JPS63236531A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS63236531A
JPS63236531A JP6972387A JP6972387A JPS63236531A JP S63236531 A JPS63236531 A JP S63236531A JP 6972387 A JP6972387 A JP 6972387A JP 6972387 A JP6972387 A JP 6972387A JP S63236531 A JPS63236531 A JP S63236531A
Authority
JP
Japan
Prior art keywords
diamond
catalyst
graphite
carbon material
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6972387A
Other languages
Japanese (ja)
Inventor
Manabu Miyamoto
学 宮本
Kojiro Kitahata
北畑 浩二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6972387A priority Critical patent/JPS63236531A/en
Publication of JPS63236531A publication Critical patent/JPS63236531A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0625Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Abstract

PURPOSE:To synthesize diamond having a particle size of 0.4mm or more, by interposing a metal having at least one hole communicating with the interfaces of a carbonaceous substance and a catalyst and inert to the synthesis of diamond between the carbonaceous substance and the catalyst to perform operation. CONSTITUTION:A carbonaceous substance bed 4 composed of amorphous carbon or pyrolitic graphite and a catalyst bed 3 composed of a substance containing 75wt.% or more of iron are arranged in opposed relation to each other and a metal 5 having at least one hole communicating with the interfaces of both beds and inert to the synthesis of diamond is interposed between the carbonaceous substance bed 4 and the catalyst bed 3. Then, diamond is synthesized at temp. adjusted to the eutectic temp. of the carbonaceous substance bed 4 and the catalyst bed 3 or more by a graphite heater 1 under pressure equal to or more than a diamond-graphite equilibrium curve. By this method, amorphous diamond having a large particle size of 0.4mm or more is obtained within a relatively short time wherein a high temp. and high pressure holding time is within 1hr.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンドの合成方法に関し、殊に研削や切
断の為に用いられる工具用砥粒や切削工具用刃先、或は
半導体技術分野におけるヒートシンク(冷却用放熱器)
等の材料として有用な0.4mm以上の大粒ダイヤモン
ド単結晶を合成する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for synthesizing diamond, and in particular to abrasive grains for tools used for grinding and cutting, cutting edges for cutting tools, or heat sinks in the semiconductor technology field. (cooling radiator)
The present invention relates to a method for synthesizing large diamond single crystals with a diameter of 0.4 mm or more, which are useful as materials for such materials.

[従来の技術] ダイヤモンドは高硬度であることを利用して古くは切削
工具用途を中心に広く利用されてきた。
[Prior Art] Due to its high hardness, diamond has been widely used in cutting tools in the past.

一方近年では熱伝導度が大きいこと、不純物のドーピン
グにより半導体としての利用可能性があること等に着目
され、前者の特性を利用するものとしてIC(集積回路
)基板のヒートシンク、また後者の特性を利用するもの
として半導体素子等の電子技術分野への応用が進められ
ている。その為ダイヤモンドの合成技術を確立すること
が一層強く要望される様になり、色々な方法が開発され
つつある。
On the other hand, in recent years, attention has been focused on the high thermal conductivity and the possibility of using it as a semiconductor by doping with impurities. Applications to electronic technology fields such as semiconductor devices are being advanced. For this reason, there is an even stronger need to establish diamond synthesis technology, and various methods are being developed.

ダイヤモンドの合成法としては、最近、気体状炭化水素
を炭素原料として低圧条件下で行なう気相合成法が開発
されているが、この方法によって合成されるダイヤモン
ドは粒径の小さいものしか得られず、ダイヤモンドを大
粒の単結晶として合成したいときには、従来の高温・高
圧法を採用すべきであると考えられている。
As a method for synthesizing diamonds, a gas phase synthesis method has recently been developed in which gaseous hydrocarbons are used as a carbon raw material and the process is carried out under low pressure conditions, but the diamonds synthesized by this method can only be obtained with small particle sizes. It is believed that when it is desired to synthesize diamond as a large single crystal, the conventional high temperature and high pressure method should be used.

[発明が解決しようとする問題点] 大粒のダイヤモンド単結晶を目標とする合成方法として
は種々知られているが、その代表例としてはバーバード
・エム・ストロング(H,M。
[Problems to be Solved by the Invention] Various synthesis methods are known for the purpose of producing large diamond single crystals, and a representative example is that of Barbard M. Strong (H.M.).

Strong)がJ、Phys、fhem、75. (
1971) 1833に発表したいわゆる温度差法を挙
げることができる。
Strong) is J, Phys, fhem, 75. (
One example is the so-called temperature difference method published in 1833 (1971).

この方法はある方法で得られたダイヤモンドを原料とし
て大粒化を図る技術に関するものであって、既成の合成
ダイヤモンドを炭素源として高温側に配置すると共に低
温側には金属触媒を前記炭素源に接触する様に配置し、
更に金属触媒の最も低温となる部分にダイヤモンド種結
晶を配置しておき、最高温部と最低温部の温度差を約5
0℃に保ち、この温度差によって炭素源が金属触媒中を
拡散しつつ前記種結晶上にダイヤモンドとして晶出し大
粒ダイヤモンド単結晶として成長させるものである。し
かしながら、この方法では大粒のダイヤモンド単結晶を
得るのに長時間を要するという欠点があり、例えば2■
の大きさまで成長させるのに10〜30時間もの長時間
が必要であった。
This method is related to a technique for increasing the size of diamond particles using diamond obtained by a certain method as a raw material, and it involves placing a ready-made synthetic diamond on the high temperature side as a carbon source, and placing a metal catalyst on the low temperature side in contact with the carbon source. Place it so that
Furthermore, a diamond seed crystal is placed in the lowest temperature part of the metal catalyst to reduce the temperature difference between the highest temperature part and the lowest temperature part by approximately 5.
The temperature is maintained at 0° C., and due to this temperature difference, the carbon source diffuses through the metal catalyst and crystallizes as diamond on the seed crystal to grow as a large diamond single crystal. However, this method has the disadvantage that it takes a long time to obtain large diamond single crystals.
It took a long time of 10 to 30 hours to grow to this size.

一方比較的短時間にダイヤモンド(但し後述の如く小粒
径ダイヤモンド)を合成する方法は、上記技術よりも以
前に既に開発されており、例えば特公昭37−4407
号に開示された技術がある。この方法は上記技術と同じ
く八−バード・エム・ストロングによるものであり、周
期律表第■族(鉄族、白金族)に属する元素若しくはC
r。
On the other hand, methods for synthesizing diamond (however, small-diameter diamond as described later) in a relatively short period of time have already been developed prior to the above-mentioned technology.
There is a technology disclosed in the issue. This method, like the above-mentioned technique, is based on 8-Bird M. Strong, and uses elements belonging to group Ⅰ of the periodic table (iron group, platinum group) or C
r.

Ta、Mn等の元素或はこれらの元素を含む合金を触媒
とし、該触媒と炭素源(黒鉛)とを共存させた状態にし
て両者の共晶温度以上の温度で且つダイヤモンド−黒鉛
平衡線以上の圧力(ダイヤモンドの熱力学的に安定な条
件)下に保持して合成するものである。この様な構成を
採用することによって、30分以下という短時間でダイ
ヤモンドを合成することに、成功しているが、当該方法
は元々ダイヤモンド粉末を得る目的で行なわれるもので
あるので、0.4 m+++以上の大粒ダイヤモンド単
結晶を得ることはほとんど不可能である。
An element such as Ta, Mn, or an alloy containing these elements is used as a catalyst, and the catalyst and a carbon source (graphite) are made to coexist at a temperature higher than the eutectic temperature of both and higher than the diamond-graphite equilibrium line. It is synthesized by holding the diamond under pressure (conditions under which diamond is thermodynamically stable). By adopting such a configuration, we have succeeded in synthesizing diamond in a short time of 30 minutes or less, but since this method was originally used for the purpose of obtaining diamond powder, It is almost impossible to obtain a large diamond single crystal with a diameter of m+++ or more.

本発明は上述した技術的課題を解決する為になされたも
のであって、その目的とするところは、高温・高圧での
保持時間が1時間以内と比較的短時間であり、且つ0.
4 mm以上の大粒ダイヤモンド単結晶が得られる様な
ダイヤモンドの合成方法を提供することにある。
The present invention has been made to solve the above-mentioned technical problems, and its purpose is to provide a relatively short holding time of less than 1 hour at high temperature and high pressure, and to provide a 0.
The object of the present invention is to provide a method for synthesizing diamond that can yield large diamond single crystals of 4 mm or more.

[問題点を解決する為の手段] 上記目的を達成し得た本発明とは、炭素物質層と触媒層
を対向配置し、両者の共晶温度以上の温度で且つダイヤ
モンド−黒鉛平衡線以上の圧力の下でダイヤモンドを合
成する方法において、炭素物質として非晶質炭素又はパ
イロリティック黒鉛を使用し、触媒として鉄を75重量
%以上含む物質を使用し、且つ炭素物質と触媒との間に
、両者の界面に連通ずる少なくとも1個の孔を有し且つ
ダイヤモンド合成に不活性な金属を介在させつつ操業す
る点に要旨を有するダイヤモンドの合成方法である。
[Means for Solving the Problems] The present invention, which has achieved the above object, has a carbon material layer and a catalyst layer that are disposed facing each other, and a temperature that is higher than the eutectic temperature of both and higher than the diamond-graphite equilibrium line. In the method of synthesizing diamond under pressure, amorphous carbon or pyrolytic graphite is used as the carbon material, a substance containing 75% by weight or more of iron is used as the catalyst, and between the carbon material and the catalyst, This method of synthesizing diamond is characterized in that it has at least one hole communicating with the interface between the two, and that it is operated while interposing a metal that is inert to diamond synthesis.

[作用] 本発明は上述の如く構成されるが、要は高温・高圧法を
基本とし、炭素物質と触媒の種類を限定すれば従来法よ
りも短時間でダイヤモンドの結晶が成長することを見出
したことに基づくものである。即ち炭素物質として非晶
質炭素又はパイロリティック黒鉛を使用し、且つ触媒と
して鉄を75重量%以上含む物質を使用し、更にこの様
な炭素物質と触媒を対向配置して両者の共晶点以上の温
度で且つダイヤモンド−黒鉛平衡線以上の圧力の下でダ
イヤモンドを合成すれば短時間にダイヤモンド結晶が成
長するという知見が得られたのである。ダイヤモンド結
晶の成長が促進されたことについての理論的背景は後に
考察するが、上記の様な構成だけでは、ダイヤモンドの
結晶成長時間が短縮されるという効果に止まり、細長ダ
イヤモンドしか得られなかった。
[Function] The present invention is constructed as described above, but the key point is that it is based on a high temperature and high pressure method, and it has been discovered that by limiting the types of carbon materials and catalysts, diamond crystals can grow in a shorter time than conventional methods. This is based on the fact that That is, amorphous carbon or pyrolytic graphite is used as the carbon material, a material containing 75% by weight or more of iron is used as the catalyst, and the carbon material and the catalyst are placed opposite each other so that the eutectic point or higher of the two is achieved. It was discovered that diamond crystals can grow in a short time if diamond is synthesized at a temperature of 100 mL and under a pressure above the diamond-graphite equilibrium line. The theoretical background behind the promotion of diamond crystal growth will be discussed later, but with the above configuration alone, the effect of shortening the diamond crystal growth time was limited, and only elongated diamonds were obtained.

即ち上記構成方法において核生成数を制限するという格
別の手段を講じないとすると、多数発生した核が個々に
長さ方向及び幅方向へ成長しようとするが幅方向では隣
り同士が衝突し合い幅方向への成長を阻害する。従って
長さ方向に伸びた細長いダイヤモンド結晶が得られるこ
とになるのである。
In other words, if no special measures are taken to limit the number of nuclei generated in the above configuration method, a large number of generated nuclei will try to grow individually in the length and width directions, but in the width direction, adjacent ones will collide with each other and the width will increase. inhibit growth in the direction. Therefore, an elongated diamond crystal extending in the length direction is obtained.

そこで本発明者らは、核生成を制御する何らかの手段を
講じる必要があるとの着想のもとで更に鋭意研究した結
果、炭素物質と触媒との間に、両者の界面に連通ずる少
なくとも1個の孔を有し且つダイヤモンド合成に不活性
な金属を介在させれば、希望する大粒ダイヤモンド単結
晶が得られることを究明し、本発明を完成するに至った
Therefore, the present inventors conducted further intensive research based on the idea that it was necessary to take some means to control nucleation, and as a result, they discovered that at least one bond between the carbon material and the catalyst communicates with the interface between the two. The present inventors have discovered that the desired large-grain diamond single crystal can be obtained by intervening a metal that has pores and is inert to diamond synthesis, and has completed the present invention.

本発明で用いる非晶質炭素とは無定形炭素とも呼ばれて
いるものであり、結晶構成としては黒鉛の結晶構成とほ
ぼ同様であるが、結晶が徹/J〜で集合状態が不規則で
ある点が通常の黒鉛と異なる。
The amorphous carbon used in the present invention is also called amorphous carbon, and its crystal structure is almost the same as that of graphite, but the crystals are 1/J~ and the aggregation state is irregular. It differs from normal graphite in one respect.

又パイロリティック黒鉛とは、気相炭素化によフて工業
的に製造し得る炭素材料であり、一般にメタン、プロパ
ン、ベンゼン、アセチレン等の炭化水素を高温に加熱さ
れた人造黒鉛に接触させることによフて得られるもので
ある。
Pyrolytic graphite is a carbon material that can be industrially produced by vapor phase carbonization, and is generally produced by bringing hydrocarbons such as methane, propane, benzene, acetylene, etc. into contact with artificial graphite heated to high temperature. It can be obtained by

本発明で用いる触媒としては純鉄が最適であるが、鉄を
75重量%(以下車に%という)以上含む物質を用いた
場合であっても本発明の目的は達成される。ここに言う
物質とはFe基合金(例えばFe−Ni、Fa−Co、
Fe−Co−Ni等)である、即ち鉄の含有量が75%
未満の物質を触媒として用いた場合には、結晶が得られ
たとしても微細なものとなる(後述の実施例4参照)。
Although pure iron is most suitable as the catalyst used in the present invention, the object of the present invention can be achieved even when a substance containing 75% by weight or more of iron (hereinafter referred to as ``car'') or more is used. The substances mentioned here are Fe-based alloys (e.g. Fe-Ni, Fa-Co,
Fe-Co-Ni, etc.), i.e. the iron content is 75%
If less than 100% of the substance is used as a catalyst, even if crystals are obtained, they will be fine (see Example 4 below).

一方本発明で用いるダイヤモンド合成に不活性な金属と
は、例えばPt、Ti、Nb、Cu。
On the other hand, metals inactive for diamond synthesis used in the present invention include, for example, Pt, Ti, Nb, and Cu.

Hf、V、Ta、Mo、W、Au、Ag等が挙げられ、
これらの不活性金属を炭素物質と触媒との間に介在させ
る方法としては、めっき法、真空蒸着法、粉末塗布法或
は箔状金属をはさみ込む方法等が挙げられる。これらの
不活性金属は炭素物質と触媒の間に介在させ、炭素物質
と触媒の反応を抑制することによりダイヤモンドの核生
成を抑制するものである。尚この不活性金属は炭素物質
と鉄触媒の化学的連通を保障し、核生成を行なうものと
して両者に通じる貫通した孔を少なくとも1個有するこ
とが必要である。
Examples include Hf, V, Ta, Mo, W, Au, Ag, etc.
Examples of methods for interposing these inert metals between the carbon material and the catalyst include plating methods, vacuum evaporation methods, powder coating methods, and methods of sandwiching metal foils. These inert metals are interposed between the carbon material and the catalyst to suppress the reaction between the carbon material and the catalyst, thereby suppressing diamond nucleation. Note that this inert metal ensures chemical communication between the carbon material and the iron catalyst and is required to have at least one penetrating hole communicating with the two to perform nucleation.

上記の趣旨から明らかであるが、本発明においては炭素
物質、触媒及び不活性金属のいずれの要件を欠いても本
発明の目的は達成されない。例えば触媒として従来から
用いられているCo、Ni等を使用した場合には、ダイ
ヤモンドの単結晶は得られるものの、微細な結晶となる
(後述の実施例4参照)。又炭素物質として従来から用
いられている通常の黒鉛を使用した場合には、大粒ダイ
ヤモンド単結晶は得られない(後述の比較例2参照)。
As is clear from the above gist, the object of the present invention cannot be achieved even if any of the requirements for carbon material, catalyst, and inert metal are missing. For example, if Co, Ni, etc., which have been conventionally used as a catalyst, are used, a single crystal of diamond can be obtained, but it will be a fine crystal (see Example 4 below). Furthermore, when ordinary graphite, which has been conventionally used as a carbon material, is used, a large diamond single crystal cannot be obtained (see Comparative Example 2 described later).

尚本発明における「大粒ダイヤモンド」とは長袖が0.
5 mm以上、短軸が0.3 mm以上のものを目標と
し、アスペクト比(長軸長さ対短軸長さ)は1〜2程度
のものを目標とするが、勿論こガらは本発明を制限する
要素ではない、 本発明によって大粒ダイヤモンド単結晶が得られる理由
の詳細は不明であるが、おそらく炭素物質としての非晶
質炭素やパイロリティック黒鉛が緻密で且つ組織が連続
的であるため、鉄触媒との効果と相俟ってダイヤモンド
の成長が連続的に且つ迅速に進行し、更に不活性金属の
作用により核生成数を制限することによって細長いダイ
ヤモンドの成長を阻止しつつ大粒ダイヤモンド単結晶に
なるものと思われる。
In addition, in the present invention, "large diamond" means long sleeves of 0.
The goal is to have a diameter of 5 mm or more, a short axis of 0.3 mm or more, and an aspect ratio (major axis length to short axis length) of about 1 to 2, but of course these are Although the details of the reason why large-grain diamond single crystals can be obtained by the present invention are not known, this is not a factor that limits the invention, but it is probably because the amorphous carbon or pyrolytic graphite as the carbon material is dense and has a continuous structure. Therefore, together with the effect of iron catalyst, diamond growth progresses continuously and rapidly, and furthermore, by limiting the number of nucleation by the action of inert metal, large diamonds are formed while preventing the growth of elongated diamonds. It is thought to be a single crystal.

尚本発明においては、不活性金属の孔の部分にダイヤモ
ンド種結晶を配置することが好ましい実施態様として挙
げられる(後述の実施例2参照)。この様な構成を採用
すれば、配置した種結晶が新たに発生しようとする核生
成部分を取込む様にして速やかに成長するので、新たな
核形成が抑制されるのである。従って種結晶の(100
)面が炭素物質と触媒の界面に平行となる様に、種結晶
を配置しておけば該種結晶の成長が一層速くなり、より
優れた効果が得られる。
In the present invention, a preferred embodiment is to arrange diamond seed crystals in the pores of the inert metal (see Example 2 below). If such a configuration is adopted, the placed seed crystals will quickly grow to take in newly generated nucleation portions, thereby suppressing new nucleation. Therefore, the seed crystal (100
If the seed crystal is arranged so that the ) plane is parallel to the interface between the carbon material and the catalyst, the growth of the seed crystal will be faster and more excellent effects will be obtained.

[実施例] 実施例1 第1図は本発明方法を実施する為の構成を示す概略説明
図であり、図中1は黒鉛ヒーター、2は絶縁部材として
の塩化ナトリウム、3は触媒、4は炭素物質、5は孔部
を有する不活性金属を夫々示す。
[Example] Example 1 Figure 1 is a schematic explanatory diagram showing the configuration for carrying out the method of the present invention, in which 1 is a graphite heater, 2 is sodium chloride as an insulating member, 3 is a catalyst, and 4 is a 5 represents a carbon material, and 5 represents an inert metal having pores.

第1図に示した構成において、炭素物質4として径8 
mm、厚さ2.5 mmのパイロリティック黒鉛、触媒
3として径8 mm、厚さ1y1@の純鉄、及び不活性
金属5として径0.6 mmの孔を21間隔で有する厚
み0.02mmのZr箔を夫々用い、ダイヤモンド合成
を行なった。そして60キロバール、1460℃で15
分間処理したところ、長軸が約1.5 mm。
In the configuration shown in FIG. 1, the carbon material 4 has a diameter of 8
pyrolytic graphite with a diameter of 8 mm and a thickness of 2.5 mm as the catalyst 3, pure iron with a diameter of 8 mm and a thickness of 1y1 as the inert metal 5, and a thickness of 0.02 mm with holes of 0.6 mm in diameter at 21 intervals as the inert metal 5. Diamond synthesis was performed using each of the Zr foils. and 15 at 60 kbar and 1460°C
After processing for minutes, the long axis was approximately 1.5 mm.

短軸が約0.8 mm (アスペクト比1.138)の
大粒ダイヤモンド単結晶が得られた。
A large diamond single crystal with a short axis of about 0.8 mm (aspect ratio 1.138) was obtained.

尚第1図では炭素物質層と触媒層を積層した状態で対向
配置するものについて示したけれども、本発明方法を実
施する為の構成は図示したものに限定されず、例えば円
柱状及び円筒状のものを組合わせて所謂同心円状に対向
配置する様な構成であフても良い。
Although FIG. 1 shows a structure in which the carbon material layer and the catalyst layer are stacked and arranged facing each other, the structure for carrying out the method of the present invention is not limited to that shown in the figure, and for example, a columnar or cylindrical structure may be used. It is also possible to have a structure in which the parts are combined and arranged facing each other in a so-called concentric circle.

比較例1 不活性金属5を用いない以外は実施例1と同様にしてダ
イヤモンドを合成したところ、長軸が約1.50111
1、短軸が0.2 mm (アスペクト比30)以下の
細長ダイヤモンド結晶となった。
Comparative Example 1 Diamond was synthesized in the same manner as in Example 1 except that the inert metal 5 was not used, and the major axis was approximately 1.50111.
1. An elongated diamond crystal with a minor axis of 0.2 mm (aspect ratio 30) or less was obtained.

実施例2 実施例1と同様の構成とし、更にZr箔の孔部に、種結
晶をその(100)面が炭素物質4と触媒3の界面に平
行となる様に配置してダイヤモンドを合成した。そして
60キロバール、1450℃で20分間処理したところ
、長袖方向が(100)で長さが約1.5 mm、短軸
が約1.0 mm(アスクペクト比1.5)の大粒ダイ
ヤモンド車結晶が得られた。
Example 2 Diamond was synthesized using the same configuration as Example 1, and further arranging a seed crystal in the hole of the Zr foil so that its (100) plane was parallel to the interface between the carbon material 4 and the catalyst 3. . When treated at 60 kbar and 1450°C for 20 minutes, a large diamond wheel crystal with a long sleeve direction of (100), a length of about 1.5 mm, and a short axis of about 1.0 mm (aspect ratio 1.5) was obtained. Obtained.

実施例3 第1図に示した構成において、炭素物質4として、フル
フリルアルコールに0.1%HNO,を加え脱水縮合さ
せたものを窒素中でaoo’eで炭化し、更に真空中(
I X 10−’ Torr )にて1900℃で1時
間処理した非晶質炭素を用い、触媒として純鉄を用いて
ダイヤモンド合成を行なった。そして60キロバール、
1450’Cで15分間処理したところ、約1.5 m
mの大粒ダイヤモンド単結晶が得られた。
Example 3 In the configuration shown in FIG. 1, the carbon material 4 was prepared by adding 0.1% HNO to furfuryl alcohol and subjecting it to dehydration condensation, carbonizing it in nitrogen using aoo'e, and further carbonizing it in vacuum (
Diamond synthesis was performed using amorphous carbon treated at 1900° C. for 1 hour at 1×10 −’ Torr and using pure iron as a catalyst. and 60 kbar,
When treated at 1450'C for 15 minutes, the diameter was approximately 1.5 m.
A large diamond single crystal of m was obtained.

比較例2 炭素物質として市販の炭素物質黒鉛又は高結晶黒鉛を用
いる以外は上記実施例3と同様にしてダイヤモンドを合
成したところ、いずれも0.3 mm以下の微細ダイヤ
モンド粒子しか得られなかった。
Comparative Example 2 Diamond was synthesized in the same manner as in Example 3 except that commercially available carbon material graphite or highly crystalline graphite was used as the carbon material, and in all cases only fine diamond particles of 0.3 mm or less were obtained.

実施例4 第1図に示した構成において、炭素物質4として実施例
3に示した非晶質炭素を用い、触媒の種類を変えて60
キロバール、1460℃で15分間処理したところ、下
記第1表の結果が得られた。
Example 4 In the configuration shown in FIG. 1, the amorphous carbon shown in Example 3 was used as the carbon material 4, and the type of catalyst was changed.
When treated at kilobar and 1460° C. for 15 minutes, the results shown in Table 1 below were obtained.

第   1   表 [発明の効果] 以上述べた如く本発明によれば、既述の構成を採用して
操業することによって、短時間で大粒単結晶のダイヤモ
ンドが合唱シ得た。
Table 1 [Effects of the Invention] As described above, according to the present invention, large single-crystal diamonds were obtained in a short period of time by employing and operating the above-described configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為の構成を示す概略説明
図である。 1・・・黒鉛ヒーター  2・・・塩化ナトリウム3・
・・触媒      4・・・炭素物質5・・・不活性
金属
FIG. 1 is a schematic explanatory diagram showing a configuration for implementing the method of the present invention. 1...Graphite heater 2...Sodium chloride 3.
...Catalyst 4...Carbon substance 5...Inert metal

Claims (2)

【特許請求の範囲】[Claims] (1)炭素物質層と触媒層を対向配置し、両者の共晶温
度以上の温度で且つダイヤモンド−黒鉛平衡線以上の圧
力の下でダイヤモンドを合成する方法において、炭素物
質として非晶質炭素又はパイロリティック黒鉛を使用し
、触媒として鉄を75重量%以上含む物質を使用し、且
つ炭素物質と触媒との間に、両者の界面に連通する少な
くとも1個の孔を有し且つダイヤモンド合成に不活性な
金属を介在させつつ操業することを特徴とするダイヤモ
ンドの合成方法。
(1) In a method in which a carbon material layer and a catalyst layer are disposed facing each other and diamond is synthesized at a temperature higher than the eutectic temperature of the two and under a pressure higher than the diamond-graphite equilibrium line, the carbon material is amorphous carbon or Uses pyrolitic graphite, uses a substance containing 75% by weight or more of iron as a catalyst, has at least one pore communicating with the interface between the carbon material and the catalyst, and is incompatible with diamond synthesis. A method for synthesizing diamond, which is characterized in that it is operated in the presence of an active metal.
(2)特許請求の範囲第1項において、不活性金属の孔
の部分にダイヤモンド種結晶を配置するダイヤモンドの
合成方法。
(2) A method for synthesizing diamond according to claim 1, in which diamond seed crystals are placed in the pores of an inert metal.
JP6972387A 1987-03-23 1987-03-23 Synthesis of diamond Pending JPS63236531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6972387A JPS63236531A (en) 1987-03-23 1987-03-23 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6972387A JPS63236531A (en) 1987-03-23 1987-03-23 Synthesis of diamond

Publications (1)

Publication Number Publication Date
JPS63236531A true JPS63236531A (en) 1988-10-03

Family

ID=13411041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6972387A Pending JPS63236531A (en) 1987-03-23 1987-03-23 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS63236531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603995A1 (en) * 1992-12-22 1994-06-29 Sumitomo Electric Industries, Limited Process for the synthesising diamond single crystals
CN103566830A (en) * 2013-03-11 2014-02-12 河南省力量新材料有限公司 Synthesis method of octahedron diamond
RU2704427C1 (en) * 2018-10-30 2019-10-28 Федеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии имени академика Д.С. Коржинского Российской академии наук (ИЭМ РАН) Method of producing diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603995A1 (en) * 1992-12-22 1994-06-29 Sumitomo Electric Industries, Limited Process for the synthesising diamond single crystals
CN103566830A (en) * 2013-03-11 2014-02-12 河南省力量新材料有限公司 Synthesis method of octahedron diamond
RU2704427C1 (en) * 2018-10-30 2019-10-28 Федеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии имени академика Д.С. Коржинского Российской академии наук (ИЭМ РАН) Method of producing diamond

Similar Documents

Publication Publication Date Title
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
JP2940099B2 (en) Method for synthesizing high thermal conductive diamond single crystal
KR100503542B1 (en) Diamond growth
TW201022142A (en) Graphene and hexagonal boron nitride planes and associated methods
EP1921049A1 (en) High-hardness polycrystalline diamond and process for producing the same
KR20010006439A (en) Sintering process for diamond and diamond growth
JPH09286694A (en) Diamond synthesis
EP3784747B1 (en) Catalyst solvents for carbon nitride
Hirano et al. Diamond formation from glassy carbon under high pressure and temperature conditions
JP3452665B2 (en) Method for synthesizing diamond single crystal and single crystal diamond
JPS63236531A (en) Synthesis of diamond
EP0894766B1 (en) Boron-doped isotopic diamond and process for producing the same
Mallika et al. On the low pressure transformation of graphite to diamond in the presence of a ‘catalyst-solvent’
JPWO2002095093A1 (en) MgB2 single crystal, method for producing the same, and superconducting material containing MgB2 single crystal
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
JPH0521019B2 (en)
CN1225308C (en) Process for high-temp. and high-pressure synthesis of cubic phase B-C-N crystal in presence of catalyst
TWI343361B (en) Method for making carbon nanotubes
JPH0673623B2 (en) Synthesis of diamond with phosphorus catalyst
JP2932300B2 (en) Diamond synthesis method
JPS59164606A (en) Method for synthesizing diamond
JPS59164605A (en) Method for synthesizing diamond
Singh et al. Behaviour of glassy carbon under high pressure and temperature in the presence of invar alloy catalyst
Shen et al. Assembly of carbide nanostructures at low temperature
JPH02280826A (en) Synthesis of diamond