TWI343361B - Method for making carbon nanotubes - Google Patents

Method for making carbon nanotubes Download PDF

Info

Publication number
TWI343361B
TWI343361B TW94129216A TW94129216A TWI343361B TW I343361 B TWI343361 B TW I343361B TW 94129216 A TW94129216 A TW 94129216A TW 94129216 A TW94129216 A TW 94129216A TW I343361 B TWI343361 B TW I343361B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
catalyst
layer
layers
Prior art date
Application number
TW94129216A
Other languages
Chinese (zh)
Other versions
TW200708474A (en
Inventor
Charles Leu
Ga-Lane Chen
Tai Cherng Yu
Jhy Chain Lin
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94129216A priority Critical patent/TWI343361B/en
Publication of TW200708474A publication Critical patent/TW200708474A/en
Application granted granted Critical
Publication of TWI343361B publication Critical patent/TWI343361B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

13433611343361

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米碳管製造方法。 【先前技術】IX. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a method for producing a carbon nanotube. [Prior Art]

自從日本研究人員飯島先生於1991年在電弧放電産物中首次發現奈米碳 官以來,因其在機械、電子、物理、化學等方面具有優異之性能,如獨特的金 屬或半導體導電性、極高的機械強度、高容量儲氫能力及吸附能力、場致電子 發射性能、定向導熱性能以及較強的寬帶電磁波吸收特性等,使得奈米碳管受 到物理 '化學及材料科學等領域以及高新技術産業部門之極大重視,同時促進 奈米碳官之廣泛研究與實際應用。目前,奈米碳管可用作複合材料之增強材 料、場致電子發射材料、超級電容器電極材料、氣體吸附材料、催化材料、熱 傳導材料以及傳感材料等方面。 然而,隨著奈米碳管性能與應用研究之蓬勃發展,如何獲得所需之奈米碳 管愈顯重要。通常,較為成熟之奈米碳管製造方法主要有三種:電弧放電法、 雷射燒姓法以及化學氣相沈積法。其巾,化學氣相沈積法以其卫藝簡便、成本 低、奈米碳管規模易控制、長度大、收率較高、可批量生長料點而得到廣泛 之研究與應用。 'Since the Japanese researcher Mr. Iijima first discovered the nanocarbon officer in the arc discharge product in 1991, it has excellent performance in mechanical, electronic, physical, chemical, etc., such as unique metal or semiconductor conductivity, extremely high. The mechanical strength, high-capacity hydrogen storage capacity and adsorption capacity, field-induced electron emission performance, directional thermal conductivity and strong broadband electromagnetic wave absorption characteristics make the carbon nanotubes subject to physical 'chemistry and materials science and other fields and high-tech industries. The department attaches great importance to it and promotes the extensive research and practical application of nanocarbon officials. At present, carbon nanotubes can be used as reinforcing materials for composite materials, field electron emission materials, supercapacitor electrode materials, gas adsorbing materials, catalytic materials, heat conducting materials, and sensing materials. However, with the development of nanocarbon tube performance and application research, how to obtain the required carbon nanotubes becomes more and more important. Generally, there are three main methods for manufacturing relatively mature carbon nanotubes: arc discharge method, laser burnt method, and chemical vapor deposition method. Its towel and chemical vapor deposition method have been widely studied and applied because of its simple and simple technology, low cost, easy control of the size of the carbon nanotubes, large length, high yield and batch growth of materials. '

化學氣相沈積法主要係採用奈米尺度之過渡金屬或其氧化物作爲催化 劑,於-定溫度下催域解碳職,使其於催化赚面裂解生絲米碳管。如 先前技術提供-種奈米碳管之製備方法,其包括以下步驟:提供—基底;於基 底表面形成-職層;於健層表面形成—過渡金屬催化觸;通人碳源氣, 並於催化劑作用下發生化學反應,使得奈米碳管從催化劑層生長,從規 的。惟,該方法生長奈米碳管過程中,開始通人碳源氣時 會立即生長奈米碳管’碳源氣分解之碳將首先向金屬催化劑顆粒内部擴散,待 齊τ中之碳達到飽㈣度時,才會析出,從而生長奈米碳 吕。β亥過私品要一定時間,故,奈米碳管生長速率受到限制。 【發有必要提供1奈米碳管製造方法,其能快速生長奈米碳管。 以下,將以實施例說明一種奈米碳管製造方法。 6 1343361The chemical vapor deposition method mainly uses a nanometer-scale transition metal or its oxide as a catalyst, and catalyzes the carbon-discharging at a constant temperature to catalyze the cracking of the raw rice carbon tube. The prior art provides a method for preparing a carbon nanotube, which comprises the steps of: providing a substrate; forming a layer on the surface of the substrate; forming a transition metal catalyzed contact on the surface of the surface layer; A chemical reaction takes place under the action of the catalyst, so that the carbon nanotubes grow from the catalyst layer. However, in the process of growing the carbon nanotubes, the carbon nanotubes will immediately grow into the carbon source gas. The carbon decomposition of the carbon source gas will first diffuse into the interior of the metal catalyst particles, and the carbon in the homogeneous τ will be saturated. (4) When the degree is reached, it will precipitate, thereby growing the nanocarbon. It takes a certain time for β to pass through the private product, so the growth rate of the carbon nanotubes is limited. [It is necessary to provide a 1 nm carbon tube manufacturing method that can rapidly grow carbon nanotubes. Hereinafter, a method for producing a carbon nanotube will be described by way of examples. 6 1343361

為實現上述内容,提供一種奈米碳管製造方法,其包括步驟: 提供一基底; 於所述基底表面形成一複合膜層,該複合膜層包括複數催化劑金屬骐層及 複數碳膜層; 將所述複合膜層進行熱處理,形成含有金屬碳化物之催化劑層; 於所述催化劑層上進行化學氣相沈積生長奈米碳管。 其中,所述催化劑金屬選自鎢、鐵、鈷、鎳或其合金。 所述催化劑層包括金屬碳化物,優選為碳化鎢。In order to achieve the above, a carbon nanotube manufacturing method is provided, comprising the steps of: providing a substrate; forming a composite film layer on the surface of the substrate, the composite film layer comprising a plurality of catalyst metal ruthenium layers and a plurality of carbon film layers; The composite film layer is heat-treated to form a catalyst layer containing a metal carbide; and a chemical vapor deposition growth carbon nanotube is performed on the catalyst layer. Wherein the catalyst metal is selected from the group consisting of tungsten, iron, cobalt, nickel or alloys thereof. The catalyst layer comprises a metal carbide, preferably tungsten carbide.

所述複數催化劑金屬膜層數及複數碳膜層之層數分別為1〇〜3〇層,並可採 用離子鍍膜法'射頻磁控濺鍍、真空蒸發法或化學氣相沈積法等方法形成。 所述複數催化劑金屬膜層厚度範圍為3奈米至3〇奈米,優選為1〇奈米。 所述複數碳膜層厚度範圍為3奈米至3〇奈米,優選為1〇奈米。 —所述複合膜層之減理包括步驟:在9⑻。c溫度τ於惰性氣體或其混合氣 體氛圍中熱處理30分鐘以上;然後降低溫度至室溫。 然後:==熱處理包括步驟:在默溫度下採用快速_理; 所述基底採用石夕片、石英片或金屬片等材料。The number of layers of the plurality of catalyst metal films and the number of layers of the plurality of carbon film layers are respectively 1 〇 to 3 〇 layers, and may be formed by an ion plating method such as RF magnetron sputtering, vacuum evaporation or chemical vapor deposition. . The plurality of catalyst metal film layers have a thickness ranging from 3 nm to 3 nm, preferably 1 N. The plurality of carbon film layers have a thickness ranging from 3 nm to 3 nm, preferably 1 N. - The reduction of the composite film layer comprises the step of: at 9 (8). The temperature τ is heat-treated in an inert gas or a mixed gas atmosphere for 30 minutes or more; then, the temperature is lowered to room temperature. Then: == heat treatment comprises the steps of: using a rapid temperature at a temperature; the substrate is made of a material such as a stone tablet, a quartz plate or a metal sheet.

所述化學IU目沈積生長奈米碳f採用以下步驟:加熱催化劑層至 00.X ’提供-碳源氣,將其與催化劑接觸以使得奈米碳管於催化劑層上 所述石反源氣體選自乙块、甲烧或乙块與甲烧之混合氣體。 e 技術,本實施例提供之奈米碳管製造方法,所述複合層經過熱 ΓϋΓ 層,其金屬催化劑顆粒間之碳擴散已達飽和,且由於過飽 ΪΓ 也可祕續奈米碳管之生長提供碳源,從而加快奈移管之生長 【實施方式】 下面結合附圖對本技術方案作進一步詳細說明。 圖。本+技術转纽峨狀妓綠流程示意 圓本技術方紐供之奈米碳管製造方法包括以下步驟:⑷提供一基底;⑹ 7 J343361 =所述基絲帥成-複麵層,練麵層包括複數催化齡雜層及複數 ^膜層’(C)將所述複合膜層進行熱處理,使複雜化齡屬麟及複數碳膜 曰熔口形,?有金屬碳化物之催化劑層;(d)於所述催化劑層上化學氣相沈積 • 生長奈㈣f。下祕合®U分麟各個步機行詳細說明。 步驟a :提供_基底10,該基底1()可採时片、石英片或金 料。 步驟b .於所述基底1〇表面形成—複合膜層2〇,該複合膜層2〇包括複 數催化劑金制層及概韻層。顧層形成方法可採祕子舰法、射頻磁 控麟、真2蒸發法、化學氣相沈積法,本實施例採用射頻磁控滅鍵法,於基 • 底1〇表面鑛上交互叠加之複數催化劑金屬膜層及複數碳膜層,形成-複合膜 層 20。 、 山形成後之複合膜層20結構請參閱第二圏,複數催化劑金屬膜層21及複 數奴膜層22相互叠加,該兩膜層之層數分別為1〇〜3〇層,優選為.2〇層。 其中’催化劑金屬膜層21之金屬材質優選祕、鐵、始、錄或其合金,還可 用其他金屬’例如稀土金屬與鎢、鐵,、錄之合金或者驗土金屬與鶴、鐵、 鈷、鎳之合金,本實施例採用鎢;催化劑金屬膜層21的每層厚度範圍為3 3〇 奈米,優選為10奈米;碳膜層22的每層厚度範圍為3〜30奈米,優選為10 奈米。另,複數催化劑金屬膜層21及複數碳膜層22交互疊加係本技術方案之 優選方案,但不限於該叠加順序,其他隨機疊加方式或規則性疊加方式也 *於形成複合膜層20。 步驟c :對所述複合膜層20進行熱處理,形成含有金屬碳化物之催化劑 層30。該熱處理可採用兩種方式: (1) 在溫度下於惰性氣體(滅氣或氬氣等)或其混合氣體氛圍令 熱處理30分鐘以上,然後降低溫度至室溫;或 (2) 在900°C溫度下採用快速熱退火處理,然後降低溫度至室溫。 當複合膜層20進行上述熱處理時,催化劑金屬膜層與碳膜層將先互融而 產生碳的過飽和熔液融於催化劑金屬中,形成固熔體(s〇lids〇luti〇n),即為 包含催化劑金屬械化物之催化劑層30,例如本實施例之碳化鶴催化劑層3〇 : 其中該催化劑層30中催化劑顆粒為奈米級顆粒,粒徑最好為2〜2〇奈米a ⑧ 8 1343361The chemical IU mesh deposition of the nanocarbon f takes the following steps: heating the catalyst layer to 00.X 'providing a carbon source gas, contacting it with the catalyst to cause the carbon nanotube to be on the catalyst layer It is selected from the group consisting of E, A or A mixed gas of A and A. e technology, the carbon nanotube manufacturing method provided by the embodiment, the composite layer passes through a hot layer, the carbon diffusion between the metal catalyst particles has reached saturation, and the carbon nanotubes can be secreted due to supersaturation. The growth provides a carbon source to accelerate the growth of the nematic transfer tube. [Embodiment] The technical solution will be further described in detail below with reference to the accompanying drawings. Figure. The method of manufacturing the nano carbon tube for the method of the present invention includes the following steps: (4) providing a substrate; (6) 7 J343361 = the base wire is handsome-faced, the dough is The layer includes a plurality of catalytic age-different layers and a plurality of film layers' (C) heat-treating the composite film layer to form a complex-aged lining and a plurality of carbon film 曰, a metal carbide catalyst layer; ) chemical vapor deposition on the catalyst layer • growth of na (f) f. Detailed instructions for each step of the next step. Step a: Providing a substrate 10, which may be a time plate, a quartz plate or a metal. Step b. Forming a composite film layer 2 on the surface of the substrate, the composite film layer 2 includes a plurality of catalyst gold layers and a fine layer. The method of forming the layer can be carried out by the secret submarine method, the radio frequency magnetron control, the true 2 evaporation method, and the chemical vapor deposition method. In this embodiment, the radio frequency magnetic control is used to extinguish the key method, and the surface is superimposed on the surface of the base and the bottom surface. The composite catalyst metal layer and the plurality of carbon film layers form a composite film layer 20. For the structure of the composite film layer 20 after the formation of the mountain, please refer to the second layer, the plurality of catalyst metal film layers 21 and the plurality of film layers 22 are superposed on each other, and the layers of the two film layers are respectively 1 〇 3 〇 layer, preferably. 2 layers. Wherein the metal material of the catalyst metal film layer 21 is preferably secret, iron, beginning, recorded or alloy thereof, and other metals such as rare earth metals and tungsten, iron, recorded alloys or soils and cranes, iron, cobalt, For the alloy of nickel, tungsten is used in this embodiment; the thickness of each layer of the catalyst metal film layer 21 is 3 3 Å, preferably 10 nm; the thickness of each layer of the carbon film layer 22 is 3 to 30 nm, preferably It is 10 nanometers. In addition, the plurality of catalyst metal film layers 21 and the plurality of carbon film layers 22 are alternately superimposed on the preferred embodiment of the present invention, but are not limited to the superposition sequence, and other random superposition methods or regular superposition methods are also formed in the composite film layer 20. Step c: The composite film layer 20 is heat treated to form a metal carbide-containing catalyst layer 30. The heat treatment can be carried out in two ways: (1) heat treatment at an inert gas (gas or argon, etc.) or a mixed gas atmosphere for 30 minutes or more, and then lowering the temperature to room temperature; or (2) at 900 ° A rapid thermal annealing treatment is applied at C temperature, and then the temperature is lowered to room temperature. When the composite film layer 20 is subjected to the above heat treatment, the super-saturated melt in which the catalyst metal film layer and the carbon film layer are first melted to generate carbon is melted in the catalyst metal to form a solid solution (s〇lids〇luti〇n), that is, The catalyst layer 30 containing the catalyst metallization, for example, the carbonized crane catalyst layer 3 of the present embodiment: wherein the catalyst particles in the catalyst layer 30 are nano-sized particles, and the particle diameter is preferably 2 to 2 nanometers a 8 8 1343361

步驟d :於所述催化劑層30上化學氣相沈積生長奈米碳管4〇。於上 處理冷卻至室溫時’過飽和的碳將從金屬基體中析出,加熱催化 500〜900°C ’再通以碳源氣,如甲燒、乙炔或甲烷與乙炔之混合氣體ς石山 源氣於催化劑層上裂解產生之碳將於先前從金屬基體中析出之碳上= 長’即於該催化劑層30上生長出奈米碳管4〇,優選地,可通 、’褒 為載氣’以利於對奈米碳管生長之調控。 m觀作 門之之奈日米碳管製造方法,由於催化劑層3G中金屬催化劑顆粒 間之反擴政已達飽和’场飽和而析出之碳也可為後續奈米碳f之 源’從而加快奈米碳管之线速度,可餘半導體元件之製造及其他精密= 之製造中,如用於晶圓製造,場發射顯示器之製造等。 絲上所述,本發明符合發明專歡要件,銳法提出專利_請。惟,以上 所述者僅絲發明讀佳實關,自魏以此_本案之帽專概圍。舉凡 熟悉本案技藝之人士’在援依本案發鴨神所狀等效㈣或變化 於以下之申請專利範圍内。 …匕3【圖式簡單說明】Step d: chemical vapor deposition of the carbon nanotubes on the catalyst layer 30. When the upper treatment is cooled to room temperature, the 'super-saturated carbon will be precipitated from the metal matrix, heated to catalyze 500~900 °C' and then passed through a carbon source gas, such as methyl acetonide, acetylene or a mixture of methane and acetylene. The carbon produced by the cracking on the catalyst layer will grow on the carbon layer which is previously precipitated from the metal matrix = long, that is, the carbon nanotubes 4 are grown on the catalyst layer 30, preferably, the passable, '褒 is the carrier gas' In order to facilitate the regulation of the growth of carbon nanotubes. The method of manufacturing the carbon nanotubes of the Namimi, because the anti-expansion between the metal catalyst particles in the catalyst layer 3G has reached saturation 'field saturation, and the carbon precipitated can also be the source of the subsequent nano-carbon f' The linear speed of the carbon nanotubes can be used in the manufacture of semiconductor components and other precision manufacturing, such as in wafer fabrication and field emission display manufacturing. As stated on the silk, the invention meets the requirements of the invention, and the patent is filed by Sharp. However, the above mentioned only invented the reading of the good real customs, since Wei this _ the case of the cap. Anyone who is familiar with the skill of this case may be equivalent to (4) in the case of aiding the case, or change within the scope of the following patent application. ...匕3[Simple diagram description]

第一圖係本技術方案實施例之奈米碳管製造方法示意圖。 第二圖縣技财較關之奈米碳造方法巾祕之複合膜層 b意圖。 丹 【主要元件符號說明】 基底 催化劑金屬膜層 催化劑層 10 複合膜層 21 碳膜層 30 奈米碳管層 20 22 40The first figure is a schematic diagram of a method for manufacturing a carbon nanotube according to an embodiment of the present technical solution. The second picture of the county's technology is relatively close to the nano-carbon method. Dan [Major component symbol description] Substrate Catalyst metal film catalyst layer 10 Composite film layer 21 Carbon film layer 30 Carbon nanotube layer 20 22 40

Claims (1)

1343361 、申請專利範圍: 1· 一種奈米峡管製造方法,包括以下步驟: 提供一基底; 於所述基絲面形成-複合膜層,該複合膜層包括複數催化劑金屬膜 層及複數碳膜層; 將所述複合膜層進行熱處理,形成含有金屬碳化物之催化劑層; 於所述催化綱上進行化學氣相沈積生長奈米碳管。 j申請專利範圍第1項所述之奈米碳管製造方法,其中,所述金屬膜層之 金屬選自鎢或其與鐵、鈷、鎳之合金之—者。 3^申請專利範圍第丨項所述之奈米碳管製造方法, 包括碳化鎢。 圍ΐ1項所述之奈采碳管製造方法’其中,所述複數催化劑 金屬膜層數與複數碳膜層之層數分別為1030層。 今圍第1項所述之奈米碳管製造方法,其中,所述複數催化劑 與複數顧層形成方法採祕捕膜法、射頻磁控賴、真空蒸 發法或化學氣相沈積法。 犯圍第1項至第5項任一項所述之奈米碳管製造方法,其中, 所述複數催化劑金屬膜層厚度範圍為3奈米至3〇夺米。 職如侧綱士,織數催《丨 第8撕狀奈料管製造絲,其巾,所賴數碳膜屬 1項所述之奈米碳管製造方法,其中,所述複合膜層 氛圍中熱二舰料.剛之混合氣體 η如申料利度至室溫,形成催化劑層。 h專利補第丨項所述之奈米碳管製造方法,其中,所 之‘、,、,理包括以下步驟:在咖。c溫度下_快速熱敎ϋ ⑧ 10 U43361 度至至溫,形成催化劑層。 12_如申請專利範圍第1項所述之奈米d心、 石夕片、石英片或金屬片等材料。製&决,其中,所述基底採用 :化如二專利範圍第丨項所述之奈米碳管製造方 μ ^ '、’、催化劑層接觸以使得奈米碳管於催化劑層上生長。 耍如申請專利範圍第13項所述之奈米碳管製造方法,其中,所述碳源氣體 k自乙炔、甲垸紅炔與甲烧之混合氣體。1343361, the scope of patent application: 1. A method for manufacturing a nano-gorge tube, comprising the steps of: providing a substrate; forming a composite film layer on the surface of the base wire, the composite film layer comprising a plurality of catalyst metal film layers and a plurality of carbon films a layer; a heat treatment to form a catalyst layer containing a metal carbide; and chemical vapor deposition of the carbon nanotubes on the catalyst. The method for producing a carbon nanotube according to the above aspect, wherein the metal of the metal film layer is selected from the group consisting of tungsten or an alloy thereof with iron, cobalt and nickel. 3^ The method for manufacturing a carbon nanotube according to the scope of the patent application, including tungsten carbide. The method for producing a carbon nanotube according to the above aspect, wherein the number of the plurality of catalyst metal film layers and the number of layers of the plurality of carbon film layers is 1030 layers, respectively. The method for producing a carbon nanotube according to the above item 1, wherein the plurality of catalysts and the plurality of layers are formed by a film collection method, a radio frequency magnetron, a vacuum evaporation method or a chemical vapor deposition method. The method for producing a carbon nanotube according to any one of the items 1 to 5, wherein the plurality of catalyst metal film layers have a thickness ranging from 3 nm to 3 Torr. As for the side of the line, the weaving number reminds that the 丨8th tearing tube is made of silk, and the towel is the carbon nanotube manufacturing method according to one item, wherein the composite film layer atmosphere Medium heat two ship material. Just mixed gas η such as the sample to the room temperature to form a catalyst layer. The invention relates to a method for manufacturing a carbon nanotube according to the invention, wherein the ‘,, 、, includes the following steps: in the coffee. c Temperature _ fast enthalpy 8 10 U43361 degrees to temperature, forming a catalyst layer. 12_A material such as a nanodish heart, a stone tablet, a quartz plate or a metal piece as described in claim 1 of the patent application scope. The substrate is prepared by: using a carbon nanotube manufacturing method as described in the second aspect of the patent, μ ^ ', ', the catalyst layer is contacted to cause the carbon nanotube to grow on the catalyst layer. The method for producing a carbon nanotube according to claim 13, wherein the carbon source gas k is a mixed gas of acetylene, formazan and formazan.
TW94129216A 2005-08-26 2005-08-26 Method for making carbon nanotubes TWI343361B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94129216A TWI343361B (en) 2005-08-26 2005-08-26 Method for making carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94129216A TWI343361B (en) 2005-08-26 2005-08-26 Method for making carbon nanotubes

Publications (2)

Publication Number Publication Date
TW200708474A TW200708474A (en) 2007-03-01
TWI343361B true TWI343361B (en) 2011-06-11

Family

ID=45074876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94129216A TWI343361B (en) 2005-08-26 2005-08-26 Method for making carbon nanotubes

Country Status (1)

Country Link
TW (1) TWI343361B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419402B (en) * 2010-10-25 2013-12-11 Univ Nat Kaohsiung Applied Sci Direct methanol fuel cell construction

Also Published As

Publication number Publication date
TW200708474A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
Gu et al. Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea
TWI360522B (en) Oriented carbon nanotube bulk aggregate and manufa
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Kumar Carbon nanotube synthesis and growth mechanism
Nessim Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition
JP5027167B2 (en) Carbon nanotube structure and manufacturing method thereof
JP3850380B2 (en) Carbon nanotube matrix growth method
Ahmad et al. Synthesis of boron nitride nanotubes via chemical vapour deposition: a comprehensive review
JP2006347878A (en) Method for manufacturing carbon nanotube
KR20140111548A (en) A method for preparing grapheme
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
KR20110046863A (en) Graphene sheet, substrate comprising graphene sheet and process for preparing these materials
CN100445202C (en) Preparing method for carbon nano-tube
WO2014008756A1 (en) Catalyst for preparing chiral selective and conductive selective single-walled carbon nanotube, preparation method and application thereof
Ohashi et al. Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen
JP2013067549A (en) Method for forming thin film
JP2018035010A (en) Production method of multi-layer graphene and multi-layer graphene laminate
Yao et al. Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part I: The silicon substrate/nanotube film interface
TWI343361B (en) Method for making carbon nanotubes
JP3443646B1 (en) Carbon nanotube growth method
TW200800397A (en) Method of preparing catalyst for catalyzing carbon nanotubes growth
JP3469186B2 (en) Manufacturing method of carbon nanofiber
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
TW200800387A (en) Catalyst for catalyzing carbon nanotubes growth

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees