JPH0557019B2 - - Google Patents
Info
- Publication number
- JPH0557019B2 JPH0557019B2 JP58075418A JP7541883A JPH0557019B2 JP H0557019 B2 JPH0557019 B2 JP H0557019B2 JP 58075418 A JP58075418 A JP 58075418A JP 7541883 A JP7541883 A JP 7541883A JP H0557019 B2 JPH0557019 B2 JP H0557019B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- pressure
- graphite
- temperature
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010432 diamond Substances 0.000 claims description 91
- 229910003460 diamond Inorganic materials 0.000 claims description 81
- 230000004907 flux Effects 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 27
- 229910002804 graphite Inorganic materials 0.000 claims description 25
- 239000010439 graphite Substances 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 21
- 239000003575 carbonaceous material Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 230000006911 nucleation Effects 0.000 description 9
- 238000010899 nucleation Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 229910021383 artificial graphite Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000002269 spontaneous effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- -1 and among these Chemical compound 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/061—Graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/068—Crystal growth
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は、炭素質物質とダイヤモンド合成用金
属物質及び種子用ダイヤモンド粒子からダイヤモ
ンド結晶を製造する方法に係り、特に炭素質物質
より直接にダイヤモンドの自発核形成を抑制しな
がら種子用ダイヤモンド粒子を成長させるダイヤ
モンド結晶の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diamond crystals from a carbonaceous material, a metal material for diamond synthesis, and diamond particles for seeds, and in particular, a method for directly suppressing the spontaneous nucleation of diamond from the carbonaceous material. The present invention relates to a method for producing diamond crystals for growing diamond grains for seeds.
ダイヤモンド結晶を製造する方法は近年多数提
案されており、一般に出発原料として添加物の無
い多結晶である人工黒鉛が用いられ、この人工黒
鉛からダイヤモンドへの変換を経済的な温度及び
圧力条件で進行させるためにダイヤモンド合成用
金属物質を共存させることが必要とされている。
このダイヤモンド合成用金属物質は、鉄族又は白
金族(周期律表の第a族)元素及びそれらを含
む合金が多用されており、超高圧高温下ではこの
ダイヤモンド合成用金属物質が炭素の共存下で触
解して炭素に対する溶媒として作用するものと理
解されている。 Many methods for producing diamond crystals have been proposed in recent years, and generally artificial graphite, which is polycrystalline without additives, is used as a starting material, and the conversion of this artificial graphite to diamond is carried out under economical temperature and pressure conditions. In order to achieve this, it is necessary to coexist with a metal substance for diamond synthesis.
This metal material for diamond synthesis often uses iron group or platinum group (group a of the periodic table) elements and alloys containing them. It is understood that carbon is catalyzed by carbon and acts as a solvent for carbon.
このような方法で製造するダイヤモンドの粒子
サイズ及び晶質等を管理するにはダイヤモンド結
晶核の形成過程を制御し黒鉛から自発核形成する
ダイヤモンド結晶核の生成密度を適当な値に抑制
することが不可欠である。自発核形成による核の
密度は反応圧力に極めて敏感であるため、厳密な
反応圧制御が要求される。したがつて自形面を有
し互いに弧立した単結晶よりなる良質なダイヤモ
ンド粒子(メタルボンド工具に適した強靭な粒
子)の製造には非常に高度な圧力制御技術が必要
となり、その実現は容易ではないという問題があ
る。これらに関してはたとえば日本化学会編、学
会出版センター出判(1979年)、『超高圧と化学』
245頁以下に述べられている。 In order to control the particle size, crystal quality, etc. of diamond produced by this method, it is necessary to control the formation process of diamond crystal nuclei and suppress the generation density of diamond crystal nuclei that spontaneously form from graphite to an appropriate value. It is essential. Since the density of nuclei resulting from spontaneous nucleation is extremely sensitive to reaction pressure, strict reaction pressure control is required. Therefore, the production of high-quality diamond particles (tough particles suitable for metal bond tools) consisting of single crystals with euhedral surfaces and mutually erected surfaces requires extremely advanced pressure control technology, and its realization is difficult. The problem is that it is not easy. Regarding these, for example, "Ultrahigh Pressure and Chemistry" edited by the Chemical Society of Japan, published by the Society Publishing Center (1979)
It is stated on pages 245 and below.
特に大粒で良質な1個の単結晶を育成する目的
では、原料をダイヤモンド自体とし、これと種子
用ダイヤモンド粒子の間に金属物質を介在させた
反応材料を準備し、ダイヤモンド安定領域内の温
度圧力で且つ、種子用ダイヤモンドと原料ダイヤ
モンドとの間に適量な温度差を与えることによつ
て種子用ダイヤモンドを成長させる方法がある
(温度差法)。この方法で複数個の種子用ダイヤモ
ンドを成長させることは可能であるが、種子用ダ
イヤモンド以外に自発核形成されるダイヤモンド
の生成を抑制するために種子用ダイヤモンドと他
の出発原料の夫々の温度並びに重力の作用する方
向が重要な割役を果し、反応容器中の極く限られ
た部分しか利用出来ないという問題がある。 In order to grow a particularly large, high-quality single crystal, the raw material is diamond itself, and a reaction material is prepared in which a metallic substance is interposed between this and the seed diamond particles, and the temperature and pressure within the diamond stability region are There is also a method of growing seed diamonds by providing an appropriate temperature difference between the seed diamonds and the raw diamond (temperature difference method). Although it is possible to grow multiple seed diamonds using this method, the respective temperatures and temperatures of the seed diamond and other starting materials must be adjusted to suppress the formation of spontaneously nucleated diamonds other than the seed diamond. The problem is that the direction in which gravity acts plays an important role, and that only a very limited portion of the reaction vessel can be used.
本発明は、従来方法における上記のような問題
点を考慮してなされたもので、ダイヤモンドの自
発核発生を完全又はほぼ完全に抑制した条件下で
出発原料である種子用ダイヤモンド粒子を成長さ
せてダイヤモンド結晶を製造する方法であつて従
来よりも制御容易な製造技術によりダイヤモンド
結晶の品質管理を可能にしたものである。 The present invention has been made in consideration of the above-mentioned problems in conventional methods, and involves growing diamond grains for seeds as a starting material under conditions where spontaneous nucleation of diamond is completely or almost completely suppressed. This is a method for manufacturing diamond crystals, which enables quality control of diamond crystals using a manufacturing technology that is easier to control than conventional methods.
本発明のダイヤモンド結晶の製造方法は、金属
質融剤と炭素質物質と種子用ダイヤモンド粒子を
挿入した容器を超高圧高温装置内に配置して、前
記金属質融剤と前記炭素質物質との反応によつて
この炭素質物質を再結晶化する温度の下限以上の
温度で、且つダイヤモンドが生成し得ない圧力に
保持する第1工程ダイヤモンドが自発核形成し得
る最低の圧力を越えない圧力で、且つ黒鉛−ダイ
ヤモンド平衡線よりも高い圧力を印加保持して、
前記種子用ダイヤモンド粒子を成長させる第2工
程とからなるダイヤモンド結晶を製造する方法で
ある。このような本発明の方法で高温高圧下に保
持する保持温度は、金属質融剤が作用するに充分
な温度でその下限がこの金属質融剤と炭素質物質
との共融点(共晶点)であり、保持圧力は次の2
つの限界圧力で規定される領域内に設定する必要
がある。即ち、保持圧力の下限は、保持温度で金
属質融剤の作用下における黒鉛−ダイヤモンド平
衡圧であり、一方反応力の上限は金属質融剤と炭
素質物質の再結晶化で得られる物質との作用下で
のダイヤモンドの自発核形成が生じるのに必要な
圧力の下限値である。 In the method for producing diamond crystals of the present invention, a container in which a metallic flux, a carbonaceous substance, and a seed diamond particle are inserted is placed in an ultra-high pressure and high temperature apparatus, and the metallic flux and the carbonaceous substance are mixed together. The first step is to maintain the temperature at a temperature higher than the lower limit of the temperature at which this carbonaceous material is recrystallized by reaction and at a pressure at which diamond cannot be formed.The first step is to maintain the temperature at a pressure that does not exceed the minimum pressure at which diamond can spontaneously form nucleates. , and applying and maintaining a pressure higher than the graphite-diamond equilibrium line,
This method includes a second step of growing the diamond grains for seeds. The holding temperature maintained under high temperature and high pressure in the method of the present invention is a temperature sufficient for the action of the metallic flux, and its lower limit is the eutectic point (eutectic point) of the metallic flux and the carbonaceous material. ), and the holding pressure is the following 2
It is necessary to set the pressure within the range defined by two critical pressures. That is, the lower limit of the holding pressure is the graphite-diamond equilibrium pressure under the action of a metallic flux at the holding temperature, while the upper limit of the reaction force is the pressure of the graphite-diamond equilibrium under the action of a metallic flux and a substance obtained by recrystallization of a metallic flux and a carbonaceous material. is the lower limit of the pressure required for spontaneous nucleation of diamond to occur under the action of
本発明の方法に用いる金属質融剤は、特殊なも
のでなく適当な温度、圧力の下で炭素質物質より
ダイヤモンドを合成し得るものであればよい。か
かる金属質融剤は鉄、コバルト、ニツケル、ロジ
ウム、ルテニウム、パラジウム、オスミウム、イ
リジウム、白金、クロム、タンタル、マンガンが
あり、この中でも鉄族元素及びそれらの合金がよ
く、その作用温度はおおむね1200℃以上のものが
よい。本発明の方法に用いる炭素質物質は、黒
鉛、無定形炭素(非ダイヤモンド状炭素も含む)、
の他に炭素を含有する糖炭、コークス、木炭等、
黒鉛又は炭素の前駆体であり、この中でも黒鉛が
すぐれている。 The metallic flux used in the method of the present invention is not a special one, and any metal flux may be used as long as it can synthesize diamond from a carbonaceous material under appropriate temperature and pressure. Such metallic fluxes include iron, cobalt, nickel, rhodium, ruthenium, palladium, osmium, iridium, platinum, chromium, tantalum, and manganese, and among these, iron group elements and alloys thereof are preferred, and their working temperature is approximately 1200°C. Temperatures above ℃ are good. The carbonaceous materials used in the method of the present invention include graphite, amorphous carbon (including non-diamond-like carbon),
In addition, carbon-containing sugar charcoal, coke, charcoal, etc.
It is a precursor of graphite or carbon, and among these, graphite is excellent.
本発明のダイヤモンド結晶の製造方法は、炭素
質物質の再結晶で得られる物質、すなわち再結晶
化黒鉛をあらかじめ準備しておいて出発原料とし
て使用して、再結晶化黒鉛と金属質溶媒と種子用
ダイヤモンド粒子を容器に挿入して、この容器を
超高圧高温装置内に配置して、前記金属質溶媒が
作用する温度の下限値以上の温度に保持し、しか
も前記再結晶化黒鉛よりダイヤモンドが自発核形
成し得る最低の圧力を越えない圧力で、且つ黒鉛
−ダイヤモンド平衡線よりも高い圧力を印加保持
して前記種子用ダイヤモンド粒子を成長させてダ
イヤモンド結晶を製造することも可能である。こ
こで用いた金属質溶媒と超高圧高温装置内で炭素
質物質の再結晶化と溶媒としての作用をする前述
した金属質融剤とは同一組成のものであつても又
は異なる組成のものであつてもよい。又、典型的
実施形態の一つとして、超高圧高温装置内で再結
晶化黒鉛を晶出させる第1工程を設け、それに引
続いて同一装置内で本発明の構成条件が満たされ
るように第2工程を設定してもよい。例えば、第
1工程は、容器内で純粋な人工黒鉛と金属質融剤
とを接触させてこれらの境界部分に種子用ダイヤ
モンド粒子を配置した出発原料をダイヤモンドが
生成し得ないように充分低い圧力の下に保持した
うえで金属質融剤の作用温度に加熱して人工黒鉛
の表面に再結晶化黒鉛を晶出させる。この再結晶
化処理の第1工程はほぼ2分間又はそれ以上を要
する。次いで再結晶処理温度において黒鉛−ダイ
ヤモンド平衡線より高くなるように圧力を増大し
ながらダイヤモンドの自発核形成が起る圧力の下
限を越えない圧力に保持する第2工程を行なう
と、あらかじめ配置した種子用ダイヤモンド粒子
が成長する。ここで述べている再結晶化黒鉛と
は、高温下で、金属質融剤の存在のもとで、炭素
質物質が再結晶化されて得られる黒鉛のことであ
る。 The method for producing diamond crystals of the present invention involves preparing in advance a substance obtained by recrystallizing a carbonaceous material, that is, recrystallized graphite, and using it as a starting material, recrystallized graphite, a metallic solvent, and seeds. diamond particles are inserted into a container, and the container is placed in an ultra-high pressure and high temperature device to maintain the temperature above the lower limit of the temperature at which the metallic solvent acts. It is also possible to produce diamond crystals by growing the seed diamond particles at a pressure that does not exceed the lowest pressure that allows spontaneous nucleation and is higher than the graphite-diamond equilibrium line. The metallic solvent used here and the aforementioned metallic flux that acts as a solvent and recrystallizes the carbonaceous material in the ultra-high pressure and high temperature apparatus may have the same composition or different compositions. It may be hot. Further, as one of the typical embodiments, a first step of crystallizing recrystallized graphite is provided in an ultra-high pressure and high temperature device, and then a second step is provided in the same device so that the constitutional conditions of the present invention are satisfied. Two steps may be set. For example, in the first step, pure artificial graphite and a metallic flux are brought into contact with each other in a container, and seed diamond particles are placed at the boundary between the starting materials, and then the pressure is low enough so that diamonds cannot form. The artificial graphite is held under a temperature of 100°C and then heated to the working temperature of a metallic flux to crystallize recrystallized graphite on the surface of the artificial graphite. This first step of the recrystallization process takes approximately 2 minutes or more. Next, a second step is performed in which the pressure is increased to be higher than the graphite-diamond equilibrium line at the recrystallization treatment temperature while maintaining the pressure at a pressure that does not exceed the lower limit of the pressure at which spontaneous nucleation of diamond occurs. diamond particles grow. The recrystallized graphite mentioned here is graphite obtained by recrystallizing a carbonaceous material at high temperatures in the presence of a metallic flux.
本発明方法の第2工程における種子用ダイヤモ
ンドを成長させるための反応圧力の下限である黒
鉛−ダイヤモンド平衡圧は反応温度の函数であ
り、一般には
P1=7+0.027(T+273)≒14+0.027Tのよう
な関係で近似できるとされている。但し、P1は
キロバール(Kb)を単位として表わした平衡圧、
Tは摂氏で表わす温度である。実験的に求めるに
は、金属質融剤の作用する温度の下限よりも十分
(おおむね300℃以上)高い温度のもとでは、純粋
な通常の結晶質人工黒鉛と金属質融剤接触させて
一定圧の下で一定温度に加圧し、数分間保持して
温度、圧力を下げ、生成ダイヤモンドを回収する
という方法で、そのときの圧力を種々変えた場合
にダイヤモンドの生成を確認できる最低の圧力と
して求めることができる。より低い温度の領域に
ついては、上述の平衡圧力を数点の温度に対して
求め、それらをより低温の領域へ外挿して求める
ことができる。一方本発明方法の第2工程におけ
る上限圧を定量的に求める理輪は未だ作られてい
ないが実験的にはダイヤモンド合成用金属質融剤
の下で黒鉛又は再結晶化黒鉛と金属質融剤とを接
触させた反応物を一定圧の加圧と一定温度の加熱
という操作を行ない反応圧力の函数として生成ダ
イヤモンドの収量が急に増加しはじめる圧力とし
て実験的に決定できる。この上限圧を定量的に予
測することは現状では不可能で出発原料として使
用する金属質融剤にも依存すると思われるので実
験的に決められるべきである。なお、本発明者の
実験によればCo又はFe−Ni−Co合金を融剤とす
るとき黒鉛−ダイヤモンド平衡圧よりも約3キロ
バール高い値と評価されている。 The graphite-diamond equilibrium pressure, which is the lower limit of the reaction pressure for growing seed diamond in the second step of the method of the present invention, is a function of the reaction temperature, and is generally P 1 = 7 + 0.027 (T + 273) ≒ 14 + 0.027T. It is said that it can be approximated by the following relationship. However, P 1 is the equilibrium pressure expressed in kilobars (Kb),
T is the temperature in degrees Celsius. To find out experimentally, at a temperature that is sufficiently higher (approximately 300℃ or higher) than the lower limit of the temperature at which the metallic flux acts, pure ordinary crystalline artificial graphite is brought into contact with the metallic flux, and the temperature remains constant. This method involves applying pressure to a constant temperature, holding it for several minutes, lowering the temperature and pressure, and collecting the formed diamond.This is the lowest pressure at which diamond formation can be confirmed when the pressure is varied. You can ask for it. For lower temperature regions, the equilibrium pressures described above can be determined for several temperatures and extrapolated to the lower temperature regions. On the other hand, a ring for quantitatively determining the upper limit pressure in the second step of the method of the present invention has not yet been created, but experimentally, graphite or recrystallized graphite and a metallic flux have been tested under a metallic flux for diamond synthesis. It can be experimentally determined as the pressure at which the yield of diamond produced suddenly begins to increase as a function of the reaction pressure by applying a constant pressure and heating the reactant in contact with a constant temperature. It is currently impossible to quantitatively predict this upper limit pressure, and since it seems to depend on the metallic flux used as a starting material, it should be determined experimentally. According to experiments conducted by the present inventor, when Co or Fe-Ni-Co alloy is used as a flux, the pressure is estimated to be approximately 3 kilobar higher than the graphite-diamond equilibrium pressure.
本発明方法は、下限圧と上限圧の間に少くとも
2〜3キロバールという充分な幅があるため反応
工程としての圧力制御が容易なことである。即
ち、種子用ダイヤモンドである核をあらかじめ供
給することによつて圧力制御の最も困難な核形成
過程の制御を不要としている。しかも核の個数又
は密度は任意に設定できる。又この発明を利用し
うる製品分野についても極めて多数の良質なダイ
ヤモンド粒子を同時に合成する砥粒の製造のほ
か、少数の大型単結晶ダイヤモンドを育成するた
めにも用い得るものである。 In the method of the present invention, there is a sufficient width of at least 2 to 3 kilobars between the lower limit pressure and the upper limit pressure, so that pressure control during the reaction step is easy. That is, by supplying the seed diamond nucleus in advance, it becomes unnecessary to control the nucleation process, which is the most difficult process of pressure control. Furthermore, the number or density of nuclei can be set arbitrarily. Regarding the product fields to which this invention can be applied, in addition to manufacturing abrasive grains for simultaneously synthesizing an extremely large number of high-quality diamond particles, it can also be used to grow a small number of large single-crystal diamonds.
本発明方法で使用する反応物質中には良質なダ
イヤモンド結晶の育成を阻害しない物質が混入さ
れていても差支えない。例えば、あらかじめ調製
した粗粉状再結晶、炭素質物質、金属質融剤又は
金属質溶媒の粉末及適当量の種子用ダイヤモンド
粉末を均一に混合した反応材料を本発明の構成に
適した温度、圧力に保持し、この種子用ダイヤモ
ンドの成長による粒子を含む反応生成物を回収す
ることができるが、更に反応材料中に容器を形成
している物質例えばマグネシヤ粉末等を混合して
いても同様の反応生成物が回収される。マグネシ
ヤは、金属質融剤又は金属質溶媒の下で新しい核
発生を顕著に促がして本発明の効果を阻害するよ
うな作用を示さず、又ダイヤモンド成長過程に影
響して特に欠陥の多い粒子を生成させる作用も示
さない。しかもマグネシヤ粉末を含む反応生成物
は、金属質融剤又は金属質溶媒及び残存炭素質物
質を除去して生成ダイヤモンドのみの回収処理が
より速く行える利点がある。 The reactants used in the method of the present invention may contain substances that do not inhibit the growth of high-quality diamond crystals. For example, a reaction material prepared by uniformly mixing pre-prepared coarse recrystallized powder, carbonaceous material, metallic flux, or metallic solvent powder, and an appropriate amount of seed diamond powder at a temperature suitable for the configuration of the present invention; It is possible to maintain the pressure and recover the reaction product containing particles from the growth of this seed diamond, but it is also possible to collect the reaction product containing particles from the growth of the seed diamond. Reaction products are collected. Magnesia does not significantly promote the generation of new nuclei under a metallic flux or metallic solvent and does not inhibit the effects of the present invention, and magnesia does not have an effect on the diamond growth process and is particularly defective. It also does not show the effect of generating particles. Moreover, the reaction product containing magnesia powder has the advantage that the metallic flux or metallic solvent and the residual carbonaceous material can be removed and only the produced diamond can be recovered more quickly.
なお、本発明方法を実施するに当り、温度と圧
力は既に述べた構成要件を満たす範囲内であれば
夫々一定値に保持する必要はなく、反応中の各瞬
間においてその温度に応じて規定される平衡圧力
と金属質融剤又は金属質溶媒の存在の下で再結晶
化黒鉛からの新しいダイヤモンド結晶核形成が顕
著に生じ始める圧力との間に反応圧力が維持され
ているならば本発明方法の効果が生る。 In carrying out the method of the present invention, it is not necessary to maintain the temperature and pressure at constant values as long as they are within the range that satisfies the constituent requirements already mentioned, but they may be regulated according to the temperature at each moment during the reaction. If the reaction pressure is maintained between the equilibrium pressure of The effect of
本発明方法は、金属質融剤中で再結晶させた黒
鉛から新たなダイヤモンド結晶核が生成し難く、
黒鉛−ダイヤモンド平衡圧よりも少くとも約3キ
ロバール高い圧力まで顕著にダイヤモンド結晶核
の形成が抑制されるという事実、及びこの範囲内
の圧力の下で種子用ダイヤモンド結晶が存在すれ
ばこの種子用ダイヤモンド結晶成長が有効に行わ
れるという事実を見出すことによつて実現したも
のである。しかし再結晶化黒鉛が存在するときに
ダイヤモンドの自発核形成が抑制される理由及び
その機構は未だ不明である。 The method of the present invention makes it difficult to generate new diamond crystal nuclei from graphite recrystallized in a metallic flux.
The fact that diamond nucleation is significantly inhibited up to pressures at least about 3 kbar above the graphite-diamond equilibrium pressure, and that seed diamond crystals, if present, under pressures within this range. This was achieved by discovering the fact that crystal growth can be carried out effectively. However, the reason and mechanism by which spontaneous nucleation of diamond is suppressed in the presence of recrystallized graphite are still unknown.
次に実施例に従つて本発明方法を具体的に説明
する。 Next, the method of the present invention will be specifically explained with reference to Examples.
実施例 1
マグネシヤ製容器に発光分光分析用黒鉛で作つ
た板状黒鉛とFe−Ni−Co合金(重量比55:29:
16)で作つた板状金属質融剤とを積層し、この板
状黒鉛と板状金属質融剤との境界部分に約500μm
の種子用ダイヤモンド粒子を5個づつはめ込んで
セツトし、このマグネシヤ製容器を超高圧高温装
置内に配置してまず52キロバールに加圧し、約
1400℃で約5分間加熱する第1工程を行なつた。
(黒鉛の再結晶工程)その後加熱温度は約1400℃
不変とし、圧力のみ57.3キロバールに上昇して10
分間保持して、第2工程を行なつた。(種子用ダ
イヤモンドの成長工程)回収した試料の金属質融
剤を溶融除去したところ種子用ダイヤモンド粒子
が1.2〜1.8mmの大きさに成長したことが確認でき
た。Example 1 Plate graphite made from graphite for emission spectroscopy and Fe-Ni-Co alloy (weight ratio 55:29:
16) is laminated with the plate-shaped metallic flux prepared in step 16), and a layer of approximately 500 μm is layered at the boundary between the plate-shaped graphite and the plate-shaped metallic flux.
The container was placed in an ultra-high-pressure, high-temperature device, and was first pressurized to 52 kilobars.
The first step was heating at 1400° C. for about 5 minutes.
(Graphite recrystallization process) The heating temperature is approximately 1400℃
10 with constant and pressure rising only to 57.3 kbar
After holding for a minute, the second step was performed. (Growing process of diamond for seeds) When the metallic flux of the collected sample was melted and removed, it was confirmed that the diamond particles for seeds had grown to a size of 1.2 to 1.8 mm.
なお、出発原料として使用した発光分光分析用
黒鉛をルツボ用人工黒鉛に換えても全く同様の結
果を得た。又出発原料として使用した金属質融剤
をCo板としても同様の結果を得た。 Furthermore, even when the graphite for emission spectrometry used as a starting material was replaced with artificial graphite for crucibles, exactly the same results were obtained. Similar results were also obtained when Co plates were used as the metallic flux used as the starting material.
実施例 2
人工黒鉛製容器にFeとNiの等量混合粉末を詰
め、電気炉内で底部よりも上部の温度が低くなる
状況にして1500〜1700℃でFeとNiからなる金属
質融剤を融解し再結晶化黒鉛を生成させた。冷却
後金属質融剤を酸によつて溶解除去して再結晶黒
鉛粒子を回収した。このようにしてあらかじめ調
整して得た再結晶黒鉛粒子を2重量部に対し、
Fe粉5重量部、Ni粉3重量部、Co粉2重量部及
び88〜105μmの種子用ダイヤモンド粉末0.2重量
部を混合してマグネシヤ製容器に詰めて超高圧高
温装置内にセツトし、55.5キロバールの加圧で約
1400℃に10分間保持した後生成物を溶解分離して
ダイヤモンドを回収した。この回収したダイヤモ
ンドはおおむね150μm以上最大400μmの範囲に分
布し且つ自形面のよく発達した単結晶ダイヤモン
ドであつた。Example 2 A container made of artificial graphite was filled with a mixed powder of equal amounts of Fe and Ni, and a metallic flux consisting of Fe and Ni was heated at 1500 to 1700°C in an electric furnace where the temperature at the top was lower than at the bottom. Melted and recrystallized graphite was produced. After cooling, the metallic flux was dissolved and removed with acid to recover recrystallized graphite particles. For 2 parts by weight of recrystallized graphite particles prepared in advance in this way,
5 parts by weight of Fe powder, 3 parts by weight of Ni powder, 2 parts by weight of Co powder, and 0.2 parts by weight of diamond powder for seeds of 88 to 105 μm were mixed, packed in a magnesia container, set in an ultra-high pressure and high temperature device, and heated to 55.5 kilobar. Approximately when pressurized
After holding at 1400°C for 10 minutes, the product was dissolved and separated to recover diamonds. The recovered diamonds were single-crystal diamonds with a diameter of approximately 150 μm or more and a maximum of 400 μm, and well-developed euhedral surfaces.
ダイヤモンドの収量は、混合した種子用ダイヤ
モンドの約6倍であつた。なお、比較用実験とし
て上記出発原料から種子用ダイヤモンド粉末を除
外した場合には約57キロバール以上で、かつ群晶
状のダイヤモンドしか回収できなかつた。 The diamond yield was about 6 times that of the mixed seed diamond. In addition, as a comparative experiment, when the seed diamond powder was excluded from the above starting materials, only diamonds with a temperature of about 57 kilobar or more and in the form of group crystals could be recovered.
Claims (1)
ド粒子を挿入した容器を超高圧高温装置内に配置
して、前記金属質融剤と前記炭素質物質との反応
によつて該炭素質物質を再結晶化する温度の下限
以上の温度で、且つダイヤモンドが生成し得ない
圧力に保持する第1工程と、ダイヤモンドが自発
核形成し得る最低の圧力を越えない圧力で、且つ
黒鉛−ダイヤモンド平衡線よりも高い圧力を印加
保持して、前記種子用ダイヤモンド粒子を成長さ
せる第2工程とからなることを特徴とするダイヤ
モンド結晶の製造方法。 2 上記炭素質物質が黒鉛であることを特徴とす
る特許請求の範囲第1項記載のダイヤモンド結晶
の製造方法。 3 金属質溶媒と再結晶化黒鉛と種子用ダイヤモ
ンド粒子を挿入した容器を超高圧高温装置内に配
置して、前記金属質溶媒が作用する温度の下限以
上に保持し、しかも前記再結晶化黒鉛よりダイヤ
モンドが自発核形成し得る最低の圧力を越えない
圧力で、且つ黒鉛−ダイヤモンド平衡線よりも高
い圧力を印加保持して、前記種子用ダイヤモンド
粒子を成長させることを特徴とするダイヤモンド
結晶の製造方法。[Scope of Claims] 1. A container containing a metallic flux, a carbonaceous substance, and diamond particles for seeds is placed in an ultra-high pressure and high temperature device, and a reaction between the metallic flux and the carbonaceous substance is carried out. a first step of holding the carbonaceous material at a temperature higher than the lower limit of the temperature at which it recrystallizes and at a pressure at which no diamond can be formed; and at a pressure that does not exceed the lowest pressure at which diamond can spontaneously form a nucleus. A method for producing diamond crystals, comprising a second step of growing the seed diamond particles by applying and maintaining a pressure higher than the graphite-diamond equilibrium line. 2. The method for producing diamond crystals according to claim 1, wherein the carbonaceous material is graphite. 3. A container containing a metallic solvent, recrystallized graphite, and seed diamond particles is placed in an ultra-high pressure and high temperature device, and maintained at a temperature above the lower limit of the temperature at which the metallic solvent acts, and the recrystallized graphite is Production of diamond crystals, characterized in that the seed diamond particles are grown by applying and maintaining a pressure that does not exceed the lowest pressure at which diamond can spontaneously nucleate, and which is higher than the graphite-diamond equilibrium line. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58075418A JPS59203717A (en) | 1983-04-28 | 1983-04-28 | Manufacture of diamond crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58075418A JPS59203717A (en) | 1983-04-28 | 1983-04-28 | Manufacture of diamond crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59203717A JPS59203717A (en) | 1984-11-17 |
JPH0557019B2 true JPH0557019B2 (en) | 1993-08-23 |
Family
ID=13575612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58075418A Granted JPS59203717A (en) | 1983-04-28 | 1983-04-28 | Manufacture of diamond crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59203717A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002212594A1 (en) * | 2000-11-09 | 2002-05-21 | Element Six (Pty) Ltd | A method of producing ultra-hard abrasive particles |
GB201204533D0 (en) | 2012-03-15 | 2012-04-25 | Element Six Ltd | Process for manufacturing synthetic single crystal diamond material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010794A (en) * | 1973-06-05 | 1975-02-04 | ||
JPS5370095A (en) * | 1976-12-03 | 1978-06-22 | Ishizuka Kenkyusho | Method of making diamond |
JPS5382692A (en) * | 1976-12-28 | 1978-07-21 | Ishizuka Kenkyusho | Method of treating solvent metal for use in reaction of diamond synthethis |
JPS5469590A (en) * | 1977-11-15 | 1979-06-04 | Toshiba Corp | Diamond synthesizing method |
JPS5669211A (en) * | 1979-11-01 | 1981-06-10 | Sumitomo Electric Ind Ltd | Preparation of diamond |
-
1983
- 1983-04-28 JP JP58075418A patent/JPS59203717A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010794A (en) * | 1973-06-05 | 1975-02-04 | ||
JPS5370095A (en) * | 1976-12-03 | 1978-06-22 | Ishizuka Kenkyusho | Method of making diamond |
JPS5382692A (en) * | 1976-12-28 | 1978-07-21 | Ishizuka Kenkyusho | Method of treating solvent metal for use in reaction of diamond synthethis |
JPS5469590A (en) * | 1977-11-15 | 1979-06-04 | Toshiba Corp | Diamond synthesizing method |
JPS5669211A (en) * | 1979-11-01 | 1981-06-10 | Sumitomo Electric Ind Ltd | Preparation of diamond |
Also Published As
Publication number | Publication date |
---|---|
JPS59203717A (en) | 1984-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wentorf Jr | Diamond growth rates | |
JP4574852B2 (en) | Method for growing SiC single crystal | |
KR101603032B1 (en) | Process for manufacturing synthetic single crystal diamond material | |
JP2015511930A5 (en) | ||
JPH06154578A (en) | Reaction container for diamond synthesis | |
JPS5935099A (en) | Method for growing silicon carbide crystal | |
JPH06182184A (en) | Synthesis of single crystal diamond | |
US3442616A (en) | Method of making synthetic diamond crystals | |
JPS60239317A (en) | Separation of reactant from silicon | |
JPH0557019B2 (en) | ||
JPH08141385A (en) | Method of synthesizing diamond | |
US4045186A (en) | Method for producing large soft hexagonal boron nitride particles | |
CA1157626A (en) | Process for growing diamonds | |
US3773903A (en) | Method of manufacturing diamond crystals | |
JPS6225602B2 (en) | ||
US3536447A (en) | Method of preparing synthetic diamond crystals | |
JPS5848483B2 (en) | Synthesis method of cubic boron titanide | |
JPS6225601B2 (en) | ||
JP2932300B2 (en) | Diamond synthesis method | |
JP3631976B2 (en) | Method for growing silicon carbide single crystal | |
US3457043A (en) | Method of converting carbonaceous material to diamond | |
JPS59169918A (en) | Synthesis of diamond | |
JPS63236531A (en) | Synthesis of diamond | |
RU2061654C1 (en) | Solvent for synthesis of thermostable monocrystalline diamonds | |
JPS59164609A (en) | Method for synthesizing diamond |