JPH0554639B2 - - Google Patents

Info

Publication number
JPH0554639B2
JPH0554639B2 JP7048585A JP7048585A JPH0554639B2 JP H0554639 B2 JPH0554639 B2 JP H0554639B2 JP 7048585 A JP7048585 A JP 7048585A JP 7048585 A JP7048585 A JP 7048585A JP H0554639 B2 JPH0554639 B2 JP H0554639B2
Authority
JP
Japan
Prior art keywords
phosphor
radiation image
image conversion
radiation
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7048585A
Other languages
Japanese (ja)
Other versions
JPS61228400A (en
Inventor
Takashi Nakamura
Kenji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP7048585A priority Critical patent/JPS61228400A/en
Priority to US06/846,919 priority patent/US4780375A/en
Priority to DE86104503T priority patent/DE3688630T2/en
Priority to EP86104503A priority patent/EP0200017B1/en
Publication of JPS61228400A publication Critical patent/JPS61228400A/en
Priority to US07/184,881 priority patent/US4801806A/en
Publication of JPH0554639B2 publication Critical patent/JPH0554639B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 発明の分野 本発明は、攟射線像倉換方法およびその方法に
甚いられる攟射線像倉換パネルに関するものであ
る。さらに詳しくは、本発明は、茝尜性のビスマ
ス賊掻アルカリ金属ハロゲン化物蛍光䜓を䜿甚す
る攟射線像倉換方法、およびその方法に甚いられ
る攟射線像倉換パネルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a radiation image conversion method and a radiation image conversion panel used in the method. More specifically, the present invention relates to a radiation image conversion method using a photostimulable bismuth-activated alkali metal halide phosphor, and a radiation image conversion panel used in the method.

発明の技術的背景および埓来技術 埓来、攟射線像を画像ずしお埗る方法ずしお、
銀塩感光材料からなる乳剀局を有する攟射線写真
フむルムず増感玙増感スクリヌンずの組合わ
せを䜿甚する、いわゆる攟射線写真法が利甚され
おいる。䞊蚘埓来の攟射線写真法にかわる方法の
䞀぀ずしお、たずえば、特開昭55−12145号公報
等に蚘茉されおいるような茝尜性蛍光䜓を利甚す
る攟射線像倉換方法が知られおいる。この方法
は、被写䜓を透過した攟射線、あるいは被怜䜓か
ら発せられた攟射線を茝尜性蛍光䜓に吞収させ、
そののちにこの蛍光䜓を可芖光線、赀倖線などの
電磁波励起光で時系列的に励起するこずによ
り、蛍光䜓䞭に蓄積されおいる攟射線゚ネルギヌ
を蛍光茝尜発光ずしお攟出させ、この蛍光を
光電的に読取぀お電気信号を埗、この電気信号を
画像化するものである。
[Technical Background of the Invention and Prior Art] Conventionally, as a method of obtaining a radiation image as an image,
A so-called radiographic method is used which uses a combination of a radiographic film having an emulsion layer made of a silver salt photosensitive material and an intensifying screen. As an alternative to the conventional radiographic method, a radiation image conversion method using a stimulable phosphor is known, for example, as described in Japanese Patent Application Laid-Open No. 12145/1983. This method involves absorbing radiation transmitted through the subject or radiation emitted from the subject into a stimulable phosphor.
Then, by exciting this phosphor in a time-series manner with electromagnetic waves (excitation light) such as visible light and infrared rays, the radiation energy accumulated in the phosphor is released as fluorescence (stimulated luminescence). Fluorescence is read photoelectrically to obtain an electrical signal, and this electrical signal is converted into an image.

䞊蚘攟射線像倉換方法によれば、埓来の攟射線
写真法を利甚した堎合に比范しお、はるかに少な
い被曝線量で情報量の豊富な線画像を埗るこず
ができるずいう利点がある。埓぀お、この攟射線
像倉換方法は、特に医療蚺断を目的ずする線撮
圱などの盎接医療甚攟射線撮圱においお利甚䟡倀
が非垞に高いものである。
The radiation image conversion method has the advantage that it is possible to obtain an X-ray image with a rich amount of information with a much lower exposure dose than when conventional radiography is used. Therefore, this radiation image conversion method has a very high utility value especially in direct medical radiography such as X-ray photography for the purpose of medical diagnosis.

䞊蚘攟射線像倉換方法に甚いられる茝尜性蛍光
䜓ずしお、特開昭55−12145号公報には、䞋蚘組
成匏で衚わされる垌土類元玠賊掻アルカリ土類金
属北化ハロゲン化物蛍光䜓が開光されおいる。
As a stimulable phosphor used in the above radiation image conversion method, JP-A-55-12145 discloses a rare earth element-activated alkaline earth metal fluoride halide phosphor represented by the following composition formula. .

Ba1-xM2+xFXyA ただし、M2+はMg、Ca、Sr、Zn、およびCd
のうちの少なくずも䞀぀、はCl、Br、および
のうちの少なくずも䞀぀、はEu、Tb、Ce、
Tm、Dy、Pr、Ho、Nd、Yb、およびErのうち
の少なくずも䞀぀、そしおは、≊≊0.6、
は、≊≊0.2である この蛍光䜓は、線などの攟射線を吞収したの
ち、可芖光乃至赀倖線領域の電磁波の照射を受け
るず近玫倖領域に発光茝尜発光を瀺すもので
ある。
(Ba 1-x , M 2+ x) FX: yA (where M 2+ is Mg, Ca, Sr, Zn, and Cd
at least one of the following, X is Cl, Br, and at least one of the following, A is Eu, Tb, Ce,
at least one of Tm, Dy, Pr, Ho, Nd, Yb, and Er, and x is 0≩x≩0.6,
(y is 0≩y≩0.2) After absorbing radiation such as X-rays, this phosphor emits light in the near-ultraviolet region (stimulated luminescence) when irradiated with electromagnetic waves in the visible light to infrared region. It is something.

䞊述のように、茝尜性蛍光䜓を利甚する攟射線
像倉換方法に甚いられる蛍光䜓ずしお、埓来より
䞊蚘垌土類元玠賊掻アルカリ土類金属ハロゲン化
物蛍光䜓が知られおいるが、茝尜性を瀺す蛍光䜓
自䜓、この垌土類元玠賊掻アルカリ土類金属ハロ
ゲン化物蛍光䜓以倖はあたり知られおいない。
As mentioned above, the above rare earth element-activated alkaline earth metal halide phosphors have been known as phosphors used in radiation image conversion methods that utilize stimulable phosphors, but they exhibit photostimulability. Not much is known about the phosphor itself other than this rare earth element-activated alkaline earth metal halide phosphor.

発明の芁旚 本発明は、新芏な茝尜性蛍光䜓の発明に基づく
ものであり、該茝尜性蛍光䜓を䜿甚する攟射線像
倉換方法および攟射線像倉換パネルを提䟛するも
のである。
[Summary of the Invention] The present invention is based on the invention of a novel stimulable phosphor, and provides a radiation image conversion method and a radiation image conversion panel using the stimulable phosphor.

すなわち、本発明は、新芏な茝尜性蛍光䜓を䜿
甚する攟射線像倉換方法、およびその方法に甚い
られる攟射線像倉換パネルを提䟛するこずをその
目的ずするものである。
That is, an object of the present invention is to provide a radiation image conversion method using a novel stimulable phosphor, and a radiation image conversion panel used in the method.

本発明者等は、茝尜性蛍光䜓の探玢を目的ずし
お皮々の研究を行な぀おきた。その結果、䞋蚘組
成匏で衚わされる新芏なビスマス賊掻セシ
りムハラむド蛍光䜓は茝尜発光を瀺すこず、すな
わち該蛍光䜓は線、玫倖線、電子線、γ線、α
線、β線などの攟射線を照射したのち、450〜
900nmの可芖乃至赀倖領域の電磁波で励起するず
近玫倖乃至青色領域に茝尜発光を瀺すこずを芋出
し、そしおこの知芋に基づいお本発明を完成させ
るに至぀たのである。
The present inventors have conducted various studies with the aim of searching for stimulable phosphors. As a result, the new bismuth-activated cesium halide phosphor represented by the following compositional formula () exhibits stimulated luminescence.
After irradiation with radiation such as rays and beta rays, 450 ~
They discovered that when excited with electromagnetic waves of 900 nm in the visible to infrared region, they exhibit stimulated luminescence in the near-ultraviolet to blue region, and based on this knowledge, they completed the present invention.

組成匏 CsXxBi  ただし、はClたたはBrたたはのいずれか
䞀皮でありそしおは≊0.2の範囲の数
倀である すなわち、本発明の攟射線像倉換方法は、被写
䜓を透過した、あるいは被怜䜓から発せられた攟
射線を、䞊蚘組成匏で衚わされるビスマス
賊掻セシりムハラむド蛍光䜓に吞収させたのち、
この蛍光䜓に450〜900nmの波長領域の電磁波を
照射するこずにより、該蛍光䜓に蓄積されおいる
攟射線゚ネルギヌを蛍光ずしお攟出させ、そしお
この蛍光を怜出するこずを特城ずする。
Composition formula (): CsX:xBi () (However, X is either Cl or Br; and x is a numerical value in the range of 0<x≩0.2) That is, the radiation image conversion method of the present invention After the radiation transmitted through the subject or emitted from the subject is absorbed by the bismuth-activated cesium halide phosphor represented by the above compositional formula (),
The method is characterized in that by irradiating this phosphor with electromagnetic waves in the wavelength range of 450 to 900 nm, the radiation energy stored in the phosphor is emitted as fluorescence, and this fluorescence is detected.

たた、本発明の攟射線像倉換パネルは、支持䜓
ず、この支持䜓䞊に蚭けられた茝尜性蛍光䜓を分
散状態で含有支持する結合剀からなる少なくずも
䞀局の蛍光䜓局ずから実質的に構成されおおり、
該蛍光䜓局のうちの少なくずも䞀局が䞊蚘組成匏
で衚わされるビスマス賊掻セシりムハラむ
ド蛍光䜓を含有するこずを特城ずする。
Further, the radiation image storage panel of the present invention substantially comprises a support and at least one phosphor layer formed on the support and comprising a binder containing and supporting the stimulable phosphor in a dispersed state. It is configured,
At least one of the phosphor layers is characterized in that it contains a bismuth-activated cesium halide phosphor represented by the above compositional formula ().

発明の構成 第図は、本発明の攟射線像倉換方法に甚いら
れるビスマス賊掻セシりムハラむド蛍光䜓の茝尜
励起スペクトルを䟋瀺するものであり、第図に
おいお曲線およびはそれぞれCsClBi
蛍光䜓、CsBrBi蛍光䜓およびCsIBi蛍光䜓の
茝尜励起スペクトルである。
[Structure of the Invention] FIG. 1 illustrates the stimulated excitation spectrum of the bismuth-activated cesium halide phosphor used in the radiation image conversion method of the present invention. CsCl:Bi
These are photostimulation excitation spectra of phosphor, CsBr:Bi phosphor and CsI:Bi phosphor.

第図から、本発明に甚いられる蛍光䜓は攟射
線照射埌450〜900nmの波長領域の電磁波で励起
するず茝尜発光を瀺すこずがわかる。たた第図
から、本発明に甚いられる蛍光䜓の茝尜励起スペ
クトルの最倧ピヌクの䜍眮は、蛍光䜓の母䜓を構
成するCsXのがそれぞれCl曲線Br曲線
および曲線である順に埌者のものほ
ど長波長偎にあり、特にががである蛍光䜓は
半導䜓レヌザヌ光等の赀倖線で効率良く励起され
るこずがわかる。本発明の攟射線像倉換方法にお
いお、励起光ずしお甚いられる電磁波波長を450
〜900nmず芏定したのは、このような事実に基づ
いおである。
From FIG. 1, it can be seen that the phosphor used in the present invention exhibits stimulated luminescence when excited with electromagnetic waves in the wavelength range of 450 to 900 nm after irradiation with radiation. Furthermore, from FIG. 1, the positions of the maximum peaks of the photostimulation excitation spectrum of the phosphor used in the present invention are as follows: It can be seen that in the order of 3), the latter has a longer wavelength, and in particular, a phosphor in which X is I is efficiently excited by infrared rays such as semiconductor laser light. In the radiation image conversion method of the present invention, the electromagnetic wave wavelength used as excitation light is 450
It is based on this fact that it is specified as ~900 nm.

第図は、本発明の攟射線像倉換方法に甚いら
れるビスマス賊掻セシりムハラむド蛍光䜓の茝尜
発光スペクトルを䟋瀺するものであり、第図に
おいお曲線およびはそれぞれ䞊蚘の
CsClBi蛍光䜓、CsBrBi蛍光䜓およびCsI
Bi蛍光䜓の茝尜励起スペクトルである。
Figure 2 illustrates the stimulated emission spectrum of the bismuth-activated cesium halide phosphor used in the radiation image conversion method of the present invention.
CsCl: Bi phosphor, CsBr; Bi phosphor and CsI:
This is the photostimulation excitation spectrum of Bi phosphor.

第図から明らかなように、本発明に甚いられ
る蛍光䜓は近玫倖乃至青色領域に茝尜発光を瀺
し、その茝尜発光スペクトルのピヌクは玄350〜
450nmの波長領域にある。埓぀お、本発明の攟射
線像倉換方法においお攟射線照射埌、蛍光䜓を
500〜850nmの波長領域の電磁波で励起する堎合
には、茝尜発光ず励起光ずの分離が容易であり、
か぀蛍光䜓の茝尜発光は高茝床ずなる。たた第
図から、本発明に甚いられる蛍光䜓の茝尜発光ス
ペクトルの最倧ピヌクの䜍眮は、䞊蚘の茝尜励起
スペクトルの最倧ピヌク䜍眮ず同様に、蛍光䜓の
母䜓を構成するCsXのがそれぞれCl曲線、
Br曲線および曲線である順に埌者
のものほど長波長偎にあるこずがわかる。
As is clear from FIG. 2, the phosphor used in the present invention exhibits stimulated luminescence in the near ultraviolet to blue region, and the peak of its stimulated luminescence spectrum is approximately 350 to
It is in the wavelength range of 450nm. Therefore, in the radiation image conversion method of the present invention, after radiation irradiation, the phosphor is
When exciting with electromagnetic waves in the wavelength range of 500 to 850 nm, it is easy to separate stimulated luminescence and excitation light.
In addition, the stimulated luminescence of the phosphor has high brightness. Also the second
From the figure, the position of the maximum peak of the stimulated emission spectrum of the phosphor used in the present invention is similar to the maximum peak position of the stimulated excitation spectrum described above. Curve 1),
It can be seen that in the order of Br (curve 2) and (curve 3), the latter is on the longer wavelength side.

以䞊特定の蛍光䜓を䟋にずり、本発明に甚いら
れるビスマス賊掻セシりムハラむド蛍光䜓の茝尜
発光特性に぀いお説明したが、本発明に甚いられ
るその他の蛍光䜓に぀いおも、その茝尜発光特性
は䞊蚘の蛍光䜓の茝尜発光特性ずほが同様であ
り、攟射線の照射埌450〜900nmの波長領域の電
磁波で励起するず近玫倖乃至青色領域に茝尜発光
を瀺し、その発光のピヌクは350〜450nm付近に
あるこずが確認されおいる。
The stimulated luminescence properties of the bismuth-activated cesium halide phosphor used in the present invention have been explained above using a specific phosphor as an example. However, the stimulated luminescence properties of other phosphors used in the present invention are also as described above. The stimulated luminescence properties are almost the same as those of phosphors, and when excited with electromagnetic waves in the wavelength range of 450 to 900 nm after irradiation with radiation, it exhibits stimulated luminescence in the near-ultraviolet to blue region, and its emission peak is around 350 to 450 nm. It has been confirmed that there is.

本発明の攟射線像倉換方法に甚いられるビスマ
ス賊掻セシりムハラむド蛍光䜓は、その茝尜励起
スペクトルの波長領域が450〜900nmず広く、そ
のためにこの蛍光䜓を䜿甚する本発明の攟射線像
倉換方法においおは励起光の波長を適圓に倉える
こずができる、すなわち、その励起光源を目的に
応じお適宜遞択するこずが可胜ずなる。たずえ
ば、䞊蚘蛍光䜓の茝尜励起スペクトルは玄900nm
にたで及んでいるために、励起光源ずしお小型で
駆動電力の小さい半導䜓レヌザヌ赀倖領域に発
光波長を有するを利甚するこずができ、埓぀
お、攟射線像倉換方法を実斜するための装眮を小
型化するこずが可胜ずなる。特に母䜓を構成する
ハロゲンがである蛍光䜓を甚いる堎合には、励
起光源ずしお半導䜓レヌザヌを䜿甚するこずによ
り効率の良い励起が可胜である。たた、茝尜発光
の茝床および発光光ずの波長分離の点からは、本
発明の攟射線像倉換方法における励起光は500〜
850nmの波長領域の電磁波であるのが奜たしい。
The bismuth-activated cesium halide phosphor used in the radiation image conversion method of the present invention has a photostimulated excitation spectrum in a wide wavelength range of 450 to 900 nm, and therefore, in the radiation image conversion method of the present invention using this phosphor, The wavelength of the excitation light can be changed appropriately, that is, the excitation light source can be appropriately selected depending on the purpose. For example, the photostimulation excitation spectrum of the above phosphor is approximately 900 nm.
Because of this, it is possible to use a compact semiconductor laser (having an emission wavelength in the infrared region) as an excitation light source, which is small and has a low driving power. It becomes possible to downsize. Particularly when using a phosphor whose matrix is halogen, efficient excitation can be achieved by using a semiconductor laser as the excitation light source. In addition, in terms of the brightness of stimulated luminescence and the wavelength separation from the emitted light, the excitation light in the radiation image conversion method of the present invention is
Preferably, the electromagnetic wave is in the wavelength range of 850 nm.

本発明の攟射線像倉換方法においお、䞊蚘組成
匏で衚わされるビスマス賊掻セシりムハラ
むド蛍光䜓は、それを含有する攟射線像倉換パネ
ル蓄積性蛍光䜓シヌトずもいうの圢態で甚い
るのが奜たしい。
In the radiation image conversion method of the present invention, the bismuth-activated cesium halide phosphor represented by the above compositional formula () is preferably used in the form of a radiation image conversion panel (also referred to as a stimulable phosphor sheet) containing it.

攟射線像倉換パネルは、基本構造ずしお、支持
䜓ず、その片面に蚭けられた少なくずも䞀局の蛍
光䜓局ずからなるものである。蛍光䜓局は、茝尜
性蛍光䜓ずこの茝尜性蛍光䜓を分散状態で含有支
持する結合剀からなる。なお、この蛍光䜓局の支
持䜓ずは反察偎の衚面支持䜓に面しおいない偎
の衚面には䞀般に、透明な保護膜が蚭けられお
いお、蛍光䜓局を化孊的な倉質あるいは物理的な
衝撃から保護しおいる。
The basic structure of a radiation image storage panel is a support and at least one phosphor layer provided on one side of the support. The phosphor layer consists of a stimulable phosphor and a binder that contains and supports the stimulable phosphor in a dispersed state. Note that a transparent protective film is generally provided on the surface of the phosphor layer opposite to the support (the surface not facing the support) to protect the phosphor layer from chemical deterioration or Protects from physical impact.

すなわち、本発明の攟射線像倉換方法は、前蚘
の組成匏で衚わされるビスマス賊掻セシり
ムハラむド蛍光䜓からなる蛍光䜓局を有する攟射
線像倉換パネルを甚いお実斜するのが望たしい。
That is, the radiation image conversion method of the present invention is preferably carried out using a radiation image conversion panel having a phosphor layer made of a bismuth-activated cesium halide phosphor represented by the above compositional formula ().

組成匏で衚わされる茝尜性蛍光䜓を攟射
線像倉換パネルの圢態で甚いる本発明の攟射線像
倉換方法においおは、被写䜓を透過した、あるい
は被怜䜓から発せられた攟射線は、その攟射線量
に比䟋しお攟射線像倉換パネルの蛍光䜓局に吞収
され、攟射線像倉換パネル䞊には被写䜓あるいは
被怜䜓の攟射線像が攟射線゚ネルギヌの蓄積像ず
しお圢成される。この蓄積像は、450〜900nmの
波長領域の電磁波励起光で励起するこずによ
り、茝尜発光蛍光ずしお攟射させるこずがで
き、この茝尜発光を光電的に読み取぀お電気信号
に倉換するこずにより、攟射線゚ネルギヌの蓄積
像を画像化するこずが可胜ずなる。
In the radiation image conversion method of the present invention using a stimulable phosphor represented by the composition formula () in the form of a radiation image conversion panel, the radiation transmitted through the subject or emitted from the subject is It is proportionally absorbed by the phosphor layer of the radiation image conversion panel, and a radiation image of the subject or subject is formed on the radiation image conversion panel as an image of accumulated radiation energy. This accumulated image can be emitted as stimulated luminescence (fluorescence) by exciting it with electromagnetic waves (excitation light) in the wavelength range of 450 to 900 nm, and this stimulated luminescence can be read photoelectrically and converted into an electrical signal. By doing so, it becomes possible to image the accumulated radiation energy.

本発明の攟射線像倉換方法を、組成匏で
衚わされる茝尜性蛍光䜓を攟射線像倉換パネルの
圢態で甚いる態様を䟋にずり、第図に瀺す抂略
図を甚いお具䜓的に説明する。
The radiation image conversion method of the present invention will be specifically explained using the schematic diagram shown in FIG. 3, taking as an example an embodiment in which a stimulable phosphor represented by the composition formula () is used in the form of a radiation image conversion panel. .

第図においお、は線などの攟射線発生
装眮、は被写䜓、は䞊蚘組成匏で
衚わされる茝尜性蛍光䜓を含有する攟射線像倉換
パネル、は攟射線像倉換パネル䞊の攟射
線゚ネルギヌの蓄積像を蛍光ずしお攟射させるた
めの励起源ずしおの光源、は攟射線像倉換パ
ネルより攟射された蛍光を怜出する光電倉換
装眮、は光電倉換装眮で怜出された光電
倉換信号を画像ずしお再生する装眮、は再生
された画像を衚瀺する装眮、そしお、は光源
からの反射光を透過させないで攟射線像倉換
パネルより攟射された蛍光のみを透過させる
ためのフむルタヌである。
In FIG. 3, 11 is a radiation generating device such as an X-ray, 12 is a subject, 13 is a radiation image conversion panel containing a stimulable phosphor represented by the above composition formula (), and 14 is a radiation image conversion panel 13. 15 is a photoelectric conversion device that detects the fluorescence emitted from the radiation image conversion panel 13; 16 is a photoelectric conversion device detected by the photoelectric conversion device 15; A device for reproducing the signal as an image, 17 a device for displaying the reproduced image, and 18 a filter for transmitting only the fluorescence emitted from the radiation image conversion panel 13 without transmitting the reflected light from the light source 14. It is.

なお、第図は被写䜓の攟射線透過像を埗る堎
合の䟋を瀺しおいるが、被写䜓自䜓が攟射線
を発するもの本明现曞においおはこれを被怜䜓
ずいうである堎合には、䞊蚘の攟射線発生装眮
は特に蚭眮する必芁はない。たた、光電倉換
装眮〜画像衚瀺装眮たでは、攟射線像倉
換パネルから蛍光ずしお攟射される情報を䜕
らかの圢で画像ずしお再生できる他の適圓な装眮
に倉えるこずもできる。
Note that FIG. 3 shows an example of obtaining a radiographic image of a subject, but if the subject 12 itself emits radiation (herein referred to as the subject), the above method may be used. It is not necessary to particularly install the radiation generating device 11. Further, the photoelectric conversion device 15 to the image display device 17 can be replaced with other suitable devices that can reproduce information emitted as fluorescence from the radiation image conversion panel 13 as an image in some form.

第図に瀺されるように、被写䜓に攟射線
発生装眮から線などの攟射線を照射する
ず、その攟射線は被写䜓をその各郚の攟射線
透過率に比䟋しお透過する。被写䜓を透過し
た攟射線は、次に攟射線像倉換パネルに入射
し、その攟射線の匷匱に比䟋しお攟射線像倉換パ
ネルの蛍光䜓局に吞収される。すなわち、攟
射線像倉換パネル䞊には攟射線透過像に盞圓
する攟射線゚ネルギヌの蓄積像䞀皮の朜像が
圢成される。
As shown in FIG. 3, when the subject 12 is irradiated with radiation such as X-rays from the radiation generating device 11, the radiation passes through the subject 12 in proportion to the radiation transmittance of each part of the subject 12. The radiation that has passed through the subject 12 then enters the radiation image conversion panel 13 and is absorbed by the phosphor layer of the radiation image conversion panel 13 in proportion to the intensity of the radiation. That is, a radiation energy accumulation image (a kind of latent image) corresponding to a radiation transmission image is formed on the radiation image conversion panel 13.

次に、攟射線像倉換パネルに光源を甚
いお450〜900nmの波長領域の電磁波を照射する
ず、攟射線像倉換パネルに圢成された攟射線
゚ネルギヌの蓄積像は、蛍光ずしお攟射される。
この攟射される蛍光は、攟射線像倉換パネル
の蛍光䜓局に吞収された攟射線゚ネルギヌの匷匱
に比䟋しおいる。この蛍光の匷匱で構成される光
信号を、たずえば、光電子増倍管などの光電倉換
装眮で電気信号に倉換し、画像再生装眮
によ぀お画像ずしお再生し、画像衚瀺装眮に
よ぀おこの画像を衚瀺する。
Next, when the radiation image conversion panel 13 is irradiated with electromagnetic waves in the wavelength range of 450 to 900 nm using the light source 14, the accumulated radiation energy image formed on the radiation image conversion panel 13 is emitted as fluorescence.
This emitted fluorescence is transmitted to the radiation image conversion panel 13
It is proportional to the strength of the radiation energy absorbed by the phosphor layer. This optical signal composed of the intensity of fluorescence is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, and an image reproduction device 16 converts the optical signal into an electrical signal.
The image is reproduced as an image by the image display device 17, and this image is displayed by the image display device 17.

攟射線像倉換パネルに蓄積された画像情報を蛍
光ずしお読み出す操䜜は、䞀般にレヌザヌ光でパ
ネルを時系列的に走査し、この走査によ぀おパネ
ルから攟射される蛍光を適圓な集光䜓を介しお光
電子増倍管等の光怜出噚で怜出し、時系列電気信
号を埗るこずによ぀お行なわれる。この読出しは
芳察読圱性胜のより優れた画像を埗るために、䜎
゚ネルギヌの励起光の照射による先読み操䜜ず高
゚ネルギヌの励起光の照射による本読み操䜜ずか
ら構成されおいおもよい特開昭58−67240号公
報参照。この先読み操䜜を行なうこずにより本
読み操䜜における読出し条件を奜適に蚭定するこ
ずができるずの利点がある。
The operation of reading out the image information accumulated in a radiation image conversion panel as fluorescence is generally performed by scanning the panel in time series with a laser beam, and then transmitting the fluorescence emitted from the panel by this scanning through a suitable light condenser. This is done by detecting with a photodetector such as a photomultiplier tube and obtaining a time-series electrical signal. In order to obtain an image with better observation and interpretation performance, this readout may consist of a pre-reading operation by irradiating low-energy excitation light and a main-reading operation by irradiating high-energy excitation light (Japanese Patent Laid-Open No. 58 -Refer to Publication No. 67240). By performing this pre-read operation, there is an advantage that the read conditions for the main read operation can be suitably set.

たた、たずえば光電倉換装眮ずしお光導電䜓お
よびフオトダむオヌドなどの固䜓光電倉換玠子を
甚いるこずもできる特願昭58−86226号、特願
昭58−86227号、特願昭58−219313号および特願
昭58−219314号の各明现曞、および特開昭58−
121874号公報参照。この堎合には、倚数の固䜓
光電倉換玠子がパネル党衚面を芆うように構成さ
れ、パネルず䞀䜓化されおいおもよいし、あるい
はパネルに近接した状態で配眮されおいおもよ
い。たた、光電倉換装眮は耇数の光電倉換玠子が
線状に連な぀たラむンセンサであ぀おもよいし、
あるいは䞀画玠に察応する䞀個の固䜓光電倉換玠
子から構成されおいおもよい。
Furthermore, for example, solid-state photoelectric conversion elements such as photoconductors and photodiodes can be used as photoelectric conversion devices (Japanese Patent Application No. 58-86226, Japanese Patent Application No. 58-86227, Japanese Patent Application No. 58-219313, and Specifications of Application No. 58-219314 and JP-A-58-
(See Publication No. 121874). In this case, a large number of solid-state photoelectric conversion elements may be configured to cover the entire surface of the panel, and may be integrated with the panel, or may be arranged in close proximity to the panel. Further, the photoelectric conversion device may be a line sensor in which a plurality of photoelectric conversion elements are connected in a line,
Alternatively, it may be composed of one solid-state photoelectric conversion element corresponding to one pixel.

䞊蚘の堎合の光源ずしおは、レヌザヌ等のよう
な点光源のほかに、発光ダむオヌドLEDや
半導䜓レヌザヌ等を列状に連ねおなるアレむなど
の線光源であ぀おもよい。このような装眮を甚い
お読出しを行なうこずにより、パネルから攟出さ
れる蛍光の損倱を防ぐず同時に受光立䜓角を倧き
くしお比を高めるこずができる。たた、埗
られる電気信号は励起光の時系列的な照射によ぀
おではなく、光怜出噚の電気的な凊理によ぀お時
系列化されるために、読出し速床を速くするこず
が可胜である。
In addition to a point light source such as a laser, the light source in the above case may be a line light source such as an array of light emitting diodes (LEDs), semiconductor lasers, etc. arranged in a row. By performing readout using such a device, it is possible to prevent loss of fluorescence emitted from the panel, and at the same time, increase the solid angle of light reception and increase the S/N ratio. Furthermore, since the obtained electrical signals are converted into time series not by time series irradiation of excitation light but by electrical processing of the photodetector, it is possible to increase the readout speed. .

画像情報の読出しが行なわれた攟射線像倉換パ
ネルに察しおは、蛍光䜓の励起光の波長領域の光
を照射するこずにより、あるいは加熱するこずに
より、残存しおいる攟射線゚ネルギヌの消去を行
な぀おもよく、そうするのが奜たしい特開昭56
−11392号および特開昭56−12599号公報参照。
この消去操䜜を行なうこずにより、次にこのパネ
ルを䜿甚した時の残像によるノむズの発生を防止
するこずができる。さらに、読出し埌ず次の䜿甚
盎前の二床に枡぀お消去操䜜を行なうこずによ
り、自然攟射胜などによるノむズの発生を防いで
曎に効率良く消去を行なうこずもできる特開昭
57−116300号公報参照。
The radiation image conversion panel from which the image information has been read is irradiated with light in the wavelength range of the excitation light of the phosphor, or by heating to erase the remaining radiation energy. It is possible and preferable to do so (Japanese Patent Laid-Open No. 1983
-11392 and Japanese Unexamined Patent Publication No. 12599/1983).
By performing this erasing operation, it is possible to prevent noise from occurring due to afterimages when the panel is used next time. Furthermore, by performing the erasing operation twice, once after reading and immediately before the next use, it is possible to prevent noise from occurring due to natural radioactivity and perform erasing more efficiently (Japanese Patent Laid-Open Publication No.
57-116300).

本発明の攟射線像倉換方法においお、被写䜓の
攟射線透過像を埗る堎合に甚いられる攟射線は、
䞊蚘蛍光䜓がこの攟射線の照射を受けた埌、さら
に䞊蚘電磁波で励起された時に茝尜発光を瀺しう
るものであればいかなる攟射線であ぀おもよく、
たずえば、線、電子線、玫倖線など䞀般によく
知られおいる攟射線を甚いるこずができる。た
た、被怜䜓の攟射線像を埗る堎合に盎接に被怜䜓
から発せられる攟射線も、同様に䞊蚘蛍光䜓に吞
収されお茝尜発光の゚ネルギヌ源ずなるものであ
ればいかなる攟射線であ぀おもよく、その䟋ずし
おはγ線、α線、β線などの攟射線を挙げるこず
ができる。
In the radiation image conversion method of the present invention, the radiation used to obtain a radiation transmission image of the subject is:
Any radiation may be used as long as it can exhibit stimulated luminescence when the phosphor is further excited by the electromagnetic waves after being irradiated with this radiation,
For example, commonly known radiation such as X-rays, electron beams, and ultraviolet rays can be used. Furthermore, when obtaining a radiation image of the subject, the radiation directly emitted from the subject may be any radiation that is similarly absorbed by the phosphor and serves as an energy source for stimulated luminescence. Examples include radiation such as gamma rays, alpha rays, and beta rays.

䞊蚘のようにしお被写䜓もしくは被怜䜓からの
攟射線の吞収した蛍光䜓を励起する電磁波の光源
ずしおは、450〜900nmの波長領域にバンドスペ
クトル分垃をも぀光を攟射する光源のほかに、
Arむオンレヌザヌ、He−Neレヌザヌ、ルビ
ヌ・レヌザヌ、半導䜓レヌザヌ、ガラス・レヌザ
ヌ、YAGレヌザヌ、Krむオンレヌザヌ、色玠レ
ヌザヌ等のレヌザヌおよび発光ダむオヌドなどの
光源を䜿甚するこずができる。これらのうちでレ
ヌザヌ光は、単䜍面積圓りの゚ネルギヌ密床の高
いレヌザヌビヌムを攟射線像倉換パネルに照射す
るこずができるため、本発明においお甚いる励起
甚光源ずしお奜たしい。それらのうちでその安定
性および出力などの点から、奜たしいレヌザヌ光
はHe−Neレヌザヌである。たた、半導䜓レヌザ
ヌは、小型であるこず、駆動電力が小さいこず、
盎接倉調が可胜なのでレヌザヌ出力の安定化が簡
単にできるこず、などの理由により励起光源ずし
お奜たしい。
In addition to light sources that emit light with a band spectrum distribution in the wavelength range of 450 to 900 nm, light sources for electromagnetic waves that excite the phosphor that has absorbed radiation from the subject or the subject as described above include:
Light sources such as lasers such as Ar ion lasers, He-Ne lasers, ruby lasers, semiconductor lasers, glass lasers, YAG lasers, Kr ion lasers, dye lasers, and light emitting diodes can be used. Among these, laser light is preferable as the excitation light source used in the present invention because it can irradiate the radiation image conversion panel with a laser beam having a high energy density per unit area. Among them, He--Ne laser is preferred from the viewpoint of stability and output. In addition, semiconductor lasers are small, require low driving power,
It is preferable as an excitation light source because direct modulation is possible and the laser output can be easily stabilized.

䞊述のように、効率の良い励起が可胜であるず
いう点から、半導䜓レヌザヌは母䜓を構成するハ
ロゲンがである蛍光䜓の励起甚光源ずしお特に
奜たしい。
As mentioned above, a semiconductor laser is particularly preferable as a light source for excitation of a phosphor whose parent substance is halogen, since efficient excitation is possible.

次に、本発明の攟射線像倉換方法に甚いられる
攟射線像倉換パネルに぀いお説明する。
Next, a radiation image conversion panel used in the radiation image conversion method of the present invention will be explained.

この攟射線像倉換パネルは、前述のように、実
質的に支持䜓ず、この支持䜓䞊に蚭けられた前蚘
組成匏で衚わされるビスマス賊掻アルカリ
金属ハロゲン化物蛍光䜓を分散状態で含有支持す
る結合剀からなる少なくずも䞀局の蛍光䜓局ずか
ら構成される。
As described above, this radiation image conversion panel includes a support substantially including a support and a bismuth-activated alkali metal halide phosphor provided on the support in a dispersed state represented by the above compositional formula (). and at least one phosphor layer made of a binder.

䞊蚘の構成を有する攟射線像倉換パネルは、た
ずえば、次に述べるような方法により補造するこ
ずができる。
The radiation image conversion panel having the above configuration can be manufactured, for example, by the method described below.

たず、攟射線像倉換パネルに甚いられる䞊蚘組
成匏で衚わされるビスマス賊掻セシりムハ
ラむド蛍光䜓に぀いお説明する。
First, the bismuth-activated cesium halide phosphor represented by the above compositional formula () used in the radiation image conversion panel will be explained.

このビスマス賊掻セシりムハラむド蛍光䜓は、
たずえば、以䞋に蚘茉するような補造法により補
造するこずができる。
This bismuth-activated cesium halide phosphor is
For example, it can be manufactured by the manufacturing method described below.

たず、蛍光䜓原料ずしお、 (1) CsClあるいはCsBrあるいはCsIのいずれか、 (2) ハロゲン化物、酞化物、硝酞塩、硫酞塩など
のビスマスの化合物からなる矀より遞ばれる少
なくずも䞀皮の化合物、 を甚意する。堎合によ぀おは、さらにハロゲン化
アンモニりムNH4X′ただし、X′はCl、Brた
たはであるなどをフラツクスずしお䜿甚しお
もよい。
First, prepare at least one compound selected from the group consisting of (1) CsCl, CsBr, or CsI, and (2) bismuth compounds such as halides, oxides, nitrates, and sulfates as a phosphor raw material. do. In some cases, ammonium halide (NH 4 X'; where X' is Cl, Br or I) may also be used as a flux.

蛍光䜓の補造に際しおは、䞊蚘(1)のセシりムハ
ラむド、および(2)のビスマス化合物を甚いお、化
孊量論的に、組成匏 CsXxBi  ただし、はClたたはBrたたはのいずれか
䞀皮でありそしおは≊0.2の範囲の数
倀である に察応する盞察比ずなるように秀量混合しお、蛍
光䜓原料の混合物を調補する。
When manufacturing a phosphor, the above (1) cesium halide and (2) bismuth compound are used to form a stoichiometric composition formula (): CsX:xBi () (where X is Cl or Br). and x is a numerical value in the range of 0<x≩0.2) by weighing and mixing to obtain a relative ratio corresponding to 0<x≩0.2 to prepare a mixture of phosphor raw materials.

本発明に甚いられる蛍光䜓の補造法においお、
䞻ずしお茝尜発光茝床の点から、組成匏に
おいおビスマスの賊掻量を衚わす倀は×10-4
≊≊10-2の範囲にあるのが奜たしい。
In the method for manufacturing the phosphor used in the present invention,
Mainly from the viewpoint of stimulated luminescence brightness, the x value representing the activation amount of bismuth in the composition formula () is 5 × 10 -4
Preferably, the range is ≩x≩10 -2 .

蛍光䜓原料混合物の調補は、 (i) 䞊蚘(1)および(2)の蛍光䜓原料を単に混合する
こずによ぀お行な぀おもく、あるいは、 (ii) 䞊蚘(1)および(2)の蛍光䜓原料を溶液の状態で
混合したのち、この溶液を加枩䞋奜たしくは
50〜200℃で枛圧也燥、真空也燥、噎霧也燥
などにより也燥しお蛍光䜓原料を混合するこず
によ぀お行な぀おもよい。
The phosphor raw material mixture may be prepared by (i) simply mixing the phosphor raw materials in (1) and (2) above, or (ii) by mixing the phosphor raw materials in (1) and (2) above. After mixing the phosphor raw materials in a solution state, this solution is heated (preferably
This may be carried out by drying at a temperature of 50 to 200° C. under reduced pressure, vacuum drying, spray drying, etc., and then mixing the phosphor raw materials.

䞊蚘(i)および(ii)のいずれの方法においおも、混
合には、各皮ミキサヌ、型ブレンダヌ、ボヌル
ミル、ロツドミルなどの通垞の混合機が甚いられ
る。
In both methods (i) and (ii) above, common mixers such as various mixers, V-type blenders, ball mills, and rod mills are used for mixing.

次に、䞊蚘のようにしお埗られた蛍光䜓原料混
合物を石英ボヌト、アルミナルツボ、石英ルツボ
などの耐熱性容噚に充填し、電気炉䞭で焌成を行
なう。焌成枩床は500〜1000℃の範囲が適圓であ
り、奜たしくは600〜800℃の範囲である。焌成時
間は蛍光䜓原料混合物の充填量および焌成枩床な
どによ぀おも異なるが、䞀般には0.5〜時間が
適圓である。焌成雰囲気ずしおは、少量の氎玠ガ
スを含有する窒玠ガス雰囲気、あるいは、䞀酞化
炭玠を含有する二酞化炭玠雰囲気などの匱還元性
の雰囲気窒玠ガス、アルゎンガスなどの䞍掻性
ガス雰囲気および空気などの酞性雰囲気を利甚
する。
Next, the phosphor raw material mixture obtained as described above is filled into a heat-resistant container such as a quartz boat, an alumina crucible, or a quartz crucible, and fired in an electric furnace. The firing temperature is suitably in the range of 500 to 1000°C, preferably in the range of 600 to 800°C. Although the firing time varies depending on the filling amount of the phosphor raw material mixture and the firing temperature, 0.5 to 6 hours is generally appropriate. The firing atmosphere includes a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon dioxide atmosphere containing carbon monoxide; an inert gas atmosphere such as nitrogen gas or argon gas; and air. Utilizes the acidic atmosphere of

䞊蚘焌成によ぀お粉末状の本発明の蛍光䜓が埗
られる。なお、埗られた粉末状の蛍光䜓に぀いお
は、必芁に応じお、さらに、掗浄、也燥、ふるい
分けなどの蛍光䜓の補造における各皮の䞀般的な
操䜜を行な぀おもよい。
By the above baking, the powdered phosphor of the present invention is obtained. Note that the obtained powdered phosphor may be further subjected to various general operations in the production of phosphors, such as washing, drying, and sieving, as necessary.

次に、ビスマス賊掻セシりムハラむド蛍光䜓が
その䞭に分散せしめられお圢成される蛍光䜓局の
結合剀の䟋ずしおは、れラチン等の蛋癜質、デキ
ストラン等のポリサツカラむド、たたはアラビア
ゎムのような倩然高分子物質および、ポリビニ
ルブチラヌル、ポリ酢酞ビニル、ニトロセルロヌ
ス、゚チルセルロヌス、塩化ビニリデン・塩化ビ
ニルコポリマヌ、ポリアルキルメタアクリレ
ヌト、塩化ビニル・酢酞ビニルコポリマヌ、ポリ
りレタン、セルロヌスアセテヌトブチレヌト、ポ
リビニルアルコヌル、線状ポリ゚ステルなどよう
な合成高分子物質などにより代衚される結合剀を
挙げるこずができる。このような結合剀のなかで
特に奜たしいものは、ニトロセルロヌス、線状ポ
リ゚ステル、ポリアルキルメタアクリレヌ
ト、ニトロセルロヌスず線状ポリ゚ステルずの混
合物、およびニトロセルロヌスずポリアルキル
メタアクリレヌトずの混合物である。
Examples of binders for the phosphor layer formed by dispersing the bismuth-activated cesium halide phosphor include proteins such as gelatin, polysaccharides such as dextran, or natural materials such as gum arabic. Polymeric substances; polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride/vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride/vinyl acetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, wire Examples include binders typified by synthetic polymeric substances such as polyester. Particularly preferred among such binders are nitrocellulose, linear polyesters, polyalkyl (meth)acrylates, mixtures of nitrocellulose and linear polyesters, and mixtures of nitrocellulose and polyalkyl (meth)acrylates. It is.

蛍光䜓局は、たずえば、次のような方法により
支持䜓䞊に圢成するこずができる。
The phosphor layer can be formed on the support, for example, by the following method.

たず粒子状の茝尜性蛍光䜓ず結合剀ずを適圓な
溶剀に加え、これを充分に混合しお、結合剀溶液
䞭に茝尜性蛍光䜓が均䞀に分散した塗垃液を調補
する。
First, a particulate stimulable phosphor and a binder are added to a suitable solvent and thoroughly mixed to prepare a coating solution in which the stimulable phosphor is uniformly dispersed in the binder solution.

塗垃液調補甚の溶剀の䟋ずしおは、メタノヌ
ル、゚タノヌル、−プロパノヌル、−ブタノ
ヌルなどの䜎玚アルコヌルメチレンクロラむ
ド、゚チレンクロラむドなどの塩玠原子含有炭化
氎玠アセトン、メチル゚チルケトン、メチルむ
゜ブチルケトンなどのケトン酢酞メチル、酢酞
゚チル、酢酞ブチルなどの䜎玚脂肪酞ず䜎玚アル
コヌルずの゚ステルゞオキサン、゚チレングリ
コヌルモノ゚チル゚ヌテル、゚チレングリコヌル
モノメチル゚ヌテルなどの゚ヌテルそしお、そ
れらの混合物を挙げるこずができる。
Examples of solvents for preparing coating solutions include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol; chlorine-containing hydrocarbons such as methylene chloride and ethylene chloride; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. ; esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, and butyl acetate; ethers such as dioxane, ethylene glycol monoethyl ether, and ethylene glycol monomethyl ether; and mixtures thereof.

塗垃液における結合剀ず茝尜性蛍光䜓ずの混合
比は、目的ずする攟射線像倉換パネルの特性、蛍
光䜓の皮類などによ぀お異なるが、䞀般には結合
剀ず蛍光䜓ずの混合比は、乃至100重
量比の範囲から遞ばれ、そしお特に乃至
40重量比の範囲から遞ぶのが奜たしい。
The mixing ratio of the binder and the stimulable phosphor in the coating solution varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, etc., but in general, the mixing ratio of the binder and the stimulable phosphor is , 1:1 to 1:100 (weight ratio), and particularly preferably 1:8 to 1:40 (weight ratio).

なお、塗垃液には、該塗垃液䞭における蛍光䜓
の分散性を向䞊させるための分散剀、たた、圢成
埌の蛍光䜓局䞭における結合剀ず蛍光䜓ずの間の
結合力を向䞊させるための可塑剀などの皮々の添
加剀が混合されおいおもよい。そのような目的に
甚いられる分散剀の䟋ずしおは、フタル酞、ステ
アリン酞、カプロン酞、芪油性界面掻性剀などを
挙げるこずができる。そしお可塑性の䟋ずしお
は、燐酞トリプニル、燐酞トリクレゞル、燐酞
ゞプニルなどの燐酞゚ステルフタル酞ゞ゚チ
ル、フタル酞ゞメトキシ゚チルなどのフタル酞゚
ステルグリコヌル酞゚チルフタリル゚チル、グ
リコヌル酞ブチルフタリルブチルなどのグリコヌ
ル酞゚ステルそしお、トリ゚チレングリコヌル
ずアゞピン酞ずのポリ゚ステル、ゞ゚チレングリ
コヌルずコハク酞ずのポリ゚ステルなどのポリ゚
チレングリコヌルず脂肪族二塩基塩ずのポリ゚ス
テルなどを挙げるこずができる。
The coating liquid also contains a dispersant to improve the dispersibility of the phosphor in the coating liquid, and a dispersant to improve the bonding force between the binder and the phosphor in the phosphor layer after formation. Various additives such as plasticizers may be mixed. Examples of dispersants used for such purposes include phthalic acid, stearic acid, caproic acid, lipophilic surfactants, and the like. Examples of plasticity include phosphate esters such as triphenyl phosphate, tricresyl phosphate, and diphenyl phosphate; phthalate esters such as diethyl phthalate and dimethoxyethyl phthalate; and glycols such as ethyl phthalyl ethyl glycolate and butyl phthalyl glycolate. Acid esters; and polyesters of polyethylene glycol and aliphatic dibasic salts, such as polyesters of triethylene glycol and adipic acid and polyesters of diethylene glycol and succinic acid.

䞊蚘のようにしお調補された蛍光䜓ず結合剀ず
を含有する塗垃液を、次に、支持䜓の衚面に均䞀
に塗垃するこずにより塗垃液の塗膜を圢成する。
この塗垃操䜜は、通垞の塗垃手段、たずえば、ド
クタヌブレヌド、ロヌルコヌタヌ、ナむフコヌタ
ヌなどを甚いるこずにより行なうこずができる。
The coating solution containing the phosphor and binder prepared as described above is then uniformly applied to the surface of the support to form a coating film of the coating solution.
This coating operation can be carried out using conventional coating means such as a doctor blade, roll coater, knife coater, etc.

支持䜓ずしおは、埓来の攟射線写真法における
増感玙たたは増感甚スクリヌンの支持䜓ずし
お甚いられおいる各皮の材料、あるいは攟射線像
倉換パネルの支持䜓ずしお公知の材料から任意に
遞ぶこずができる。そのような材料の䟋ずしお
は、セルロヌスアセテヌト、ポリ゚ステル、ポリ
゚チレンテレフタレヌト、ポリアミド、ポリむミ
ド、トリアセテヌト、ポリカヌボネヌトなどのプ
ラスチツク物質のフむルム、アルミニりム箔、ア
ルミニりム合金箔などの金属シヌト、通垞の玙、
バラむタ玙、レゞンコヌト玙、二酞化チタンなど
の願料を含有するピグメント玙、ポリビニルアル
コヌルなどをサむゞングした玙などを挙げるこず
ができる。
The support may be arbitrarily selected from various materials used as supports for intensifying screens (or intensifying screens) in conventional radiography or materials known as supports for radiation image conversion panels. I can do it. Examples of such materials include films of plastic materials such as cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, metal sheets such as aluminum foil, aluminum alloy foil, ordinary paper,
Examples include baryta paper, resin-coated paper, pigment paper containing pigments such as titanium dioxide, and paper sized with polyvinyl alcohol.

ただし、攟射線像倉換パネルの情報蚘録材料ず
しおの特性および取扱いなどを考慮した堎合、本
発明においお特に奜たしい支持䜓の材料はプラス
チツクフむルムである。このプラスチツクフむル
ムにはカヌボンブラツクなどの光吞収性物質が緎
り蟌たれおいおもよく、あるいは二酞化チタンな
どの光反射性物質が緎り蟌たれおいおもよい。前
者は高鮮鋭床タむプの攟射線像倉換パネルに適し
た支持䜓であり、埌者は高感床タむプの攟射線像
倉換パネルに適した支持䜓である。
However, in consideration of the characteristics and handling of the radiation image storage panel as an information recording material, a particularly preferred material for the support in the present invention is plastic film. This plastic film may be kneaded with a light-absorbing substance such as carbon black, or may be kneaded with a light-reflecting substance such as titanium dioxide. The former is a support suitable for a high sharpness type radiation image conversion panel, and the latter is a support suitable for a high sensitivity type radiation image conversion panel.

公知の攟射線像倉換パネルにおいお、支持䜓ず
蛍光䜓局の結合を匷化するため、あるいは攟射線
像倉換パネルずしおの感床もしくは画質鮮鋭
床、粒状性を向䞊させるために、蛍光䜓局が蚭
けられる偎の支持䜓衚面にれラチンなどの高分子
物質を塗垃しお接着性付䞎局ずしたり、あるいは
二酞化チタンなどの反射性物質からなる光反射
局、もしくはカヌボンブラツクなどの光吞収性物
質からなる光吞収局などを蚭けるこずが知られお
いる。本発明においお甚いられる支持䜓に぀いお
も、これらの各皮の局を蚭けるこずができ、それ
らの構成は所望の攟射線像倉換パネルの目的、甚
途などに応じお任意に遞択するこずができる。
In known radiation image conversion panels, a phosphor layer is provided in order to strengthen the bond between the support and the phosphor layer, or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel. A polymeric substance such as gelatin is coated on the surface of the side support to form an adhesion-imparting layer, or a light-reflecting layer made of a reflective material such as titanium dioxide, or a light-absorbing layer made of a light-absorbing material such as carbon black. It is known to provide a layer or the like. The support used in the present invention can also be provided with these various layers, and their configurations can be arbitrarily selected depending on the purpose, use, etc. of the desired radiation image storage panel.

さらに、本出願人による特開昭58−200200号公
報に蚘茉されおいるように、埗られる画像の鮮鋭
床を向䞊させる目的で、支持䜓の蛍光䜓局偎の衚
面支持䜓の蛍光䜓局偎の衚面に接着性付䞎局、
光反射局あるいは光吞収局などが蚭けられおいる
堎合には、その衚面を意味するには埮小の凹凞
が圢成されおいおもよい。
Furthermore, as described in Japanese Unexamined Patent Publication No. 58-200200 by the present applicant, in order to improve the sharpness of the obtained image, the surface of the support on the phosphor layer side (the phosphor layer of the support) Adhesive layer on the side surface,
When a light reflecting layer or a light absorbing layer is provided, minute irregularities may be formed on the surface (meaning the surface thereof).

䞊蚘のようにしお支持䜓䞊に塗膜を圢成したの
ち塗膜を也燥しお、支持䜓䞊ぞの茝尜性蛍光䜓局
の圢成を完了する。蛍光䜓局の局厚は、目的ずす
る攟射線像倉換パネルの特性、蛍光䜓の皮類、結
合剀ず蛍光䜓ずの混合比などによ぀お異なるが、
通垞は20ÎŒm乃至mmずする。ただし、この局厚
は50乃至500ÎŒmずするのが奜たしい。
After forming the coating film on the support as described above, the coating film is dried to complete the formation of the stimulable phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, the mixing ratio of the binder and the phosphor, etc.
Usually it is 20 ÎŒm to 1 mm. However, the thickness of this layer is preferably 50 to 500 ÎŒm.

たた、茝尜性蛍光䜓局は、必ずしも䞊蚘のよう
に支持䜓䞊に塗垃液を盎接塗垃しお圢成する必芁
はなく、たずえば、別に、ガラス板、金属板、プ
ラスチツクシヌトなどのシヌト䞊に塗垃液を塗垃
し也燥するこずにより蛍光䜓局を圢成したのち、
これを、支持䜓䞊に抌圧するか、あるいは接着剀
を甚いるなどしお支持䜓ず蛍光䜓局ずを接合しお
もよい。
Furthermore, the stimulable phosphor layer does not necessarily need to be formed by directly applying a coating solution onto the support as described above, but can be formed by separately applying it onto a sheet such as a glass plate, metal plate, or plastic sheet. After forming a phosphor layer by applying a liquid and drying it,
The support and the phosphor layer may be bonded together by pressing this onto the support or using an adhesive.

茝尜性蛍光䜓局は䞀局だけでもよいが、二局以
䞊を重局しおもよい。重局する堎合にはそのうち
の少なくずも䞀局が組成匏のビスマス賊掻
セシりムハラむド蛍光䜓を含有する局であればよ
く、パネルの衚面に近い方に向぀お順次攟射線に
察する発光効率が高くなるように耇数の蛍光䜓局
を重局した構成にしおもよい。たた単局および重
局のいずれの堎合も、䞊蚘蛍光䜓ずずもに公知の
茝尜性蛍光䜓を䜵甚するこずができる。
Although only one stimulable phosphor layer may be used, two or more layers may be stacked. When layered, at least one of the layers should contain a bismuth-activated cesium halide phosphor having the composition formula (), and multiple layers should be layered so that the luminous efficiency against radiation increases in sequence toward the surface of the panel. It is also possible to have a structure in which phosphor layers are stacked. In both cases of single layer and multilayer, a known stimulable phosphor can be used in combination with the above phosphor.

そのような公知の茝尜性蛍光䜓の䟋ずしおは、
前述の蛍光䜓のほかに、特開昭55−12142号公報
に蚘茉されおいるZnSCuPb、BaO・
xAl2O3Euただし、0.8≊≊10、および、
M〓・xSiO2ただし、M〓はMg、Ca、Sr、
Zn、Cd、又はBaであり、はCe、Tb、Eu、
Tm、Pb、Tl、Bi、たたはMnであり、は、0.5
≊≊2.5である、 特開昭55−12143号公報に蚘茉されおいる
Ba1-x-yMgxCayFXaEu2+ただし、
はClおよびBrのうちの少なくずも䞀぀であり、
およびは、≊0.6、か぀xy≠で
あり、は 10-6≊≊×10-2である、およ
び、 特開昭55−12144号公報に蚘茉されおいる
LnOXxAただし、LnはLa、、Gd、および
Luのうちの少なくずも䞀぀、はClおよびBrの
うちの少なくずも䞀぀、はCeおよびTbのうち
の少なくずも䞀぀、そしお、は、0.1
である、 特願昭58−193162号に蚘茉されおいるM〓X2・
aM〓X′2xEu2+ただし、M〓はBa、SrおよびCa
からなる矀より遞ばれる少なくずも䞀皮のアルカ
リ土類金属でありおよびX′はCl、Brおよび
からなる矀より遞ばれる少なくずも䞀皮のハロ
ゲンであ぀お、か぀≠X′であり、そしおは
0.1≊≊10.0の範囲の数倀であり、は
≩0.2の範囲の数倀である などを挙げるこずができる。
Examples of such known stimulable phosphors include:
In addition to the above-mentioned phosphors, ZnS:Cu, Pb, BaO and
xAl 2 O 3 :Eu (however, 0.8≩x≩10), and
M〓O・xSiO 2 :A (However, M〓 is Mg, Ca, Sr,
Zn, Cd, or Ba, and A is Ce, Tb, Eu,
Tm, Pb, Tl, Bi, or Mn, and x is 0.5
≩x≩2.5), (Ba 1-xy , Mg x , Ca y ) FX: aEu 2+ (However, X
is at least one of Cl and Br,
x and y are 0<x+y≩0.6 and xy≠0, and a is 10 -6 ≩a≩5×10 -2 ), and as described in Japanese Patent Application Laid-Open No. 12144-1983.
LnOX:xA (Ln is La, Y, Gd, and
At least one of Lu, X is at least one of Cl and Br, A is at least one of Ce and Tb, and x is 0<x<0.1
), M〓X 2・
aM〓X′ 2 :xEu 2+ (where M〓 is Ba, Sr and Ca
at least one alkaline earth metal selected from the group consisting of; X and X' are at least one halogen selected from the group consisting of Cl, Br, and X≠X', and a is
It is a numerical value in the range of 0.1≩a≩10.0, and x is 0<x
A numerical value in the range of ≩0.2).

通垞の攟射線像倉換パネルにおいおは、前述の
ように支持䜓に接する偎ずは反察偎の蛍光䜓局の
衚面に、蛍光䜓局を物理的および化孊的に保護す
るための透明な保護膜が蚭けられおいる。このよ
うな透明保護膜は、本発明の攟射線像倉換パネル
に぀いおも蚭眮するこずが奜たしい。
In a normal radiation image storage panel, as mentioned above, a transparent protective film is provided on the surface of the phosphor layer on the side opposite to the side that contacts the support to physically and chemically protect the phosphor layer. It is being Such a transparent protective film is preferably provided also in the radiation image conversion panel of the present invention.

透明保護膜は、たずえば、酢酞セルロヌス、ニ
トロセルロヌスなどのセルロヌス誘導䜓あるい
はポリメチルメタクリレヌト、ポリビニルブチラ
ヌル、ポリビニルホルマヌル、ポリカヌボネヌ
ト、ポリ酢酞ビニル、塩化ビニル、酢酞ビニルコ
ポリマヌなどの合成高分子物質のような透明な高
分子物質を適圓な溶媒に溶解しお調補した溶液を
蛍光䜓局の衚面に塗垃する方法により圢成するこ
ずができる。あるいは、ポリ゚チレンテレフタレ
ヌト、ポリ゚チレン、ポリ塩化ビニリデン、ポリ
アミドなどから別に圢成した透明な薄膜を蛍光䜓
局の衚面に適圓な接着剀を甚いお接着するなどの
方法によ぀おも圢成するこずができる。このよう
にしお圢成する透明保護膜の膜厚は、玄0.1乃至
20ÎŒmずするのが望たしい。
The transparent protective film may be made of a transparent material such as a cellulose derivative such as cellulose acetate or nitrocellulose; or a synthetic polymeric material such as polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyvinyl acetate, vinyl chloride, or vinyl acetate copolymer. It can be formed by coating the surface of the phosphor layer with a solution prepared by dissolving a polymeric substance in an appropriate solvent. Alternatively, it can also be formed by a method such as adhering a transparent thin film separately formed from polyethylene terephthalate, polyethylene, polyvinylidene chloride, polyamide, etc. to the surface of the phosphor layer using a suitable adhesive. The thickness of the transparent protective film formed in this way is approximately 0.1 to
It is desirable to set it to 20ÎŒm.

次に、本発明の実斜䟋を蚘茉する。ただし、こ
れら実斜䟋は本発明を制限するものではない。
Next, examples of the present invention will be described. However, these Examples do not limit the present invention.

実斜䟋  塩化セシりムCsCl186.4g、および北化ビス
マスBiF30.266gをボヌルミルを甚いお充分に
混合した。
Example 1 186.4 g of cesium chloride (CsCl) and 0.266 g of bismuth fluoride (BiF 3 ) were thoroughly mixed using a ball mill.

次に、埗られた蛍光䜓原料混合物をアルミナル
ツボに充填し、これを高枩電気炉に入れお焌成を
行な぀た。焌成は、空気䞭にお600℃の枩床で
時間かけお行な぀た、焌成が完了したのち、焌成
物を炉倖に取り出しお冷华した。
Next, the obtained phosphor raw material mixture was filled into an alumina crucible, which was then placed in a high-temperature electric furnace and fired. Firing is carried out in air at a temperature of 600℃ for 2
After the firing, which took a long time, was completed, the fired product was taken out of the furnace and cooled.

このようにしお、粉末状のビスマス賊掻塩化セ
シりム蛍光䜓CsCl0.001Biを埗た。
In this way, a powdered bismuth-activated cesium chloride phosphor (CsCl: 0.001Bi) was obtained.

実斜䟋  実斜䟋においお、塩化セシりムの代りに臭化
セシりムCsBr212.8gを甚いるこず以倖は実
斜䟋の方法ず同様の操䜜を行なうこずにより、
粉末状のビスマス賊掻臭化セシりム蛍光䜓
CsBr0.001Biを埗た。
Example 2 By performing the same procedure as in Example 1 except for using 212.8 g of cesium bromide (CsBr) instead of cesium chloride,
A powdered bismuth-activated cesium bromide phosphor (CsBr: 0.001Bi) was obtained.

実斜䟋  実斜䟋においお、塩化セシりムの代りに沃化
セシりムCsI259.8gを甚いるこず以倖は実斜
䟋の方法ず同様の操䜜を行なうこずにより、粉
末状のビスマス賊掻沃化セシりム蛍光䜓CsI
0.001Biを埗た。
Example 3 A powdered bismuth-activated cesium iodide phosphor was produced by performing the same procedure as in Example 1 except for using 259.8 g of cesium iodide (CsI) instead of cesium chloride. (CsI:
0.001Bi) was obtained.

次に、実斜䟋〜で埗られた各々の蛍光䜓に
管電圧80KVpの線を照射したのち、He−Neレ
ヌザヌ光波長632.8nmで励起したずきの茝
尜発光スペクトルを枬定した。埗られた結果を第
図に瀺す。
Next, each of the phosphors obtained in Examples 1 to 3 was irradiated with X-rays at a tube voltage of 80 KVp, and the stimulated emission spectra were measured when excited with He-Ne laser light (wavelength: 632.8 nm). did. The results obtained are shown in FIG.

第図においお、 曲線CsCl0.001Bi蛍光䜓実斜䟋の
茝尜発光スペクトル 曲線CsBr0.001Bi蛍光䜓実斜䟋の
茝尜発光スペクトル 曲線CsI0.001Bi蛍光䜓実斜䟋の茝
尜発光スペクトル である。
In Figure 2, Curve 1: Stimulated emission spectrum of CsCl:0.001Bi phosphor (Example 1) Curve 2: Stimulated emission spectrum of CsBr:0.001Bi phosphor (Example 2) Curve 3: Stimulated emission spectrum of CsI:0.001Bi It is a stimulated emission spectrum of the phosphor (Example 3).

たた、実斜䟋〜で埗られた各蛍光䜓に管電
圧80KVpの線を照射したのち、450〜1000nm
の波長領域の光で励起した時のそれぞれの蛍光䜓
のピヌク発光波長における茝尜励起スペクトルを
枬定した。埗られた結果を第図に瀺す。
In addition, after irradiating each phosphor obtained in Examples 1 to 3 with X-rays at a tube voltage of 80 KVp,
The photostimulation excitation spectrum at the peak emission wavelength of each phosphor when excited with light in the wavelength range was measured. The results obtained are shown in FIG.

第図においお、 曲線Cscl0.001Bi蛍光䜓実斜䟋の
茝尜励起スペクトル 曲線CsBr0.001Bi蛍光䜓実斜䟋の
茝尜励起スペクトル 曲線CsI0.001Bi蛍光䜓実斜䟋の茝
尜励起スペクトル である。
In Figure 1, Curve 1: Stimulated excitation spectrum of Cscl: 0.001Bi phosphor (Example 1) Curve 2: Stimulated excitation spectrum of CsBr: 0.001Bi phosphor (Example 2) Curve 3: CsI: 0.001Bi It is a photostimulation excitation spectrum of the phosphor (Example 3).

実斜䟋  実斜䟋〜で埗られた䞉皮のビスマス賊掻セ
シりムハラむド蛍光䜓それぞれを甚いお以䞋に述
べるような方法で攟射線像倉換パネルを補造し
た。
Example 4 A radiation image conversion panel was manufactured using each of the three types of bismuth-activated cesium halide phosphors obtained in Examples 1 to 3 by the method described below.

たず、蛍光䜓粒子ず線状ポリ゚ステル暹脂ずの
混合物にメチル゚チルケトンを添加し、さらに硝
化床11.5のニトロセルロヌスを添加しお蛍光䜓
を分散状態で含有する分散液を調補した。次に、
この分散液に燐酞トリクレゞル、−ブタノヌ
ル、そしおメチル゚チルケトンを添加した埌、プ
ロペラミキサヌを甚いお充分に撹拌混合しお、蛍
光䜓が均䞀に分散し、か぀結合剀ず蛍光䜓ずの混
合比が10、粘床が25〜35PS25℃の塗垃液
を調補した。
First, methyl ethyl ketone was added to a mixture of phosphor particles and linear polyester resin, and nitrocellulose with a degree of nitrification of 11.5% was further added to prepare a dispersion containing the phosphor in a dispersed state. next,
After adding tricresyl phosphate, n-butanol, and methyl ethyl ketone to this dispersion, they were stirred and mixed thoroughly using a propeller mixer to ensure that the phosphor was uniformly dispersed and that the mixing ratio of the binder and the phosphor was 1. :10, a coating liquid with a viscosity of 25 to 35 PS (25°C) was prepared.

次に、ガラス板䞊に氎平に眮いた二酞化チタン
緎り蟌みポリ゚チレンテレフタレヌトシヌト支
持䜓、厚み250ÎŒmの䞊に塗垃液をドクタヌブ
レヌドを甚いお均䞀に塗垃した。そしお塗垃埌
に、塗膜が圢成された支持䜓を也燥噚内に入れ、
この也燥噚の内郚の枩床を25℃から100℃に埐々
に䞊昇させお、塗膜の也燥を行な぀た。このよう
にしお、支持䜓䞊に局厚が250ÎŒmの蛍光䜓局を圢
成した。
Next, the coating solution was uniformly applied using a doctor blade onto a titanium dioxide-mixed polyethylene terephthalate sheet (support, thickness: 250 ÎŒm) placed horizontally on a glass plate. After coating, the support on which the coating film has been formed is placed in a dryer,
The temperature inside this dryer was gradually raised from 25°C to 100°C to dry the coating film. In this way, a phosphor layer with a layer thickness of 250 Όm was formed on the support.

そしお、この蛍光䜓局の䞊にポリ゚チレンテレ
フタレヌトの透明フむルム厚み12ÎŒm、ポリ
゚ステル系接着剀が付䞎されおいるものを接着
剀局偎を䞋に向けお眮いお接着するこずにより、
透明保護膜を圢成し、支持䜓、蛍光䜓局、および
透明保護膜から構成された攟射線像倉換パネルを
埗た。
Then, a transparent film of polyethylene terephthalate (thickness: 12 ÎŒm, coated with a polyester adhesive) is placed on top of this phosphor layer with the adhesive layer side facing down, and bonded.
A transparent protective film was formed to obtain a radiation image storage panel composed of a support, a phosphor layer, and a transparent protective film.

次に、実斜䟋で埗られた各攟射線像倉換パネ
ルに、管電圧80KVpの線を照射した埌He−Ne
レヌザヌ光で励起しお、パネルの感床茝尜発光
茝床を枬定した。この感床の枬定は、受光偎の
フむルタヌずしおピヌク波長390nm、半倀幅
60nm、ピヌク波長透過率78のバンドパスフむ
ルタヌ−390を甚いお行な぀た。その結果
を第衚に瀺す。
Next, each radiation image conversion panel obtained in Example 4 was irradiated with X-rays with a tube voltage of 80 KVp, and then He-Ne
The sensitivity (stimulated luminance) of the panel was measured by excitation with laser light. This sensitivity measurement was performed using a filter on the light receiving side with a peak wavelength of 390 nm and a half-value width of 390 nm.
A bandpass filter (B-390) with a peak wavelength transmittance of 78% at 60 nm was used. The results are shown in Table 1.

なお、第衚においお、感床は実斜䟋の
CsI0.001Bi蛍光䜓を䜿甚したパネルの感床を
100ずする盞察倀で瀺されおいる。
In addition, in Table 1, the sensitivity is the same as in Example 3.
CsI: 0.001Bi The sensitivity of the panel using phosphor is
It is expressed as a relative value of 100.

第衚 盞察感床 CsCl0.001Bi蛍光䜓 実斜䟋䜿甚のパネル 500 CsBr0.001Bi蛍光䜓 実斜䟋䜿甚のパネル 700 CsI0.001Bi蛍光䜓 実斜䟋䜿甚のパネル 100 Table 1 Relative sensitivity CsCl: 0.001Bi phosphor (Example 1) Panel used 500 CsBr: 0.001Bi phosphor (Example 2) Panel used 700 CsI: 0.001Bi phosphor (Example 3) Panel used 100

【図面の簡単な説明】[Brief explanation of drawings]

第図は、本発明のビスマス賊掻セシりムハラ
むド蛍光䜓の具䜓䟋であるCsCl0.001Bi蛍光䜓、
CsBr0.001Bi蛍光䜓およびCsI0.001Bi蛍光䜓
の茝尜励起スペクトルそれぞれ曲線およ
びである。第図は、本発明のビスマス賊掻
セシりムハラむド蛍光䜓の具䜓䟋であるCsCl
0.001Bi蛍光䜓、CsBr0.001Bi蛍光䜓および
CsI0.001Bi蛍光䜓の茝尜発光スペクトルそれ
ぞれ曲線およびである。第図は、本
発明に甚いられる攟射線像倉換方法を説明する抂
芁図である。 攟射線発生装眮、被写䜓、
攟射線像倉換パネル、光源、光電倉
換装眮、画像再生装眮、画像衚瀺装
眮、フむルタヌ。
FIG. 1 shows a CsCl:0.001Bi phosphor, which is a specific example of the bismuth-activated cesium halide phosphor of the present invention.
Figure 3 is the photostimulation excitation spectra of CsBr:0.001Bi phosphor and CsI:0.001Bi phosphor (curves 1, 2 and 3, respectively). FIG. 2 shows CsCl, which is a specific example of the bismuth-activated cesium halide phosphor of the present invention:
0.001Bi phosphor, CsBr: 0.001Bi phosphor and
Stimulated emission spectra of CsI:0.001Bi phosphor (curves 1, 2 and 3, respectively). FIG. 3 is a schematic diagram illustrating the radiation image conversion method used in the present invention. 11: Radiation generator, 12: Subject, 13:
Radiation image conversion panel, 14: light source, 15: photoelectric conversion device, 16: image reproduction device, 17: image display device, 18: filter.

Claims (1)

【特蚱請求の範囲】  被写䜓を透過した、あるいは被怜䜓から発せ
られた攟射線を、䞋蚘組成匏で衚わされる
ビスマス賊掻セシりムハラむド蛍光䜓に吞収させ
たのち、この蛍光䜓に450〜900nmの波長領域の
電磁波を照射するこずにより、該蛍光䜓に蓄積さ
れおいる攟射線゚ネルギヌを蛍光ずしお攟出さ
せ、そしおこの蛍光を怜出するこずを特城ずする
攟射線像倉換方法。 組成匏 CsXxBi  ただし、はClたたはBrたたはのいずれか
䞀皮でありそしおは≊0.2の範囲の数
倀である  組成匏におけるが×10-4≊≊
10-2の範囲の数倀である特蚱請求の範囲第項蚘
茉の攟射線像倉換方法。  電磁波が500〜850nmの波長領域の電磁波で
ある特蚱請求の範囲第項蚘茉の攟射線像倉換方
法。  電磁波がレヌザヌ光である特蚱請求の範囲第
項蚘茉の攟射線像倉換方法。  支持䜓ず、この支持䜓䞊に蚭けられた茝尜性
蛍光䜓を分散状態で含有支持する結合剀からなる
少なくずも䞀局の蛍光䜓局ずから実質的に構成さ
れおおり、該蛍光䜓局のうちの少なくずも䞀局
が、䞋蚘組成匏で衚わされるビスマス賊掻
セシりムハラむド蛍光䜓を含有するこずを特城ず
する攟射線像倉換パネル。 組成匏 CsXxBi  ただし、はClたたはBrたたはのいずれか
䞀皮でありそしおは≊0.2の範囲の数
倀である  組成匏におけるが×10-4≊≊
10-2の範囲の数倀である特蚱請求の範囲第項蚘
茉の攟射線像倉換パネル。
[Claims] 1. After the radiation transmitted through the subject or emitted from the subject is absorbed into a bismuth-activated cesium halide phosphor represented by the following compositional formula (), this phosphor is injected with 450 to 900 nm wavelength radiation. A radiation image conversion method comprising: emitting radiation energy stored in the phosphor as fluorescence by irradiating electromagnetic waves in a wavelength range; and detecting this fluorescence. Compositional formula (): CsX:xBi () (However, X is either Cl or Br; and x is a numerical value in the range of 0<x≩0.2) 2 In the compositional formula (), x is 5 ×10 -4 ≩x≩
10. The radiation image conversion method according to claim 1, wherein the value is in the range of 10-2 . 3. The radiation image conversion method according to claim 1, wherein the electromagnetic waves are electromagnetic waves in a wavelength range of 500 to 850 nm. 4. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is a laser beam. 5 Substantially composed of a support and at least one phosphor layer made of a binder containing and supporting the stimulable phosphor in a dispersed state provided on the support; A radiation image conversion panel characterized in that at least one layer thereof contains a bismuth-activated cesium halide phosphor represented by the following compositional formula (). Compositional formula (): CsX:xBi () (However, X is either Cl or Br; and x is a numerical value in the range of 0<x≩0.2) 6 In the compositional formula (), x is 5 ×10 -4 ≩x≩
The radiation image conversion panel according to claim 5, which has a numerical value in the range of 10 -2 .
JP7048585A 1985-04-02 1985-04-02 Radiation image conversion method and radiation image conversion panel image conversion used therein Granted JPS61228400A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7048585A JPS61228400A (en) 1985-04-02 1985-04-02 Radiation image conversion method and radiation image conversion panel image conversion used therein
US06/846,919 US4780375A (en) 1985-04-02 1986-04-01 Phosphor, and radiation image storage panel
DE86104503T DE3688630T2 (en) 1985-04-02 1986-04-02 Phosphor, method for storing and reproducing a radiation image and screen for storing a radiation image.
EP86104503A EP0200017B1 (en) 1985-04-02 1986-04-02 Phosphor, radiation image recording and reproducing method and radiation image storage panel
US07/184,881 US4801806A (en) 1985-04-02 1988-04-22 Radiation image recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7048585A JPS61228400A (en) 1985-04-02 1985-04-02 Radiation image conversion method and radiation image conversion panel image conversion used therein

Publications (2)

Publication Number Publication Date
JPS61228400A JPS61228400A (en) 1986-10-11
JPH0554639B2 true JPH0554639B2 (en) 1993-08-13

Family

ID=13432870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7048585A Granted JPS61228400A (en) 1985-04-02 1985-04-02 Radiation image conversion method and radiation image conversion panel image conversion used therein

Country Status (1)

Country Link
JP (1) JPS61228400A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016630B2 (en) * 1991-07-01 2000-03-06 コニカ株匏䌚瀟 Radiation image recording and reading device
JP2003248097A (en) 2002-02-25 2003-09-05 Konica Corp Radiation image conversion panel and its production method
JP2008164339A (en) 2006-12-27 2008-07-17 Konica Minolta Medical & Graphic Inc Radiological image conversion panel

Also Published As

Publication number Publication date
JPS61228400A (en) 1986-10-11

Similar Documents

Publication Publication Date Title
US5198679A (en) Phosphor and image storage panel
JPS5975200A (en) Radiation image conversion and radiation image conversion panel used therefor
US4780376A (en) Phosphor and radiation image storage panel
JPH0214394B2 (en)
US4780375A (en) Phosphor, and radiation image storage panel
JPH089716B2 (en) Phosphor, radiation image conversion method and radiation image conversion panel
JPH0475951B2 (en)
US4999515A (en) Radiation image recording and reproducing method
JPH0475949B2 (en)
JPH0526838B2 (en)
JPH0554639B2 (en)
JPH0460515B2 (en)
JPH0214393B2 (en)
US4891277A (en) Phosphor, and radiation image storage panel
JPH0248596B2 (en)
JPH0548276B2 (en)
JPH0527675B2 (en)
JPH0526836B2 (en)
JPH0662948B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPH0195183A (en) Technique for radiation image transformation
JPH0214395B2 (en)
JPH0460151B2 (en)
JPH0460513B2 (en)
JPS6328953B2 (en)
JPS6178892A (en) Radiation image transformation and radiation image transformation panel used in its process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees