JPS59203717A - Manufacture of diamond crystal - Google Patents

Manufacture of diamond crystal

Info

Publication number
JPS59203717A
JPS59203717A JP58075418A JP7541883A JPS59203717A JP S59203717 A JPS59203717 A JP S59203717A JP 58075418 A JP58075418 A JP 58075418A JP 7541883 A JP7541883 A JP 7541883A JP S59203717 A JPS59203717 A JP S59203717A
Authority
JP
Japan
Prior art keywords
diamond
pressure
graphite
recrystallized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58075418A
Other languages
Japanese (ja)
Other versions
JPH0557019B2 (en
Inventor
Masao Wakatsuki
雅男 若槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58075418A priority Critical patent/JPS59203717A/en
Publication of JPS59203717A publication Critical patent/JPS59203717A/en
Publication of JPH0557019B2 publication Critical patent/JPH0557019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Abstract

PURPOSE:To manufacture easily diamond while inhibiting the spontaneous formation of diamond nuclei by mixing a carbonaceous substance with a metal for synthesizing diamond and diamond particles for seeds and by bringing the mixture into a reaction at a specified high temp. under a specified high pressure. CONSTITUTION:Artificial graphite as a starting material for diamond and a metal such as Fe, Co, Ni, Rh, Ru, Pd, Os, Ir, Pt, Cr, Ta or Mn as a flux for dissolving the graphite are laminated, and plural diamond particles of about 500mum size for seeds are arranged at the boundary part. A vessel contg. them is put in a superhigh temp. and pressure apparatus, and it is heated to a temp. above the temp. at which graphite reacts with said metal to cause recrystallization while applying a pressure below the minimum pressure required to cause spontaneous formation of diamond nuclei from recrystallized graphite. The artificial graphite is first recrystallized, and the diamond for seeds is grown while inhibiting the spontaneous formation of diamond nuclei. Thus, diamond particles are easily manufactured.

Description

【発明の詳細な説明】 本発明は、炭素質物質とダイヤモンド合成用金属物質及
び種子用ダイヤモンド粒子からダイヤモンド結晶を製造
する方法に係り、特に炭素質物質より直接にダイヤモン
ドの自発核形成を抑制しながら種子用ダイヤモンド粒子
を成長させるダイヤモンド結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diamond crystals from a carbonaceous material, a metal material for diamond synthesis, and diamond particles for seeds, and in particular, a method for directly suppressing the spontaneous nucleation of diamond from the carbonaceous material. The present invention relates to a method for producing diamond crystals for growing diamond grains for seeds.

ダイヤモンド結晶を製造する方法は近年多数提案されて
おり、一般に出発原料として添加物の無い多結晶である
人工黒鉛が用いられ、この人工黒鉛からダイヤモンドへ
の蔚換を経済的な温度及び3頁 圧力条件で進行させるためにダイヤモンド合成用金属物
質を共存させることが必要とされている。
Many methods for producing diamond crystals have been proposed in recent years, and generally artificial graphite, which is a polycrystalline material without additives, is used as a starting material, and the conversion of this artificial graphite to diamond can be carried out at economical temperatures and pressures. It is necessary to coexist with a metal substance for diamond synthesis in order to proceed under the conditions.

このダイヤモンド合成用金属物質は、鉄族又は白金族(
周期律表の第■a族)元素及びそれらを含む合金が多用
されており、超高温高圧下ではこのダイヤモンド合成用
金属物質が炭素の共存下で融解して炭素に対する溶媒と
して作用するものと理解されている。
This metal material for diamond synthesis is iron group or platinum group metal (
It is understood that elements in group A of the periodic table and alloys containing them are widely used, and that this metal material for diamond synthesis melts in the coexistence of carbon and acts as a solvent for carbon under extremely high temperature and high pressure. has been done.

このような方法で製造するダイヤモンドの粒子サイズ及
び晶質等を管理するにはダイヤモンド結晶核の形成過程
を制御し黒鉛から自発核形成するダイヤモンド結晶核の
生成密′度を適当な値に抑制することが不可欠である。
In order to control the particle size and crystal quality of diamond produced by this method, the formation process of diamond crystal nuclei is controlled and the density of diamond crystal nuclei that spontaneously form from graphite is suppressed to an appropriate value. It is essential that

自発核形成による核の密度は反応圧力に極めて敏感であ
るため、厳密な反応圧制御が要求される。したがって自
形面を有し互いに孤立した単結晶よりなる良質なダイヤ
モンド粒子(メタルボンド工具に適した強靭な粒子)の
製造には非常に高度な圧力制御技術が必要となり、その
実現は容易ではないという問題がある。
Since the density of nuclei resulting from spontaneous nucleation is extremely sensitive to reaction pressure, strict reaction pressure control is required. Therefore, producing high-quality diamond particles (tough particles suitable for metal bond tools) consisting of single crystals isolated from each other with euhedral surfaces requires extremely advanced pressure control technology, which is not easy to achieve. There is a problem.

これらに関してはたとえば日本化学余線、学会用特開昭
59−203717 (2) 版センター出判(1979年)、「超高圧と化学124
5頁以下に述べられている。
Regarding these, for example, Nippon Kagaku Yoshin, Japanese Patent Application Publication No. 59-203717 (2) Edition Center Publishing (1979), "Ultra High Pressure and Chemistry 124
It is described on pages 5 and below.

特に大粒で良質な1個の単結晶を育成する目的では、原
料をダイヤモンド自体とし、これと種子用ダイヤモンド
粒子の間に金属物質を介在させた反応材料を準備し、ダ
イヤモンド安全領域内の温度圧力で且つ、種子用ダイヤ
モンドと原料ダイヤモンドとの間に適量な温度差を与え
ることによって種子用ダイヤモンドを成長させる方法が
ある(温度差法)。この方法で複数個の種子用ダイヤモ
ンドを成長させることは可能であるが、種子用ダイヤモ
ンド以外に自発核形成されるダイヤモンドの生成を抑制
するために種子用ダイヤモンドと他の出発原料の夫々の
温度並びに重力の作用する方向が重要な割膜を果し、反
応容器中の極く限られた部分しか利用出来ないという問
題がある。
In order to grow a particularly large, high-quality single crystal, the raw material is diamond itself, and a reaction material is prepared in which a metal substance is interposed between this and the seed diamond particles, and the temperature and pressure within the diamond safe range are prepared. There is also a method of growing seed diamonds by providing an appropriate temperature difference between the seed diamonds and the raw diamond (temperature difference method). Although it is possible to grow multiple seed diamonds using this method, the respective temperatures and temperatures of the seed diamond and other starting materials must be adjusted to suppress the formation of spontaneously nucleated diamonds other than the seed diamond. The problem is that the direction in which gravity acts plays an important role in dividing the membrane, and only a very limited portion of the reaction vessel can be used.

本発明は、□従来方法における上記のような問題点を考
慮してなされたもので、ダイヤモンドの自発核発生を完
全又はほぼ完全に抑制した条件下で出発原料である種子
用ダイヤモンド粒子を成長さ5頁 せてダイヤモンド結晶を製造する方法であって従来より
も制御容易な製造技術で製造結晶の品質管理を可能にし
たものである。
The present invention was made in consideration of the above-mentioned problems in the conventional method, and involves growing diamond grains for seeds as a starting material under conditions where spontaneous nucleation of diamond is completely or almost completely suppressed. This is a method for manufacturing diamond crystals, which makes it possible to control the quality of manufactured crystals using manufacturing techniques that are easier to control than conventional methods.

本発明のダイヤモンド結晶の製造方法は、金属質融剤と
炭素質物質と種子用ダイヤモンド粒子を挿入した容器を
超高温高圧装置内に配置して、前記金属質融剤と前記炭
素質物質との反応によってこの炭素質物質を再結晶化す
る温度の下限以上の温度で、この再結晶化した炭素質物
質よりダイヤモンドが自発核形成し得る最低の圧力を越
えない圧力で、且つ黒鉛−ダイヤモンド平衡線よりも高
い圧力を印加保持して、前記種子用ダイヤモンド粒子を
成長させてダイヤモンド結晶を製造スル方法である。こ
のような本発明の方法で高温高圧下に保持する保持温度
は、金属質融剤が作用するに充分な温度でその下限がこ
の金属質融剤と炭素質物質との共融点(共晶点)であり
、保持圧力は次の2つの限界圧力で規定される領域内に
設定する必要がある。即ち、保持圧力の下限は、保持温
度で金属質融剤の作用下における黒鉛−ダイキモ26頁 ド平衡圧であり、一方反応力の上限は金属質融剤と再結
晶化した炭素質物質との作用下でのダイヤモンドの自発
核形成が生じるのに必要な圧力の下限値である。
In the method for producing diamond crystals of the present invention, a container in which a metallic flux, a carbonaceous substance, and seed diamond particles are inserted is placed in an ultra-high temperature and high pressure apparatus, and the metallic flux and the carbonaceous substance are mixed together. At a temperature higher than the lower limit of the temperature at which this carbonaceous material is recrystallized by reaction, at a pressure that does not exceed the lowest pressure at which diamond can spontaneously nucleate from this recrystallized carbonaceous material, and at a graphite-diamond equilibrium line. In this method, diamond crystals are manufactured by applying and maintaining a higher pressure than the above-mentioned method to grow the seed diamond particles. The holding temperature maintained under high temperature and high pressure in the method of the present invention is a temperature sufficient for the action of the metallic flux, and its lower limit is the eutectic point (eutectic point) of the metallic flux and the carbonaceous material. ), and the holding pressure must be set within the range defined by the following two limit pressures. That is, the lower limit of the holding pressure is the equilibrium pressure of the graphite-dykimo under the action of the metallic flux at the holding temperature, while the upper limit of the reaction force is the equilibrium pressure between the metallic flux and the recrystallized carbonaceous material. is the lower limit of the pressure required for spontaneous nucleation of diamond to occur under

本発明の方法に用いる金属質融剤は、特殊なものでなく
適当な温度、圧力の下で炭素質物質よりダイヤモンドを
合成し得るものであればよい。かかる金属質融剤は鉄、
コバルト、ニッケル、ロジウム、ルテニウム、パラジウ
ム、オスミウム、イリジウム、白金、クロム、タンタノ
へマンガンがあり、この中でも鉄族元素及びそれらの合
金がよく、その作用温度はおおむね1200 ’C以上
のものがよい。本発明の方法に用いる炭素質物質は、黒
鉛、無定形炭素の他に炭素を含有する石炭、糖戻。
The metallic flux used in the method of the present invention is not a special one, and any metal flux may be used as long as it can synthesize diamond from a carbonaceous material under appropriate temperature and pressure. Such metallic fluxes include iron,
There are cobalt, nickel, rhodium, ruthenium, palladium, osmium, iridium, platinum, chromium, and manganese. Among these, iron group elements and alloys thereof are preferable, and their working temperature is preferably about 1200'C or higher. The carbonaceous materials used in the method of the present invention include graphite, coal containing carbon in addition to amorphous carbon, and rehydrated sugar.

コークス、木炭、紙、木等があり、この中でも黒鉛がよ
い。
There are coke, charcoal, paper, wood, etc. Among these, graphite is the best.

本発明のダイヤモンド結晶の製造方法は、再結晶化した
炭素質物質をあらかじめ準備しておいて出発原料として
使用して、再結晶化した炭素質物質と金属質溶媒と種子
用ダイヤモンド粒子を容器7頁 をこ挿入して、この容器を超高温高圧装置内に配置して
、前記金属質溶媒が作用する温度の下限以上の温度で、
しかも前記再結晶化した炭素質物質よりダイヤモンドが
自発核形成し得る最低の圧力を越えない圧力で、11.
つ黒鉛−ダイヤモンド平衡線よりも高い圧力を印加保持
して前記種子用ダイヤモンド粒子を成長させてダイヤモ
ンド結晶を製造することも可能である。ここで用いた金
属質溶媒と超高温高圧装置内で炭素質物質の再結晶化と
溶媒としての作用をする前述した金属質融剤とは同一組
成のものであっても又は異なる組成のものであってもよ
い。又、典型的実施形態の一つとして、超高温高圧装置
内で再結晶化炭素質物質を晶出させる工程を設け、それ
に引続いて同一装置内で本発明の構成条件が満たされる
ように全工程を設定してもよい。例えば、容器内で純粋
な人工黒鉛と金属質融剤とを接触させてこれらの境界部
分に種子用ダイヤモンド粒子を配置した出発原料をダイ
ヤモンドが生成し得ないように充分低い圧力の下に保持
したうえで金属質融剤の作用温度に加熱して人工黒鉛の
表面に再結晶黒鉛を晶出させる。この再結晶処理工程は
ほぼ2分間又はそれ以上を要する。次いで再結晶処理温
度において黒鉛−ダイヤモンド平衡線より高くなるよう
に圧力を増大しながらダイヤモンドの自発核形成が起る
圧力の下限を越えない圧力に保持すればあらかじめ配置
した種子用ダイヤモンド粒子が成長する。
In the method for producing diamond crystals of the present invention, a recrystallized carbonaceous material is prepared in advance and used as a starting material, and the recrystallized carbonaceous material, a metallic solvent, and diamond particles for seeds are placed in a container 7. Insert this page, place this container in an ultra-high-temperature, high-pressure device, and at a temperature higher than the lower limit of the temperature at which the metallic solvent acts,
Moreover, at a pressure that does not exceed the lowest pressure at which diamond can spontaneously nucleate from the recrystallized carbonaceous material, 11.
It is also possible to produce diamond crystals by applying and maintaining a pressure higher than the graphite-diamond equilibrium line to grow the seed diamond particles. The metallic solvent used here and the aforementioned metallic flux, which acts as a solvent and recrystallizes the carbonaceous material in the ultra-high temperature and high pressure equipment, may have the same composition or may have different compositions. There may be. Further, as one of the typical embodiments, a step of crystallizing the recrystallized carbonaceous material in an extremely high temperature and high pressure device is provided, and then all the steps are performed in the same device so that the constitutional conditions of the present invention are satisfied. You may also set a process. For example, a starting material in which pure artificial graphite and a metallic flux are brought into contact with each other in a container, and seed diamond particles are placed at the boundary between these materials is held under a sufficiently low pressure so that diamonds cannot form. Then, it is heated to the working temperature of a metallic flux to crystallize recrystallized graphite on the surface of the artificial graphite. This recrystallization process takes approximately 2 minutes or more. Next, at the recrystallization treatment temperature, the pressure is increased to be higher than the graphite-diamond equilibrium line and maintained at a pressure that does not exceed the lower limit of the pressure at which spontaneous nucleation of diamond occurs, so that the seed diamond particles placed in advance grow. .

本発明方法で種子用ダイヤモンドを成長させるための反
応圧力の下限である黒鉛−ダイヤモンド平衡圧は反応温
度の函数であり、一般にはP1=7+0.027(T+
273)キ14+0.027T のような関係で近似で
きるとされている。但し、Plはキロ/<−)しくKb
)を単位として表わした平衡圧、Tは摂氏で表わす温度
である。実験的には純粋な通常の結晶質人工黒鉛と金属
質融剤を接触させて一定圧の下で一定温度に加圧し、数
分間保持して温度、圧力を下げ、生成ダイヤモンドを回
収するという方法で、そのときの圧力を種々轟えた場合
にダイヤモンドの生成を確認できる最低の圧力として求
めることができる。−力木発明方法の上限9頁 圧を定量的に求める理論は未だ作られていないが実験的
にはダイヤモンド合成用金属質融剤の下で黒鉛又は再結
晶化した黒鉛と金属質融剤とを接触させた反応物を一定
圧の加圧と一定温度の加熱という操作を行ない反応圧力
の函数として生成ダイヤモンドの収量が急に増加しはじ
める圧力として実験的に決定できる。この上限圧を定量
的に求めることは現状では不可能で出発原料として使用
する金属質融剤にも依存すると思われるので実験的に決
められるべきである。なお、本発明者の実験によればC
o又はFe−Ni−Co合金を融剤とするとき黒鉛−ダ
イヤモンド平衡圧よりも約3キロバール高い値と評価さ
れている。
The graphite-diamond equilibrium pressure, which is the lower limit of the reaction pressure for growing seed diamonds by the method of the present invention, is a function of the reaction temperature, and is generally P1 = 7 + 0.027 (T +
273) It is said that it can be approximated by the following relationship: Ki14+0.027T. However, Pl is kilo/<-) Kb
), T is the temperature in degrees Celsius. Experimentally, the method involves bringing pure ordinary crystalline artificial graphite into contact with a metallic flux, pressurizing it to a constant temperature under constant pressure, holding it for several minutes, lowering the temperature and pressure, and collecting the generated diamond. If the pressure at that time is varied, the lowest pressure at which diamond formation can be confirmed can be determined. - Although a theory for quantitatively determining the upper limit of the 9-page pressure of the invention method for strength wood has not yet been established, it has been experimentally demonstrated that graphite or recrystallized graphite and metallic flux under a metallic flux for diamond synthesis It can be determined experimentally as the pressure at which the yield of diamond produced suddenly begins to increase as a function of the reaction pressure by applying a constant pressure and heating the reactants in contact with a constant temperature. It is currently impossible to quantitatively determine this upper limit pressure, and since it seems to depend on the metallic flux used as the starting material, it must be determined experimentally. According to the inventor's experiments, C
The graphite-diamond equilibrium pressure is estimated to be about 3 kilobar higher than the graphite-diamond equilibrium pressure when carbon dioxide or Fe-Ni-Co alloy is used as the flux.

本発明方法は、下限圧と上限圧の間に少くとも2〜3キ
ロバールという充分な幅があるため反応工程としての圧
力制御が容易なことである。即ち、種子用ダイヤモンド
である核をあらかじめ供給することによって圧力制御の
最も困難な核形成過程の制御を不要としている。しかも
核の個数又は密度は任意に設定できる。又この発明を利
用しうる10頁 製品分野についても極めて多数の良質なダイヤモンド粒
子を同時に合成する砥粒の製造のほか、少数の大型単結
晶ダイヤモンドを育成するためにも用い得るものである
In the method of the present invention, there is a sufficient width of at least 2 to 3 kilobars between the lower limit pressure and the upper limit pressure, so that pressure control during the reaction step is easy. That is, by supplying the seed diamond nucleus in advance, it is not necessary to control the nucleation process, which is the most difficult process of pressure control. Furthermore, the number or density of nuclei can be set arbitrarily. Regarding the field of products to which this invention can be applied, it can be used not only to produce abrasive grains for simultaneously synthesizing a large number of high quality diamond particles, but also to grow a small number of large single crystal diamonds.

本発明方法で使用する反応物質中には良質なダイヤモン
ド結晶の育成を阻害しない物質が混入されていても差支
えない。例えば、あらかじめ調製した粗粉状再結晶、炭
素質物質、金属質融剤又は金属質溶媒の粉末及び適当量
の種子用ダイヤモンド粉末を均一に混合した反応材料を
本発明の構成に適した温度、圧力に保持し1 この種子
用ダイヤモンドの成長による粒子を含む反応生成物を回
収することができるが、更に反応材料中に容器を形成し
ている物質例えばマグネシャ粉末等を混合していても同
様の反応生成物が回収される。マグネシャは、金属質融
剤又は金属質溶媒の下で新しい核発生を顕著に促がして
本発明の効果を阻害するような作用を示さず、又ダイヤ
モンド成長過程に影響して特に欠陥の多い粒子を生成さ
せる作用も示さない。しかもマグネシャ粉末を含む反応
生成11頁 物は、金属質融剤又は金属質溶媒及び残存炭素質物質を
除去して生成ダイヤモンドのみの回収処理がより速く行
える利点がある。
The reactants used in the method of the present invention may contain substances that do not inhibit the growth of high-quality diamond crystals. For example, the reaction material, which is a uniform mixture of pre-prepared coarse recrystallized powder, carbonaceous material, metallic flux, or metallic solvent powder, and an appropriate amount of seed diamond powder, is heated at a temperature suitable for the configuration of the present invention. It is possible to recover the reaction product containing particles from the growth of this seed diamond by holding the pressure at 1, but even if the reaction material is further mixed with a substance forming the container, such as magnesia powder, the same result can be obtained. Reaction products are collected. Magnesia does not significantly promote the generation of new nuclei under a metallic flux or metallic solvent and does not inhibit the effects of the present invention, and does not affect the diamond growth process and is particularly defective. It also does not show the effect of generating particles. Furthermore, the reaction product containing magnesia powder has the advantage that the metallic flux or metallic solvent and the residual carbonaceous material can be removed and only the produced diamond can be recovered more quickly.

なお、本発明方法を実施するに当り、温度と圧力は既に
述べた構成要件を満たす範囲内であれば夫々一定値に保
持する必要はなく、反応中の各瞬間においてその温度に
応じて規定される平衡圧力と金属質融剤又は金属質溶媒
の存在の下で再結晶黒鉛からの新しいダイヤモンド結晶
核形成が顕著に生じ始める圧力との間に反応圧力が維持
されているならば本発明方法の効果が生じる。
In carrying out the method of the present invention, it is not necessary to maintain the temperature and pressure at constant values as long as they are within the range that satisfies the constituent requirements already mentioned, but they may be regulated according to the temperature at each moment during the reaction. If the reaction pressure is maintained between the equilibrium pressure of effect occurs.

本発明方法は、金属質融剤中で再結晶させた黒鉛から新
たなダイヤモンド結晶核が生成し難く、黒鉛−ダイヤモ
ンド平衡圧よりも少くとも約3キロバール高い圧力まで
顕著にダイヤモンド結晶核の形成が抑制されるという事
実、及びこの範囲内の圧力の下で種子用ダイヤモンド結
晶が存在すればこの種子用ダイヤモンドの結晶成長が有
効に行われるという事実を見出すことによって実現した
ものである。しかし再結晶黒鉛が存在するどきにダイヤ
モンドの自発核形成が抑制される理由及びその機構は未
だ不明である。
In the method of the present invention, new diamond crystal nuclei are difficult to form from graphite recrystallized in a metallic flux, and the formation of diamond crystal nuclei is significantly inhibited at pressures that are at least about 3 kilobar higher than the graphite-diamond equilibrium pressure. This was realized by discovering the fact that the seed diamond crystals can be effectively grown under pressure within this range, and if the seed diamond crystals exist under pressure within this range. However, the reason and mechanism by which spontaneous nucleation of diamond is suppressed in the presence of recrystallized graphite are still unknown.

次に実施例に従って本発明方法を具体的に説明する。Next, the method of the present invention will be specifically explained according to Examples.

実施例1 マグネシャ製容器に発光分光分析用黒鉛で作った板状黒
鉛とFe−Ni−Co合金(重量比55:29=16)
で作った板状金属質融剤とを積層し、この板状黒鉛と板
状金属質融剤との境界部分に約500μmの種子用ダイ
ヤモンド粒子を5個づつはめ込んでセットし、このマグ
ネシャ製容器を超高温高圧装置内に配置してまず52キ
ロバールに加圧し、力のみ57.3キロバールに上昇し
て10分間保持した。(種子用ダイヤモンドの成長工程
)回収した試料の金属質融剤を溶解除去したところ種子
用ダイヤモンド粒子が1.2〜1.8朋の大きさに成長
したことが確認できた。
Example 1 Plate graphite made from graphite for emission spectroscopy and Fe-Ni-Co alloy (weight ratio 55:29 = 16) in a Magnesia container
A container made of Magnesia is laminated with a plate-shaped metallic flux made from the above, and five seed diamond particles of about 500 μm each are inserted and set in the boundary between the plate-shaped graphite and the plate-shaped metallic flux. was placed in an ultra-high temperature and high pressure apparatus and first pressurized to 52 kbar, and only the force was increased to 57.3 kbar and held for 10 minutes. (Growing process of diamond for seeds) When the metallic flux of the collected sample was dissolved and removed, it was confirmed that the diamond particles for seeds had grown to a size of 1.2 to 1.8 mm.

なお、出発原料として使用した発光分光分析用13頁 黒鉛なルツボ用人工黒鉛に換え−ても全く同様の結果を
得た。又出発原料として使用した金属質融剤をCo板と
しても同様の結果を得た。
The same results were obtained even when artificial graphite for crucibles was used instead of graphite for emission spectroscopy, which was used as the starting material. Similar results were also obtained when a Co plate was used as the metallic flux used as the starting material.

実施例2 人工黒鉛製容器にFeとNiの等量混合粉末を詰め、電
気炉内で底部よりも上部の温度が低くなる状況にして1
500〜1700℃でFeとNiからなる金属質融剤を
融解し再結晶黒鉛を生成させた。冷却後金属質融剤を酸
によって溶解除去して再結晶黒鉛粒子を回収した。この
ようにしてあらかじめ調整して得た再結晶黒鉛粒子を2
重量部に対し、Fe粉5重量部、Ni粉3重量部、Co
粉2重量部及び88〜105μmの種子用ダイヤモンド
粉末0.2重量部を混合してマグネシャ製容器に詰めて
超高温高圧装置内にセットし、55.5 キロバールの
加圧で約1400℃に10分間保持した後生成物を溶解
分離してダイヤモンドを回収した。この回収したダイヤ
モンドはおおむね150μm以」−最大400μmの範
囲に分布し且つ自形面のよく発達した単結晶ダイヤモン
ドであった。
Example 2 A container made of artificial graphite was filled with a mixed powder of equal amounts of Fe and Ni and placed in an electric furnace in a situation where the temperature at the top was lower than at the bottom.
A metallic flux consisting of Fe and Ni was melted at 500 to 1700°C to produce recrystallized graphite. After cooling, the metallic flux was dissolved and removed with acid to recover recrystallized graphite particles. The recrystallized graphite particles prepared in advance in this manner were
Based on the weight part, 5 parts by weight of Fe powder, 3 parts by weight of Ni powder, Co
2 parts by weight of powder and 0.2 parts by weight of diamond powder for seeds of 88 to 105 μm were mixed, packed in a Magnesia container, set in an ultra-high temperature and high pressure device, and heated to about 1400°C under a pressure of 55.5 kilobars for 10 minutes. After holding for a minute, the product was dissolved and separated to recover diamonds. The recovered diamonds were single-crystal diamonds with a diameter ranging from approximately 150 μm to a maximum of 400 μm and well-developed euhedral surfaces.

14頁 ダイヤモンドの収量は、混合した種子用ダイヤモンドの
約6倍であった。なお、比較用実験として上記出発原料
から種子用ダイヤモンド粉末を除外した場合には約57
キロバール以上で群晶状のダイヤモンドしか回収できな
かった。
The yield of 14-page diamonds was about 6 times that of the mixed seed diamonds. In addition, as a comparative experiment, when diamond powder for seeds was excluded from the above starting materials, approximately 57
Only cluster diamonds above kilobar could be recovered.

Claims (4)

【特許請求の範囲】[Claims] (1)金属質融剤と炭素質物質と種子用ダイヤモンド粒
子を挿入した容器を超高温高圧装置内に配置して、前記
金属質融剤と前記炭素質物質との反応によって該炭素質
物質を再結晶化する温度の下限以」−の温度で、この再
結晶化した炭素質物質よりダイヤモンドが自発核形成し
得る最低の圧力を越えない圧力で、目、つ黒鉛−ダイヤ
モンド平衡線よりも高い圧力を印加保持して、前記種子
用ダイヤモンド粒子を成長させることを特徴とするダイ
ヤモンド結晶の製造方法。
(1) A container containing a metallic flux, a carbonaceous substance, and a seed diamond particle is placed in an ultra-high temperature and high pressure device, and the carbonaceous substance is removed by a reaction between the metallic flux and the carbonaceous substance. At a temperature below the lower limit of the recrystallization temperature, at a pressure that does not exceed the lowest pressure at which diamond can spontaneously nucleate from this recrystallized carbonaceous material, and at a pressure that is higher than the graphite-diamond equilibrium line. A method for producing diamond crystals, which comprises growing the seed diamond particles by applying and maintaining pressure.
(2)上記炭素質物質が黒鉛であることを特徴とする特
許請求の範囲第1項記載のダイヤモンド結晶の製造方法
(2) The method for producing a diamond crystal according to claim 1, wherein the carbonaceous material is graphite.
(3)金属質溶媒と再結晶化した炭素質物質と種子用ダ
イヤモンド粒子を挿入した容器を超高温高圧装置内に配
置して、前記金属質溶媒が作用する温2頁 度の下限以上で、しかも前記再結晶化した炭素質物質よ
りダイヤモンドが自発核形成し得る最低の圧力を越えな
い圧力で、且つ黒鉛−ダイヤモンド平衡線よりも高い圧
力を印加保持して、前記種子用ダイヤモンド粒子を成長
させることを特徴とするダイヤモンド結晶の製造方法。
(3) The container containing the metallic solvent, the recrystallized carbonaceous material, and the seed diamond particles is placed in an ultra-high temperature and high pressure device, and the temperature at which the metallic solvent acts is at least the lower limit of 2 degrees, Furthermore, the seed diamond particles are grown by applying and maintaining a pressure that does not exceed the lowest pressure at which diamond can spontaneously nucleate from the recrystallized carbonaceous material and which is higher than the graphite-diamond equilibrium line. A method for producing a diamond crystal, characterized by:
(4)上記再結晶化した炭素質物質が再結晶化黒鉛であ
る特許請求の範囲第3項記載のダイヤモンド結晶の製造
方法。
(4) The method for producing diamond crystals according to claim 3, wherein the recrystallized carbonaceous material is recrystallized graphite.
JP58075418A 1983-04-28 1983-04-28 Manufacture of diamond crystal Granted JPS59203717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075418A JPS59203717A (en) 1983-04-28 1983-04-28 Manufacture of diamond crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075418A JPS59203717A (en) 1983-04-28 1983-04-28 Manufacture of diamond crystal

Publications (2)

Publication Number Publication Date
JPS59203717A true JPS59203717A (en) 1984-11-17
JPH0557019B2 JPH0557019B2 (en) 1993-08-23

Family

ID=13575612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075418A Granted JPS59203717A (en) 1983-04-28 1983-04-28 Manufacture of diamond crystal

Country Status (1)

Country Link
JP (1) JPS59203717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513986A (en) * 2000-11-09 2004-05-13 エレメント シックス (プロプライエタリイ)リミテッド Manufacturing method of carbide abrasive particles
US10370773B2 (en) 2012-03-15 2019-08-06 Element Six Technologies Limited Process for manufacturing synthetic single crystal diamond material using a pressure driven growth process and a plurality of seed pads with each seed pad comprising a plurality of single crystal diamond seeds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010794A (en) * 1973-06-05 1975-02-04
JPS5370095A (en) * 1976-12-03 1978-06-22 Ishizuka Kenkyusho Method of making diamond
JPS5382692A (en) * 1976-12-28 1978-07-21 Ishizuka Kenkyusho Method of treating solvent metal for use in reaction of diamond synthethis
JPS5469590A (en) * 1977-11-15 1979-06-04 Toshiba Corp Diamond synthesizing method
JPS5669211A (en) * 1979-11-01 1981-06-10 Sumitomo Electric Ind Ltd Preparation of diamond

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010794A (en) * 1973-06-05 1975-02-04
JPS5370095A (en) * 1976-12-03 1978-06-22 Ishizuka Kenkyusho Method of making diamond
JPS5382692A (en) * 1976-12-28 1978-07-21 Ishizuka Kenkyusho Method of treating solvent metal for use in reaction of diamond synthethis
JPS5469590A (en) * 1977-11-15 1979-06-04 Toshiba Corp Diamond synthesizing method
JPS5669211A (en) * 1979-11-01 1981-06-10 Sumitomo Electric Ind Ltd Preparation of diamond

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513986A (en) * 2000-11-09 2004-05-13 エレメント シックス (プロプライエタリイ)リミテッド Manufacturing method of carbide abrasive particles
US10370773B2 (en) 2012-03-15 2019-08-06 Element Six Technologies Limited Process for manufacturing synthetic single crystal diamond material using a pressure driven growth process and a plurality of seed pads with each seed pad comprising a plurality of single crystal diamond seeds

Also Published As

Publication number Publication date
JPH0557019B2 (en) 1993-08-23

Similar Documents

Publication Publication Date Title
US5772756A (en) Diamond synthesis
JP3318002B2 (en) Reaction vessel for diamond synthesis
JP2015511930A5 (en)
JP3259384B2 (en) Method of synthesizing diamond single crystal
US3442616A (en) Method of making synthetic diamond crystals
JPS59203717A (en) Manufacture of diamond crystal
US4045186A (en) Method for producing large soft hexagonal boron nitride particles
JPS6124328B2 (en)
CA1157626A (en) Process for growing diamonds
US3124422A (en) Synthesis of diamonds
US3773903A (en) Method of manufacturing diamond crystals
JPS6225601B2 (en)
JP3282249B2 (en) Method of synthesizing diamond single crystal
JPS6225602B2 (en)
RU2061654C1 (en) Solvent for synthesis of thermostable monocrystalline diamonds
JP2932300B2 (en) Diamond synthesis method
JPH0330828A (en) Synthesizing of diamond
JP3259383B2 (en) Method of synthesizing diamond single crystal
JPS5848483B2 (en) Synthesis method of cubic boron titanide
JPH0433489B2 (en)
JPS59169918A (en) Synthesis of diamond
JPS59164609A (en) Method for synthesizing diamond
JPH06165929A (en) Method for synthesizing diamond single crystal
JPH06238154A (en) Synthesizing method for diamond
JPS6384627A (en) Production of diamond crystal