movement error of the machine corresponding to the lattice point on a certain machine error map, and
Each time measurement is performed, thermal drift correction is performed based on the difference between the measured values at arbitrary positions, the correction coefficient is added to this to make the next polishing amount, and this polishing amount is divided by the polishing amount per pass to obtain the number of polishing times. Obtain the (number of repeated passes), perform the corrective polishing process on the area including each grid point based on this polishing number, and after the completion of this process, measure again to find the deviation from the target shape, and move this deviation to the machine movement. Perform the error correction and the thermal drift correction, monitor the actual polishing amount per pass from the measurement result together with this, estimate the next polishing amount from this actual polishing amount, and calculate the number of polishing in the same manner as described above. A method of correcting polishing, characterized in that it is carried out and is repeated until the deviation becomes equal to or less than a preset allowable value.
JP5219418A 1993-09-03 1993-09-03 Method for corrective grinding Pending JPH0768456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219418A JPH0768456A (en) 1993-09-03 1993-09-03 Method for corrective grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219418A JPH0768456A (en) 1993-09-03 1993-09-03 Method for corrective grinding

Publications (1)

Publication Number Publication Date
JPH0768456A true JPH0768456A (en) 1995-03-14

Family

ID=16735087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219418A Pending JPH0768456A (en) 1993-09-03 1993-09-03 Method for corrective grinding

Country Status (1)

Country Link
JP (1) JPH0768456A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889112B2 (en) 2001-03-23 2005-05-03 Ricoh Company, Ltd. Method for processing surface and apparatus for processing same
US7164964B2 (en) 2004-02-10 2007-01-16 Carl Zeiss Smt Ag Method for producing an aspherical optical element
JP2010105063A (en) * 2008-10-28 2010-05-13 Fanuc Ltd Method for measuring workpiece dimensions using onboard measuring device for temperature drift correction, and machine tool including the onboard measuring device
JP2010115779A (en) * 2002-08-06 2010-05-27 Qed Technologies Internatl Inc Uniform thin film produced by magnetorheological finishing
JP2018144207A (en) * 2017-03-08 2018-09-20 ファナック株式会社 Finish machining load prospecting apparatus and machine learning apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889112B2 (en) 2001-03-23 2005-05-03 Ricoh Company, Ltd. Method for processing surface and apparatus for processing same
JP2010115779A (en) * 2002-08-06 2010-05-27 Qed Technologies Internatl Inc Uniform thin film produced by magnetorheological finishing
US7164964B2 (en) 2004-02-10 2007-01-16 Carl Zeiss Smt Ag Method for producing an aspherical optical element
JP2010105063A (en) * 2008-10-28 2010-05-13 Fanuc Ltd Method for measuring workpiece dimensions using onboard measuring device for temperature drift correction, and machine tool including the onboard measuring device
JP2018144207A (en) * 2017-03-08 2018-09-20 ファナック株式会社 Finish machining load prospecting apparatus and machine learning apparatus
US10921789B2 (en) 2017-03-08 2021-02-16 Fanuc Corporation Finish-machining amount prediction apparatus and machine learning device

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
US6302764B1 (en) Process and device for dressing high-speed grinding worms
JP7305945B2 (en) Machine Tools
US20200033842A1 (en) Grinding quality estimation model generating device, grinding quality estimating device, poor quality factor estimating device, grinding machine operation command data adjustment model generating device, and grinding machine operation command data updating device
WO1998014306A1 (en) A method and system for controlling chemical mechanical polishing thickness removal
US7664565B2 (en) Method for compensating wear of a finishing tool
CN104476398B (en) NC horizontal spindle surface grinding machine abrasion of grinding wheel dynamic compensation method
JPH04250965A (en) Method for circumferentially cutting radially non-circular work
CN1453103A (en) In-situ trimming method for shaping abrasive wheel
CN111496668A (en) Polishing apparatus and dressing method for polishing member
RU2598412C2 (en) Method of making part by forging
JPH0768456A (en) Method for corrective grinding
JPH0767692B2 (en) Cutting method of slicing machine
CN114274047B (en) Efficient precise polishing track optimization method based on force sensing measurement
JP6675548B2 (en) NC grinding apparatus and workpiece grinding method
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JPH08141883A (en) Method for correcting thermal displacement of machine tool
JPH0557562A (en) Gauge zero point compensation method in auto-sizing grinding
JP2003205459A (en) Polishing machining device and method
JP3205827B2 (en) Processing data creation device for non-circular workpieces
JP3809670B2 (en) Grinding machine and control method thereof
JP4581858B2 (en) Machine tool controller that reciprocates the tool in synchronization with the rotation of the spindle
JP2003053664A (en) Machine tool and machining method
CN108255130B (en) Control method for M value of gear grinding machine tool
JPH0436829B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011001