JP2932300B2 - Diamond synthesis method - Google Patents

Diamond synthesis method

Info

Publication number
JP2932300B2
JP2932300B2 JP2126439A JP12643990A JP2932300B2 JP 2932300 B2 JP2932300 B2 JP 2932300B2 JP 2126439 A JP2126439 A JP 2126439A JP 12643990 A JP12643990 A JP 12643990A JP 2932300 B2 JP2932300 B2 JP 2932300B2
Authority
JP
Japan
Prior art keywords
diamond
hydrocarbon
pressure
synthesis method
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2126439A
Other languages
Japanese (ja)
Other versions
JPH0421510A (en
Inventor
昭史 小野寺
嘉一 水渡
康弘 森上
博 石塚
暁 細見
勇夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO KK
Original Assignee
ISHIZUKA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO KK filed Critical ISHIZUKA KENKYUSHO KK
Priority to JP2126439A priority Critical patent/JP2932300B2/en
Publication of JPH0421510A publication Critical patent/JPH0421510A/en
Application granted granted Critical
Publication of JP2932300B2 publication Critical patent/JP2932300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はダイヤモンド合成法、特に炭化水素を出発材
料として用い、8族金属等、融剤金属の非存在下で高温
・高圧に供してダイヤモンドを合成する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for synthesizing a diamond, particularly using a hydrocarbon as a starting material and subjecting the diamond to high temperature and high pressure in the absence of a flux metal such as a Group 8 metal. To a method for synthesizing

〔従来技術及び問題点〕[Prior art and problems]

炭素質物質をダイヤモンドが熱力学的に安定な圧力・
温度領域に供して合成する方法には、8族金属、典型的
にはCoまたはNi系の単体金属又は合金に一旦溶解し、ダ
イヤモンドとして析出させるいわゆる融剤方法、及び圧
力・温度の作用のみにより相転移を起こさせる直接転換
法が知られている。圧力・温度条件、試料容積、及び成
長の制御可能性については前者の方が有利であり、工業
的にはこの方法がより広範に利用されている。しかしこ
の方法で得られたダイヤモンドには融剤金属やその炭化
物の混入が避けられず、これが天然ダイヤモンドに比べ
て、電気的、または磁気的性質が劣る主因の一つとなっ
ている。生成物のこのような性質に関しては直接転換法
の方が有利であり、従ってこの方法の開発が望まれる。
従来この方法では、非ダイヤモンド炭素が10GPa以上の
圧力に供される。所要圧力は爆薬爆発時の衝撃波によ
り、或いはプレスを用いて発生される。前者では高圧に
供される時間が著しく短いため生成ダイヤモンド結晶粒
が成長できず、一方後者の場合、発生圧力は融剤法に比
べて著しく高いので、圧力の封じ込め手段のためにより
大きな容積を割かれ、また装置部材の補強に大掛かりな
構成を必要とし、このため試料の収容に利用可能な容積
は大巾に減少する、という問題が存在する。
Diamond has a thermodynamically stable pressure
The method of synthesizing by subjecting to the temperature range includes a so-called flux method in which the metal is once dissolved in a Group 8 metal, typically a Co or Ni-based simple metal or alloy, and precipitated as diamond, and only by the action of pressure and temperature. Direct conversion methods that cause a phase transition are known. The former is more advantageous in terms of pressure / temperature conditions, sample volume, and controllability of growth, and this method is more widely used industrially. However, the diamond obtained by this method is inevitably mixed with a flux metal or its carbide, which is one of the main causes of inferior electrical or magnetic properties as compared with natural diamond. With respect to such properties of the product, the direct conversion method is more advantageous and therefore development of this method is desired.
Conventionally, in this method, non-diamond carbon is subjected to a pressure of 10 GPa or more. The required pressure is generated by a shock wave at the time of explosive explosion or by using a press. In the former case, the generated diamond grains cannot grow due to the extremely short time of being subjected to high pressure, while in the latter case, the generated pressure is significantly higher than in the flux method, so that a larger volume is required due to the pressure containment means. In addition, there is a problem that a large-scale structure is required for reinforcing the device members, so that the volume available for accommodating the sample is greatly reduced.

ところで、「ザ・ジャーナル・オブ・フィジカル・ケ
ミストリー誌(The Journal of Physical Chemistr
y)」96巻(1965年)3063頁〜におけるウェントーフ
(R.H.Wentorf)の論文には、カンフェンを含むいくつ
かの有機化合物を、約150khar(15GPa)の圧力、2000〜
2300℃の温度に供することによりダイヤモンドを合成す
ることが記載されている。抵抗変化の観察によりpbの相
転移を160kbar(16GPa)に置く当時の圧力スケールはや
や不正確なことが知られているが、今日最も信頼されて
いるスケールに換算しても12GPa以上の圧力を必要とす
ることが理解される。
By the way, "The Journal of Physical Chemistr
y) ”96 (1965) pp. 3063- RHentorf's paper states that some organic compounds, including camphene, were exposed to pressures of about 150 khar (15 GPa), 2000-
It is described that a diamond is synthesized by subjecting to a temperature of 2300 ° C. It is known that the pressure scale at the time of setting the phase transition of pb to 160 kbar (16 GPa) by observation of the resistance change is slightly inaccurate, but even if converted to the most trusted scale today, the pressure scale of 12 GPa or more is known. It is understood that it is necessary.

〔発明の目的、要旨及び構成〕[Object, gist and structure of the invention]

本発明はこのような従来の直接転換法における問題に
対する一つの解決策を提供することを目的とするもので
あり、その要旨は、炭化水素系材料、特に環式分子構造
の炭素化合物を本質的に、8族金属の非存在下で耐火金
属質の容器に入れ、少なくとも6GPa、700℃以上の圧力
・温度に供することを特徴とするダイヤモンド合成法に
ある。
An object of the present invention is to provide a solution to such a problem in the conventional direct conversion method. The gist of the present invention is to provide a hydrocarbon-based material, particularly a carbon compound having a cyclic molecular structure. Further, there is provided a diamond synthesizing method characterized in that it is placed in a refractory metal container in the absence of a Group 8 metal and subjected to a pressure and temperature of at least 6 GPa and 700 ° C. or more.

本発明においては出発物質としての炭素質物質は、操
作性の面から、常温で固体の炭化水素、特に縮合多環式
炭化水素、環式テルペン炭化水素、及び架橋環式炭化水
素が好適で、具体的にはカンフェン、アダマンタン(共
にC10H16)及びフルオレン(C13H10)等を挙げることが
できる。
In the present invention, the carbonaceous material as a starting material is preferably a hydrocarbon which is solid at normal temperature, particularly a condensed polycyclic hydrocarbon, a cyclic terpene hydrocarbon, and a bridged cyclic hydrocarbon, in terms of operability, Specific examples include camphene, adamantane (both C 10 H 16 ) and fluorene (C 13 H 10 ).

この出発物質は、耐火金属、典型的にはTa、Mo、Ti、
またはZr製の容器に入れて密封し、パイロフィライトや
ろう石のような圧力媒体中に埋め、油圧式やリンク式の
各種高圧装置に装填する。少なくとも5GPa、より好まし
くは6〜10GPaの圧力、1300℃以下の温度に数分間供す
ることにより、ダイヤモンドへの転換を完成させる。こ
の程度の温度・圧力条件であれば、現在ダイヤモンドの
工業的製造に用いられている合成設備がそのまま、或い
は多少の改善を加えることにより、使用可能となる。
This starting material is a refractory metal, typically Ta, Mo, Ti,
Alternatively, they are sealed in a Zr container, buried in a pressure medium such as pyrophyllite or pyroxene, and loaded into various hydraulic or link type high pressure devices. The conversion to diamond is completed by subjecting to a pressure of at least 5 GPa, more preferably 6-10 GPa, at a temperature of 1300 ° C. or less for several minutes. Under such temperature and pressure conditions, the synthesis equipment currently used for industrial production of diamond can be used as it is or with some improvement.

得られたダイヤモンドには、工具作製工程における熱
の、或いは切削や研削加工時に発生する熱の下でダイヤ
モンドの黒鉛化を促進する金属を全く含まないので、天
然ダイヤモンドと同等の耐熱性が得られる。更に、金属
分が含まれていないことにより、電着ダイヤモンド工具
の作製工程において、ノジュールを生じることもない。
Since the obtained diamond does not contain any metal that promotes the graphitization of diamond under the heat generated during the tool making process or the heat generated during cutting and grinding, the same heat resistance as natural diamond is obtained. . Further, since no metal is contained, nodules do not occur in the process of producing the electrodeposited diamond tool.

以上のように、天然ダイヤモンド並みの特性を有する
ことに加えて、合成条件の選択による粒度、形状の制御
が可能であるので、合成ダイヤモンドの用途の拡大が期
待される。
As described above, in addition to having characteristics similar to those of natural diamond, it is possible to control the particle size and shape by selecting synthesis conditions, so that the use of synthetic diamond is expected to expand.

次に本発明を実施例、並びに図面により説明する。 Next, the present invention will be described with reference to examples and drawings.

〔実施例〕〔Example〕

1.第1図に概略示すような構成において、カンフェン20
mg(純度99%)からなる試料1を、外径2.5mm、高さ4mm
のTa製容器2に入れてTa板の蓋3で密封し、パイロフィ
ライトの圧力媒体4中に埋め込んだ。全体を八面体アン
ビル型高圧装置に装填し、8GPaの圧力を加える一方、金
属電極5,6を介して通電により1290℃に加熱し、この条
件を30分間保持した。温度測定は蓋3に接して配置した
熱電対7によった。
1. In the configuration schematically shown in Fig. 1,
Sample 1 consisting of mg (99% purity) was prepared with an outer diameter of 2.5 mm and a height of 4 mm.
Was sealed in a Ta container 2 and sealed with a Ta plate lid 3 and embedded in a pyrophyllite pressure medium 4. The whole was charged into an octahedral anvil-type high-pressure apparatus, and while applying a pressure of 8 GPa, it was heated to 1290 ° C. by energization through metal electrodes 5 and 6, and this condition was maintained for 30 minutes. The temperature was measured by a thermocouple 7 placed in contact with the lid 3.

圧力・温度を低下させて生成物を取出した。顕微鏡観
察により、第2図に示すような一辺が100μmの微結晶
の集合が認められ、これらはX線回折図(第3図)及に
ラマン分光図から立方晶ダイヤモンドと同定された。
The product was taken out by reducing the pressure and temperature. Microscopic observation revealed a collection of microcrystals each having a side length of 100 μm as shown in FIG. 2, and these were identified as cubic diamonds from the X-ray diffraction diagram (FIG. 3) and the Raman spectroscopic diagram.

2.カンフェンの代りにフルオレン20mgを用いて、上記実
施例の操作を繰り返した。ただし圧力・温度は7GPa,900
℃を10分間保った。
2. The operation of the above example was repeated using fluorene 20 mg instead of camphene. However, pressure and temperature are 7GPa, 900
C was kept for 10 minutes.

X線回折測定により、生成物の中に少量のダイヤモン
ド結晶が認められた。
X-ray diffraction measurements revealed a small amount of diamond crystals in the product.

以上詳述したように本発明においては、ある種の有機
化合物を用いることにより、従来方法に比べて大幅に低
い圧力・温度条件でダイヤモンドへの直接転換を行うこ
とができるようにしたものである。
As described above in detail, in the present invention, by using a certain kind of organic compound, direct conversion to diamond can be performed under significantly lower pressure and temperature conditions as compared with the conventional method. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の実施に利用可能な試料の構成を示
す略図、第2図は実施例で生成したダイヤモンドの結晶
の形状を示す顕微鏡写真、第3図はこの結晶のX線回折
図である。 1……試料、2……Ta製容器、 3……Ta板、 4……パイロフィライト圧力媒体、 5,6……電極、7……熱電対。
FIG. 1 is a schematic diagram showing the structure of a sample that can be used for carrying out the method of the present invention, FIG. 2 is a micrograph showing the shape of a diamond crystal produced in the example, and FIG. 3 is an X-ray diffraction diagram of this crystal. It is. 1 ... sample, 2 ... Ta container, 3 ... Ta plate, 4 ... pyrophyllite pressure medium, 5, 6 ... electrode, 7 ... thermocouple.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細見 暁 神奈川県平塚市山下358番地の1 (72)発明者 吉田 勇夫 神奈川県茅ケ崎市堤1番地1―12―502 審査官 安齋 美佐子 (58)調査した分野(Int.Cl.6,DB名) B01J 3/06 C01B 31/06 CA(STN)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akira Hosomi 358-1, Yamashita, Hiratsuka-shi, Kanagawa Prefecture (72) Inventor Isao Yoshida 1-1-12-tsutsumi, Tsutsumi, Chigasaki-shi, Kanagawa Examiner Misako Anzai (58) Survey Field (Int.Cl. 6 , DB name) B01J 3/06 C01B 31/06 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】環式分子構造の炭化水素系材料を本質的に
8属金属の非存在下で耐火金属質の容器に入れ、6GPa以
上10GPa以下の圧力、700℃以上1300℃以下の温度に同時
に供することを特徴とする、ダイヤモンド合成法。
1. A hydrocarbon-based material having a cyclic molecular structure is placed in a refractory metal container essentially in the absence of a Group 8 metal, and is subjected to a pressure of 6 GPa to 10 GPa and a temperature of 700 ° C. to 1300 ° C. A method for synthesizing diamond, characterized in that it is provided simultaneously.
【請求項2】上記炭化水素系材料が本質的に縮合多環式
炭化水素、環式テルペン炭化水素、及び架橋環式炭化水
素から選ばれる一つである、請求項1に記載のダイヤモ
ンド合成法。
2. The diamond synthesis method according to claim 1, wherein said hydrocarbon-based material is essentially one selected from a condensed polycyclic hydrocarbon, a cyclic terpene hydrocarbon, and a bridged cyclic hydrocarbon. .
【請求項3】上記炭化水素系材料が本質的にカンフェ
ン、アダマンタン(共にC10H16)及びフルオレン(C13H
10)から選ばれる少なくとも一者から成る、請求項2に
記載のダイヤモンド合成法。
3. The hydrocarbon-based material is essentially camphene, adamantane (both C 10 H 16 ) and fluorene (C 13 H 16 ).
Consisting of at least one party selected from 10), a diamond synthesis method according to claim 2.
【請求項4】上記容器が本質的にTa、Ti、Zr、またはMo
を主体とする金属で構成される、請求項1に記載のダイ
ヤモンド合成法。
4. The method of claim 1, wherein the container is essentially Ta, Ti, Zr, or Mo.
The diamond synthesis method according to claim 1, wherein the diamond synthesis method is mainly composed of a metal.
JP2126439A 1990-05-16 1990-05-16 Diamond synthesis method Expired - Fee Related JP2932300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2126439A JP2932300B2 (en) 1990-05-16 1990-05-16 Diamond synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2126439A JP2932300B2 (en) 1990-05-16 1990-05-16 Diamond synthesis method

Publications (2)

Publication Number Publication Date
JPH0421510A JPH0421510A (en) 1992-01-24
JP2932300B2 true JP2932300B2 (en) 1999-08-09

Family

ID=14935235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2126439A Expired - Fee Related JP2932300B2 (en) 1990-05-16 1990-05-16 Diamond synthesis method

Country Status (1)

Country Link
JP (1) JP2932300B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245310B2 (en) * 2001-08-30 2009-03-25 忠正 藤村 Diamond suspension aqueous solution excellent in dispersion stability, metal film containing this diamond, and product thereof
US20090285744A1 (en) * 2005-06-29 2009-11-19 Nippon Kayaku Kabushiki Kaisha Process For Producing Fine Diamond and Fine Diamond

Also Published As

Publication number Publication date
JPH0421510A (en) 1992-01-24

Similar Documents

Publication Publication Date Title
US4931068A (en) Method for fabricating fracture-resistant diamond and diamond composite articles
US4547257A (en) Method for growing diamond crystals
US5772756A (en) Diamond synthesis
US2992900A (en) Method for producing improved diamond crystals
EP0470623B1 (en) Method of synthesizing single diamond crystals of high thermal conductivity
KR100503542B1 (en) Diamond growth
JPH06154578A (en) Reaction container for diamond synthesis
JPH0745012B2 (en) Method for producing crushable diamond particles
JP2932300B2 (en) Diamond synthesis method
EP0255327A2 (en) Cubic boron nitride manufacture
US3442616A (en) Method of making synthetic diamond crystals
SU645505A1 (en) Method of preparing synthetic diamonds
US3773903A (en) Method of manufacturing diamond crystals
Hong et al. Diamond formation from a system of SiC and a metal
Agarwala et al. A study of graphite-diamond conversion using nickel, invar and monel as catalyst-solvents
JPH05123562A (en) Synthesis of diamond using phosphorus catalyst
JPH0437650A (en) Fracture resisting diamond and processing of diamond-combined article
JPS59164605A (en) Method for synthesizing diamond
US3536447A (en) Method of preparing synthetic diamond crystals
EP1023246A1 (en) Diamond core with a diamond coating
JPS6225602B2 (en)
JPS5848483B2 (en) Synthesis method of cubic boron titanide
JPS59203717A (en) Manufacture of diamond crystal
JPH0330828A (en) Synthesizing of diamond
JPS63236531A (en) Synthesis of diamond

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees