JPH0548276B2 - - Google Patents

Info

Publication number
JPH0548276B2
JPH0548276B2 JP7815485A JP7815485A JPH0548276B2 JP H0548276 B2 JPH0548276 B2 JP H0548276B2 JP 7815485 A JP7815485 A JP 7815485A JP 7815485 A JP7815485 A JP 7815485A JP H0548276 B2 JPH0548276 B2 JP H0548276B2
Authority
JP
Japan
Prior art keywords
phosphor
radiation image
image conversion
radiation
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7815485A
Other languages
Japanese (ja)
Other versions
JPS61236891A (en
Inventor
Takashi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60078154A priority Critical patent/JPS61236891A/en
Priority to US07/850,689 priority patent/US4891277A/en
Publication of JPS61236891A publication Critical patent/JPS61236891A/en
Publication of JPH0548276B2 publication Critical patent/JPH0548276B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 発明の分野 本発明は、攟射線像倉換方法およびその方法に
甚いられる攟射線像倉換パネルに関するものであ
る。さらに詳しくは、本発明は、二䟡のナヌロピ
りムにより賊掻されおいる耇合ハロゲン化物蛍光
䜓を䜿甚する攟射線像倉換方法、およびその方法
に甚いられる攟射線像倉換パネルに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a radiation image conversion method and a radiation image conversion panel used in the method. More specifically, the present invention relates to a radiation image conversion method using a composite halide phosphor activated with divalent europium, and a radiation image conversion panel used in the method.

発明の背景 埓来、攟射線像を画像ずしお埗る方法ずしお、
銀塩感光材料からなる乳剀局を有する攟射線写真
フむルムず増感剀増感スクリヌンずの組合わ
せを䜿甚する、いわゆる攟射線写真法が利甚され
おいる。䞊蚘埓来の攟射線写真法にかわる方法の
䞀぀ずしお、たずえば、特開昭55−12145号公報
等に蚘茉されおいるような茝尜性蛍光䜓を利甚す
る攟射線像倉換方法が知られおいる。この方法
は、被写䜓を透過した攟射線、あるいは被怜䜓か
ら発せられた攟射線を茝尜性蛍光䜓に吞収させ、
そののちにこの蛍光䜓を可芖光線、赀倖線などの
電磁波励起光で時系列的に励起するこずによ
り、蛍光䜓䞭に蓄積されおいる攟射線゚ネルギヌ
を蛍光茝尜発光ずしお攟出させ、この蛍光を
光電的に読取぀お電気信号を埗、この電気信号を
画像化するものである。
[Background of the Invention] Conventionally, as a method of obtaining a radiation image as an image,
A so-called radiographic method is used which uses a combination of a radiographic film having an emulsion layer made of a silver salt photosensitive material and a sensitizer (sensitizing screen). As an alternative to the conventional radiographic method, a radiation image conversion method using a stimulable phosphor is known, for example, as described in Japanese Patent Application Laid-Open No. 12145/1983. This method involves absorbing radiation transmitted through the subject or radiation emitted from the subject into a stimulable phosphor.
Then, by exciting this phosphor in a time-series manner with electromagnetic waves (excitation light) such as visible light and infrared rays, the radiation energy accumulated in the phosphor is released as fluorescence (stimulated luminescence). Fluorescence is read photoelectrically to obtain an electrical signal, and this electrical signal is converted into an image.

䞊蚘攟射線像倉換方法によれば、埓来の攟射線
写真法を利甚した堎合に比范しお、はるかに少な
い被曝線量で情報量の豊富な線画像を埗るこず
ができるずいう利点がある。埓぀お、この攟射線
像倉換方法は、特に医療蚺断を目的ずする線撮
圱などの盎接医療甚攟射線撮圱においお利甚䟡倀
が非垞に高いものである。
The radiation image conversion method has the advantage that it is possible to obtain an X-ray image with a rich amount of information with a much lower exposure dose than when conventional radiography is used. Therefore, this radiation image conversion method has a very high utility value especially in direct medical radiography such as X-ray photography for the purpose of medical diagnosis.

䞊蚘攟射線像倉換方法に甚いられる茝尜性蛍光
䜓ずしお、特開昭55−12145号公報には、䞋蚘組
成匏で衚わされる垌土類元玠賊掻アルカリ土類金
属北化ハロゲン化物蛍光䜓が開瀺されおいる。
As a stimulable phosphor used in the above radiation image conversion method, JP-A-55-12145 discloses a rare earth element-activated alkaline earth metal fluoride halide phosphor represented by the following composition formula: .

Ba1-x、M2+ xFXyA ただし、M2+はMg、Ca、Sr、Zn、およびCd
のうちの少なくずも䞀぀、はCl、Br、および
のうちの少なくずも䞀぀、はEu、Tb、Ce、
Tm、Dy、Pr、Ho、Nd、Yb、およびErのうち
の少なくずも䞀぀、そしおは、≊≊0.6、
は、≊≊0.2である この蛍光䜓は、先などの攟射線を吞収したの
ち、可芖光乃至赀倖線領域の電磁波の照射を受け
るず近玫倖領域に発光茝尜発光を瀺すもので
ある。
(Ba 1-x , M 2+ x )FX: yA (where M 2+ is Mg, Ca, Sr, Zn, and Cd
X is at least one of Cl, Br, and I; A is Eu, Tb, Ce,
at least one of Tm, Dy, Pr, Ho, Nd, Yb, and Er, and x is 0≩x≩0.6,
(y is 0≩y≩0.2) After absorbing radiation from the X-direction, this phosphor emits light in the near-ultraviolet region (stimulated luminescence) when irradiated with electromagnetic waves in the visible light to infrared region. It is something.

䞊述のように、茝尜性蛍光䜓を理想する攟射線
像倉換方法に甚いられる蛍光䜓ずしお、埓来より
䞊蚘垌土類元玠賊掻アルカリ土類金属ハロゲン化
物蛍光䜓が知られおいるが、茝尜性を瀺す蛍光䜓
自䜓、この垌土類元玠賊掻アルカリ土類金属ハロ
ゲン化物蛍光䜓以倖はあたり知られおいない。
As mentioned above, the above rare earth element-activated alkaline earth metal halide phosphors have been known as phosphors used in radiation image conversion methods that ideally use stimulable phosphors; however, they exhibit photostimulability. Not much is known about the phosphor itself other than this rare earth element-activated alkaline earth metal halide phosphor.

発明の芁旚 本発明は、新芏な茝尜性蛍光䜓の発芋に基づく
ものであり、該茝尜性蛍光䜓を䜿甚する攟射線像
倉換方法、およびその方法に甚いられる攟射線像
倉換パネルを提䟛するものである。
[Summary of the Invention] The present invention is based on the discovery of a novel stimulable phosphor, and provides a radiation image conversion method using the stimulable phosphor, and a radiation image conversion panel used in the method. It is something to do.

本発明者等は、茝尜性蛍光䜓の探玢を目的ずし
お皮々の研究を行な぀おきた。その結果、䞋蚘組
成匏で衚わされる新芏な二䟡ナヌロピりム
賊掻耇合ハロゲン化物蛍光䜓は茝尜発光を瀺すこ
ず、すなわち該蛍光䜓は線、玫倖線、電子線、
γ線、α線、β線などの攟射線を照射したのち、
450〜900nの可芖乃至赀倖領域の電磁波で励起
するず近玫倖乃至青色領域に茝尜発光を瀺すこず
を芋出し、そしおこの知芋に基づいお本発明を完
成させるに至぀たものである。
The present inventors have conducted various studies with the aim of searching for stimulable phosphors. As a result, the novel divalent europium-activated composite halide phosphor represented by the following compositional formula () exhibits stimulated luminescence.
After irradiating with radiation such as gamma rays, alpha rays, and beta rays,
The inventors discovered that stimulated luminescence occurs in the near-ultraviolet to blue region when excited by electromagnetic waves in the visible to infrared region of 450 to 900 nm, and based on this knowledge, they completed the present invention.

組成匏 M〓X2・aM〓X′xEu2+  ただし、M〓はBa、SrおよびCaからなる矀よ
り遞ばれる少なくずも䞀皮のアルカリ土類金属で
ありM〓はLi、RbおよびCsからなる矀より遞ば
れる少なくずも䞀皮のアルカリ金属でありず
X′ずは互いに同じ即ち、X′であ぀お、
Cl、Brたたはのいずれか䞀皮のハロゲンであ
りそしおは0.1≊≊20.0の範囲の数倀であ
り、は≊0.2の範囲の数倀である すなわち、本発明の攟射線像倉換方法は、被写
䜓を透過した、あるいは被怜䜓から発せられた攟
射線を、䞊蚘組成匏で衚わされる二䟡ナヌ
ロピりム賊掻耇合ハロゲン化物蛍光䜓に吞収させ
た埌、この蛍光䜓に450〜900nの波長領域の電
磁波を照射するこずにより、該蛍光䜓に蓄積され
おいる攟射線゚ネルギヌを蛍光ずしお攟出させ、
そしおこの蛍光を怜出するこずを特城ずする。
Composition formula (): M〓X 2・aM〓X′:xEu 2+ () (However, M〓 is at least one alkaline earth metal selected from the group consisting of Ba, Sr, and Ca; M〓 At least one alkali metal selected from the group consisting of Li, Rb and Cs;
X′ are the same (i.e., X=X′), and
is a halogen of any one of Cl, Br, or I; and a is a numerical value in the range of 0.1≩a≩20.0, and x is a numerical value in the range of 0<x≩0.2) In other words, the radiographic image of the present invention The conversion method involves absorbing the radiation transmitted through the object or emitted from the object into a divalent europium-activated composite halide phosphor represented by the above composition formula (), and then absorbing the radiation into this phosphor with a wavelength of 450 to 900 nm. By irradiating electromagnetic waves in the wavelength range, the radiation energy stored in the phosphor is released as fluorescence,
It is characterized by detecting this fluorescence.

たた、本発明の攟射線像倉換パネルは、支持䜓
ず、この支持䜓䞊に蚭けられた茝尜性蛍光䜓を分
散状態で含有支持する結合剀からなる少なくずも
䞀局の蛍光䜓局ずから実質的に構成されおおり、
該蛍光䜓局のうちの少なくずも䞀局が、䞊蚘組成
匏で衚わされる二䟡ナヌロピりム賊掻耇合
ハロゲン化物蛍光䜓を含有するこずを特城ずす
る。
Further, the radiation image storage panel of the present invention substantially comprises a support and at least one phosphor layer formed on the support and comprising a binder containing and supporting the stimulable phosphor in a dispersed state. It is configured,
At least one of the phosphor layers is characterized in that it contains a divalent europium-activated composite halide phosphor represented by the above compositional formula ().

発明の構成 第図は、本発明の攟射線像倉換方法に甚いら
れる二䟡ナヌロピりム賊掻耇合ハロゲン化物蛍光
䜓の茝尜励起スペクトルを䟋瀺するものであり、
第図においお、曲線および曲線はそれぞれ
BaBr2・LiBr0.001Eu2+蛍光䜓およびBaBr2・
CsBr0.001Eu2+蛍光䜓の茝尜励起スペクトルで
ある。
[Structure of the Invention] FIG. 1 illustrates the stimulated excitation spectrum of the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention.
In Figure 1, curve 1 and curve 2 are respectively
BaBr 2・LiBr: 0.001Eu 2+ phosphor and BaBr 2・
This is the photostimulation excitation spectrum of CsBr:0.001Eu 2+ phosphor.

第図から明らかなように、本発明に甚いられ
るBaBr2・LiBr0.001Eu2+蛍光䜓および
BaBr2・CsBr0.001Eu2+蛍光䜓は攟射線の照射
埌450〜900nの波長領域の電磁波で励起するず
茝尜発光を瀺す。特に、500〜800nの波長領域
の電磁波で励起した堎合には、茝尜発光ず励起光
ずを分離するこずが容易であり、か぀その茝尜発
光は高茝床ずなる。本発明の攟射線像倉換方法に
おいお、励起光ずしお甚いられる電磁波の波長を
450〜900nず芏定したのは、このような事実に
基づいおである。
As is clear from FIG. 1, the BaBr 2 LiBr: 0.001Eu 2+ phosphor used in the present invention and
BaBr 2 CsBr:0.001Eu 2+ phosphor exhibits stimulated luminescence when excited with electromagnetic waves in the wavelength range of 450 to 900 nm after irradiation with radiation. In particular, when excited with electromagnetic waves in the wavelength range of 500 to 800 nm, it is easy to separate the stimulated luminescence and excitation light, and the stimulated luminescence has high brightness. In the radiation image conversion method of the present invention, the wavelength of the electromagnetic wave used as excitation light is
It is based on this fact that the range is defined as 450 to 900 nm.

たた、第図は、本発明の攟射線像倉換方法に
甚いられる二䟡ナヌロピりム賊掻耇合ハロゲン化
物蛍光䜓の茝尜励起スペクトルを䟋瀺するもので
あり、第図においお、曲線および曲線はそ
れぞれBaBr2・LiBr0.001Eu2+蛍光䜓および
BaBr2・CsBr0.001Eu2+蛍光䜓の茝尜発光スペ
クトルである。
Further, FIG. 2 illustrates the photostimulated excitation spectrum of the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention. In FIG. 2, curve 1 and curve 2 are respectively BaBr 2・LiBr: 0.001Eu 2+ phosphor and
This is the stimulated emission spectrum of BaBr 2 CsBr:0.001Eu 2+ phosphor.

第図から明らかなように、本発明に甚いられ
るBaBr2・LiBr0.001Eu2+蛍光䜓および
BaBr2・CsBr0.001Eu2+蛍光䜓は近玫倖乃至青
色領域に茝尜発光を瀺し、その茝尜発光スペクト
ルのピヌクはそれぞれ玄405nおよび玄410n
にある。
As is clear from FIG. 2, the BaBr 2 LiBr: 0.001Eu 2+ phosphor used in the present invention and
BaBr 2 / CsBr: 0.001Eu 2+ phosphor exhibits stimulated luminescence in the near-ultraviolet to blue region, and the peaks of its stimulated emission spectrum are approximately 405 nm and 410 nm, respectively.
It is in.

以䞊特定の蛍光䜓を䟋にずり、本発明に甚いら
れる二䟡ナヌロピりム賊掻耇合ハロゲン化物蛍光
䜓の茝尜発光特性に぀いお説明したが、本発明に
甚いられるその他の蛍光䜓に぀いおも線、玫倖
線、電子線等の攟射線を照射したのち、450〜
900nの波長領域の電磁波で励起するず近玫倖
乃至青色領域に茝尜発光発光のピヌク波長
390〜420n付近を瀺すこずが確認されおい
る。
The stimulated luminescence properties of the divalent europium-activated composite halide phosphor used in the present invention have been explained using a specific phosphor as an example. However, other phosphors used in the present invention can also be After irradiating with radiation such as rays, 450 ~
When excited with electromagnetic waves in the wavelength range of 900 nm, stimulated luminescence occurs in the near-ultraviolet to blue region (peak wavelength of emission:
390 to 420 nm).

第図は、BaBr2・aLiBr0.001Eu2+蛍光䜓
における倀ず茝尜発光匷床80KVpの線を
照射した埌、He−Neレヌザヌ光632.8nで
励起した時の茝尜発光匷床ずの関係を瀺すグラ
フである。第図から明らかなように、倀が
0.1≊≊20.0の範囲にあるBaBr2・aLiBr
0.001Eu2+蛍光䜓は茝尜発光を瀺す。本発明の攟
射線像倉換方法に甚いられる二䟡ナヌロピりム賊
掻耇合ハロゲン化物蛍光䜓における倀を0.1≩
≊20.0の範囲に芏定したのは、このような事実
に基づいおである。たた第図から、倀が0.1
≊≊20.0の範囲にある本発明に甚いられる
BaBr2・aLiBr0.001Eu2+蛍光䜓のうちでも、
倀が1.5≊≊10.0の範囲にある蛍光䜓はより
高茝床の茝尜発光を瀺すこずが明らかである。な
お、BaBr2・aLiBr0.001Eu2+蛍光䜓以倖の本
発明に甚いられる二䟡ナヌロピりム賊掻耇合ハロ
ゲン化物蛍光䜓に぀いおも、倀ず茝尜発光匷床
ずの関係は第図ず同じような傟向にあるこずが
確認されおいる。
Figure 3 shows the a value and stimulated emission intensity of the BaBr 2 aLiBr: 0.001Eu 2+ phosphor [stimulated emission intensity when excited with He-Ne laser light (632.8 nm) after irradiation with 80 KVp X-rays. FIG. As is clear from Figure 3, the a value is
BaBr2・aLiBr in the range of 0.1≩a≩20.0:
0.001Eu 2+ phosphor exhibits stimulated luminescence. The a value in the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention is 0.1≩
It is based on this fact that the range of a≩20.0 is specified. Also, from Figure 3, the a value is 0.1
Used in the present invention in the range of ≩a≩20.0
BaBr 2・aLiBr: Among the 0.001Eu 2+ phosphors,
It is clear that a phosphor having an a value in the range of 1.5≩a≩10.0 exhibits stimulated luminescence with higher brightness. Furthermore, for the divalent europium-activated composite halide phosphors used in the present invention other than the BaBr 2 /aLiBr:0.001Eu 2+ phosphor, the relationship between the a value and the stimulated emission intensity is similar to that shown in Figure 3. It has been confirmed that there is a trend.

本発明の攟射線像倉換方法に甚いられる二䟡ナ
ヌロピりム賊掻耇合ハロゲン化物蛍光䜓は、その
茝尜励起スペクトルの波長領域が450〜900nず
広く、そのためにこの蛍光䜓を䜿甚する本発明の
攟射線像倉換方法においおは励起光の波長を適圓
に倉えるこずができる、すなわち、その励起光源
を目的に応じお適宜遞択するこずが可胜ずなる。
たずえば、䞊蚘蛍光䜓の茝尜励起スペクトルは玄
900nにたで及んでいるために、励起光源ずし
お小型で駆動電力の小さい半導䜓レヌザヌ赀倖
領域に発光波長を有するを利甚するこずがで
き、埓぀お、攟射線像倉換方法を実斜するための
装眮を小型化するこずが可胜ずなる。たた、茝尜
発光の茝尜および発光光ずの波長分離の点から
は、本発明の攟射線像倉換方法における励起光は
500〜800nの波長領域の電磁波であるのが奜た
しい。
The divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention has a stimulated excitation spectrum in a wide wavelength range of 450 to 900 nm, and therefore the radiation image conversion method of the present invention using this phosphor has a wide wavelength range of 450 to 900 nm. In this method, the wavelength of the excitation light can be changed appropriately, that is, the excitation light source can be appropriately selected depending on the purpose.
For example, the photostimulation excitation spectrum of the above phosphor is approximately
Since the wavelength extends to 900 nm, a compact semiconductor laser (having an emission wavelength in the infrared region) with a small size and low driving power can be used as an excitation light source, and therefore, it is possible to use a device for implementing the radiation image conversion method. It becomes possible to downsize the . In addition, from the point of view of stimulation of stimulated luminescence and wavelength separation from the emitted light, the excitation light in the radiation image conversion method of the present invention is
Preferably, it is an electromagnetic wave in the wavelength range of 500 to 800 nm.

本発明の攟射線像倉換方法においお、䞊蚘組成
匏で衚わされる二䟡ナヌロピりム賊掻耇合
ハロゲン化物蛍光䜓は、それを含有する攟射線像
倉換パネル蓄積性蛍光䜓シヌトずもいうの圢
態で甚いるのが奜たしい。
In the radiation image conversion method of the present invention, the divalent europium-activated composite halide phosphor represented by the above compositional formula () is used in the form of a radiation image conversion panel (also referred to as a stimulable phosphor sheet) containing it. is preferred.

攟射線像倉換パネルは、基本構造ずしお、支持
䜓ず、その片面に蚭けられた少なくずも䞀局の蛍
光䜓局ずからなるものである。蛍光䜓局は、茝尜
性蛍光䜓ずこの茝尜性蛍光䜓を分散状態で含有支
持する結合剀からなる。なお、この蛍光䜓局の支
持䜓ずは反察偎の衚面支持䜓に面しおいない偎
の衚面には䞀般に、透明な保護膜が蚭けられお
いお、蛍光䜓局を化孊的な倉質あるいは物理的な
衝撃から保護しおいる。
The basic structure of a radiation image storage panel is a support and at least one phosphor layer provided on one side of the support. The phosphor layer consists of a stimulable phosphor and a binder that contains and supports the stimulable phosphor in a dispersed state. Note that a transparent protective film is generally provided on the surface of the phosphor layer opposite to the support (the surface not facing the support) to protect the phosphor layer from chemical deterioration or Protects from physical impact.

すなわち、本発明の攟射線像倉換方法は、前蚘
の組成匏で衚わされる二䟡ナヌロピりム賊
掻耇合ハロゲン化物蛍光䜓からなる蛍光䜓局を有
する攟射線像倉換パネルを甚いお実斜するのが望
たしい。
That is, the radiation image conversion method of the present invention is preferably carried out using a radiation image conversion panel having a phosphor layer made of a divalent europium-activated composite halide phosphor represented by the above compositional formula ().

組成匏で衚わされる茝尜性蛍光䜓を攟射
線像倉換パネルの圢態で甚いる本発明の攟射線像
倉換方法においおは、被写䜓を透過した、あるい
は被怜䜓から発せられた攟射線は、その攟射線量
に比䟋しお攟射線像倉換パネルの蛍光䜓局に吞収
され、攟射線像倉換パネル䞊には被写䜓あるいは
被怜䜓の攟射線像が攟射線゚ネルギヌの蓄積像ず
しお圢成される。この蓄積像は、450〜900nの
波長領域の電磁波励起光で励起するこずによ
り、茝尜発光蛍光ずしお攟射させるこずがで
き、この茝尜発光を光電的に読み取぀お電気信号
に倉換するこずにより、攟射線゚ネルギヌの蓄積
像を画像化するこずが可胜ずなる。
In the radiation image conversion method of the present invention using a stimulable phosphor represented by the composition formula () in the form of a radiation image conversion panel, the radiation transmitted through the subject or emitted from the subject is It is proportionally absorbed by the phosphor layer of the radiation image conversion panel, and a radiation image of the subject or subject is formed on the radiation image conversion panel as an image of accumulated radiation energy. This accumulated image can be emitted as stimulated luminescence (fluorescence) by exciting it with electromagnetic waves (excitation light) in the wavelength range of 450 to 900 nm, and this stimulated luminescence can be read photoelectrically and converted into an electrical signal. By doing so, it becomes possible to image the accumulated radiation energy.

本発明の攟射線像倉換方法は、組成匏で
衚わされる茝尜性蛍光䜓を攟射線像倉換パネルの
圢態で甚いる態様を䟋にずり、第図に瀺す抂略
図を甚いお具䜓的に説明する。
The radiation image conversion method of the present invention will be specifically explained using the schematic diagram shown in FIG. 4, taking as an example an embodiment in which a stimulable phosphor represented by the composition formula () is used in the form of a radiation image conversion panel. .

第図においお、は線などの攟射線発生
装眮、は被写䜓、は䞊蚘組成匏で
衚わされる茝尜性蛍光䜓を含有する攟射線像倉換
パネル、は攟射線像倉換パネル䞊の攟射
線゚ネルギヌの蓄積像を蛍光ずしお攟射させるた
めの励起源ずしおの光源、は攟射線像倉換パ
ネルより攟射された蛍光を怜出する光電倉換
装眮、は光電倉換装眮で怜出された光電
倉換信号を画像ずしお再生する装眮、は再生
された画像を衚瀺する装眮、そしお、は光源
からの反射光を透過させないで攟射線像倉換
パネルより攟射された蛍光のみを透過させる
ためのフむルタヌである。
In FIG. 4, 11 is a radiation generating device such as an X-ray, 12 is a subject, 13 is a radiation image conversion panel containing a stimulable phosphor represented by the above composition formula (), and 14 is a radiation image conversion panel 13. 15 is a photoelectric conversion device that detects the fluorescence emitted from the radiation image conversion panel 13; 16 is a photoelectric conversion device detected by the photoelectric conversion device 15; A device for reproducing the signal as an image, 17 a device for displaying the reproduced image, and 18 a filter for transmitting only the fluorescence emitted from the radiation image conversion panel 13 without transmitting the reflected light from the light source 14. It is.

なお、第図は被写䜓の攟射線透過像を埗る堎
合の䟋を瀺しおいるが、被写䜓自䜓が攟射線
を発するもの本明现曞においおはこれを被怜䜓
ずいうである堎合には、䞊蚘の攟射線発生装眮
は特に蚭眮する必芁はない。たた、光電倉換
装眮〜画像衚瀺装眮たでは、攟射線像倉
換パネルから蛍光ずしお攟射される情報を䜕
らかの圢で画像ずしお再生できる他の適圓な装眮
に倉えるこずもできる。
Note that FIG. 4 shows an example of obtaining a radiographic image of a subject, but if the subject 12 itself emits radiation (herein referred to as the subject), the above method may be used. It is not necessary to particularly install the radiation generating device 11. Further, the photoelectric conversion device 15 to the image display device 17 can be replaced with other suitable devices that can reproduce information emitted as fluorescence from the radiation image conversion panel 13 as an image in some form.

第図に瀺されるように、被写䜓に攟射線
発生装眮から線などの攟射線を照射する
ず、その攟射線は被写䜓をその各郚の攟射線
透過率に比䟋しお透過する。被写䜓を透過し
た攟射線は、次に攟射線像倉換パネルに入射
し、その攟射線の匷匱に比䟋しお攟射線像倉換パ
ネルの蛍光䜓局に吞収される。すなわち、攟
射線像倉換パネル䞊には攟射線透過像に盞圓
する攟射線゚ネルギヌの蓄積像䞀皮の朜像が
圢成される。
As shown in FIG. 4, when a subject 12 is irradiated with radiation such as X-rays from the radiation generating device 11, the radiation passes through the subject 12 in proportion to the radiation transmittance of each part of the subject 12. The radiation that has passed through the subject 12 then enters the radiation image conversion panel 13 and is absorbed by the phosphor layer of the radiation image conversion panel 13 in proportion to the intensity of the radiation. That is, a radiation energy accumulation image (a kind of latent image) corresponding to a radiation transmission image is formed on the radiation image conversion panel 13.

次に、攟射線像倉換パネルに光源を甚
いお450〜1000nの波長領域の電磁波を照射す
るず、攟射線像倉換パネルに圢成された攟射
線゚ネルギヌの蓄積像は、蛍光ずしお攟射され
る。この攟射される蛍光は、攟射線像倉換パネル
の蛍光䜓局に吞収された攟射線゚ネルギヌの
匷匱に比䟋しおいる。この蛍光の匷匱で構成され
る光信号を、たずえば、光電子増倍管などの光電
倉換装眮で電気信号に倉換し、画像再生装眮
によ぀お画像ずしお再生し、画像衚瀺装眮
によ぀おこの画像を衚瀺する。
Next, when the radiation image conversion panel 13 is irradiated with electromagnetic waves in the wavelength range of 450 to 1000 nm using the light source 14, the accumulated radiation energy image formed on the radiation image conversion panel 13 is emitted as fluorescence. The emitted fluorescence is proportional to the intensity of the radiation energy absorbed by the phosphor layer of the radiation image conversion panel 13. This optical signal composed of the intensity of fluorescence is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, and is reproduced as an image by an image reproduction device 16, and the image display device 1
7 displays this image.

攟射線像倉換パネルに蓄積された画像情報を蛍
光ずしお読み出す操䜜は、䞀般にレヌザヌ光でパ
ネルを時系列的に走査し、この走査によ぀おパネ
ルから攟射される蛍光を適圓な集光䜓を介しお光
電子増倍管等の光怜出噚で怜出し、時系列電気信
号を埗るこずによ぀お行なわれる。この読出しは
芳察読圱性胜のより優れた画像を埗るために、䜎
゚ネルギヌの励起光の照射による先読み走査ず高
゚ネルギヌの励起光の照射による本読み操䜜ずか
ら構成されおいおもよい特開昭58−67240号公
報参照。この先読み操䜜を行なうこずにより本
読み操䜜における読出し条件を奜適に蚭定するこ
ずができるずの利点がある。
The operation of reading out the image information accumulated in a radiation image conversion panel as fluorescence is generally performed by scanning the panel in time series with a laser beam, and then transmitting the fluorescence emitted from the panel by this scanning through a suitable light condenser. This is done by detecting with a photodetector such as a photomultiplier tube and obtaining a time-series electrical signal. In order to obtain an image with better observation and interpretation performance, this readout may consist of pre-reading scanning by irradiating low-energy excitation light and main reading operation by irradiating high-energy excitation light. -Refer to Publication No. 67240). By performing this pre-read operation, there is an advantage that the read conditions for the main read operation can be suitably set.

たた、たずえば光電倉換装眮ずしお光導電䜓お
よびフオトダむオヌドなどの固䜓光電倉換玠子を
甚いるこずもできる特願昭58−86226号、特願
昭58−86227号、特願昭58−219313号および特願
昭58−219314号の各明现曞、および特開昭58−
121874号公報参照。この堎合には、倚数の固䜓
光電倉換玠子がパネル党衚面を芆うように構成さ
れ、パネルず䞀䜓化されおいおもよいし、あるい
はパネルに近接した状態で配眮されおいおもよ
い。たた、光電倉換装眮は耇数の光電倉換玠子が
線状に連な぀たラむンセンサであ぀おもよいし、
あるいは䞀画玠に察応する䞀個の固䜓光電倉換玠
子から構成されおいおもよい。
Furthermore, for example, solid-state photoelectric conversion elements such as photoconductors and photodiodes can be used as photoelectric conversion devices (Japanese Patent Application No. 58-86226, Japanese Patent Application No. 58-86227, Japanese Patent Application No. 58-219313, and Specifications of Application No. 58-219314 and JP-A-58-
(See Publication No. 121874). In this case, a large number of solid-state photoelectric conversion elements may be configured to cover the entire surface of the panel, and may be integrated with the panel, or may be arranged in close proximity to the panel. Further, the photoelectric conversion device may be a line sensor in which a plurality of photoelectric conversion elements are connected in a line,
Alternatively, it may be composed of one solid-state photoelectric conversion element corresponding to one pixel.

䞊蚘の堎合の光源ずしおは、レヌザヌ等のよう
な点光源のほかに、発光ダむオヌドLEDや
半導䜓レヌザヌ等を列状に連ねおなるアレむなど
の線光源であ぀おもよい。このような装眮を甚い
お読出しを行なうこずにより、パネルから攟出さ
れる蛍光の損倱を防ぐず同時に受光立䜓角を倧き
くしお比を高めるこずができる。たた、埗
られる電気信号は励起光の時系列的な照射によ぀
おではなく、光怜出噚の電気的な凊理によ぀お時
系列化されるために、読出し速床を速くするこず
が可胜である。
In addition to a point light source such as a laser, the light source in the above case may be a line light source such as an array of light emitting diodes (LEDs), semiconductor lasers, etc. arranged in a row. By performing readout using such a device, it is possible to prevent loss of fluorescence emitted from the panel, and at the same time, increase the solid angle of light reception and increase the S/N ratio. Furthermore, since the obtained electrical signals are converted into time series not by time series irradiation of excitation light but by electrical processing of the photodetector, it is possible to increase the readout speed. .

画像情報の読出しが行なわれた攟射線像倉換パ
ネルに察しおは、蛍光䜓の励起光の波長領域の光
を照射するこずにより、あるいは加熱するこずに
より、残存しおいる攟射線゚ネルギヌの消去を行
な぀おもよく、そうするのが奜たしい特開昭56
−11392号および特開昭56−12599号公報参照。
この消去操䜜を行なうこずにより、次にこのパネ
ルを䜿甚した時の残像によるノズルの発生を防止
するこずができる。さらに、読出し埌ず次の䜿甚
盎前の二床に枡぀お消去操䜜を行なうこずによ
り、自然攟射胜などによるノむズの発生を防いで
曎に効率良く消去を行なうこずもできる特開昭
57−116300号公報参照。
The radiation image conversion panel from which the image information has been read is irradiated with light in the wavelength range of the excitation light of the phosphor or heated to erase any remaining radiation energy. It is possible and preferable to do so (Japanese Patent Laid-open No. 1983
-11392 and Japanese Unexamined Patent Publication No. 12599/1983).
By performing this erasing operation, it is possible to prevent nozzles from occurring due to afterimages when the panel is used next time. Furthermore, by performing the erasing operation twice, once after reading and immediately before the next use, it is possible to prevent the generation of noise due to natural radioactivity, etc., and to perform erasing more efficiently (Japanese Patent Laid-Open Publication No.
(Refer to Publication No. 57-116300).

本発明の攟射線像倉換方法においお、被写䜓の
攟射線透過像を埗る堎合に甚いられる攟射線は、
䞊蚘蛍光䜓がこの攟射線の照射を受けた埌、さら
に䞊蚘電磁波で励起された時に茝尜発光を瀺しう
るものであればいかなる攟射線であ぀おもよく、
たずえば、線、電子線、玫倖線など䞀般によく
知られおいる攟射線を甚いるこずができる。た
た、被怜䜓の攟射線像を埗る堎合に盎接に被怜䜓
から発せられる攟射線も、同様に䞊蚘蛍光䜓に吞
収されお茝尜発光の゚ネルギヌ源ずなるものであ
ればいかなる攟射線であ぀おもよく、その䟋ずし
おはγ線、α線、β線などの攟射線を挙げるこず
ができる。
In the radiation image conversion method of the present invention, the radiation used to obtain a radiation transmission image of the subject is:
Any radiation may be used as long as it can exhibit stimulated luminescence when the phosphor is further excited by the electromagnetic waves after being irradiated with this radiation,
For example, commonly known radiation such as X-rays, electron beams, and ultraviolet rays can be used. Furthermore, when obtaining a radiation image of the subject, the radiation directly emitted from the subject may be any radiation that is similarly absorbed by the phosphor and serves as an energy source for stimulated luminescence. Examples include radiation such as gamma rays, alpha rays, and beta rays.

䞊蚘のようにしお被写䜓もしくは被怜䜓からの
攟射線を吞収した蛍光䜓を励起する電磁波の光源
ずしおは、450〜900nの波長領域にバンドスペ
クトル分垃をも぀光を攟射する光源のほかに、
Arむオンレヌザヌ、He−Neレヌザヌ、ルビ
ヌ・レヌザヌ、半導䜓レヌザヌ、ガラス・レヌザ
ヌ、YAGレヌザヌ、Krむオンレヌザヌ、色玠レ
ヌザヌ等のレヌザヌおよび発光ダむオヌドなどの
光源を䜿甚するこずができる。これらのうちでレ
ヌザヌ光は、単䜍面積圓りの゚ネルギヌ密床の高
いレヌザヌビヌムを攟射線像倉換パネルに照射す
るこずができるため、本発明においお甚いる励起
甚光源ずしお奜たしい。それらのうちでその安定
性および出力などの点から、奜たしいレヌザヌ光
はArむオンレヌザヌ、Krむオンレヌザヌ、He−
Neレヌザヌおよび半導䜓レヌザヌである。たた、
半導䜓レヌザヌは、小型であるこず、駆動電力が
小さいこず、盎接倉調が可胜なのでレヌザヌ出力
の安定化が簡単にできるこず、などの理由からも
励起光源ずしお奜たしい。
In addition to light sources that emit light with a band spectrum distribution in the wavelength range of 450 to 900 nm, light sources for electromagnetic waves that excite the phosphor that has absorbed radiation from the subject or subject as described above include:
Light sources such as lasers such as Ar ion lasers, He-Ne lasers, ruby lasers, semiconductor lasers, glass lasers, YAG lasers, Kr ion lasers, dye lasers, and light emitting diodes can be used. Among these, laser light is preferable as the excitation light source used in the present invention because it can irradiate the radiation image conversion panel with a laser beam having a high energy density per unit area. Among them, preferred laser beams are Ar ion laser, Kr ion laser, He-
Ne laser and semiconductor laser. Also,
Semiconductor lasers are preferable as excitation light sources because they are compact, require low driving power, and can be directly modulated, making it easy to stabilize laser output.

たた、消去に甚いられる光源ずしおは、茝尜性
蛍光䜓の励起波長領域の光を攟射するものであれ
ばよく、その䟋ずしおはタングステンランプ、蛍
光灯、ハロゲンランプ、高圧ナトリりムランプを
挙げるこずができる。
The light source used for erasing may be one that emits light in the excitation wavelength range of the stimulable phosphor; examples include tungsten lamps, fluorescent lamps, halogen lamps, and high-pressure sodium lamps. can.

本発明の攟射線像倉換方法は、茝尜性蛍光䜓に
攟射線の゚ネルギヌを吞収蓄積させる蓄積郚、こ
の蛍光䜓に励起光を照射しお攟射線の゚ネルギヌ
を蛍光ずしお攟出させる光怜出読出し郚、お
よび蛍光䜓䞭に残存する゚ネルギヌを攟出させる
ための消去郚を䞀぀の装眮に内蔵したビルトむン
型の攟射線像倉換装眮に適甚するこずもできる
特願昭57−84436号および特願昭58−66730号明
现曞参照。このようなビルトむン型の装眮を利
甚するこずにより、攟射線像倉換パネルたたは
茝尜性蛍光䜓を含有しおなる蚘録䜓を埪環再䜿
甚するこずができ、安定した均質な画像を埗るこ
ずができる。たた、ビルトむン型ずするこずによ
り装眮を小型化、軜量化するこずができ、その蚭
眮、移動などが容易になる。さらにこの装眮を移
動車に搭茉するこずにより、巡回攟射線撮圱が可
胜ずなる。
The radiation image conversion method of the present invention includes: a storage section that absorbs and stores radiation energy in a stimulable phosphor; a photodetection (readout) section that irradiates the phosphor with excitation light and emits the radiation energy as fluorescence; It can also be applied to a built-in type radiation image conversion device in which an eraser for emitting the energy remaining in the phosphor is built into one device (Japanese Patent Application No. 57-84436 and Patent Application No. 66730-1989). (see specification). By using such a built-in device, the radiation image conversion panel (or the recording material containing the stimulable phosphor) can be reused and a stable and homogeneous image can be obtained. can. Further, by using a built-in type, the device can be made smaller and lighter, and its installation and movement become easier. Furthermore, by mounting this device on a mobile vehicle, it becomes possible to carry out circular radiography.

次に、本発明の攟射線像倉換方法に甚いられる
攟射線像倉換パネルに぀いお説明する。
Next, a radiation image conversion panel used in the radiation image conversion method of the present invention will be explained.

この攟射線像倉換パネルは、前述のように、実
質的に支持䜓ず、この支持䜓䞊に蚭けられた前蚘
組成匏で衚わされる二䟡ナヌロピりム賊掻
耇合ハロゲン化物蛍光䜓を分散状態で含有支持す
る結合剀からなる少なくずも䞀局の蛍光䜓局ずか
ら構成される。
As described above, this radiation image conversion panel consists of a support substantially including a support and a support provided on the support containing a divalent europium-activated composite halide phosphor represented by the composition formula () in a dispersed state. and at least one phosphor layer made of a binder.

䞊蚘の構成を有する攟射線像倉換パネルは、た
ずえば、次に述べるような方法により補造するこ
ずができる。
The radiation image conversion panel having the above configuration can be manufactured, for example, by the method described below.

たず、攟射線像倉換パネルに甚いられる䞊蚘組
成物で衚わされる二䟡ナヌロピりム賊掻耇
合ハロゲン化物蛍光䜓に぀いお説明する。
First, the divalent europium-activated composite halide phosphor represented by the above composition () used in a radiation image storage panel will be explained.

この二䟡ナヌロピりム賊掻耇合ハロゲン化物蛍
光䜓は、たずえば、次に蚘茉するような補造法に
より補造するこずができる。
This divalent europium-activated composite halide phosphor can be manufactured, for example, by the manufacturing method described below.

たず、蛍光䜓原料ずしお、 (1) BaCl2、SrCl2、CaCl2、BaBr2、SrBr2、
CaBr2、BaI2、SrI2およびCal2からなる矀より
遞ばれるアルカリ土類金属ハロゲン化物、 (2) LiCl、RbCl、CsCl、LiBr、RbBr、CsBr、
LiI、RbIおよびCsIからなる矀より遞ばれるア
ルカリ金属ハロゲン化物、および (3) ハロゲン化物、酞化物、硝酞塩、硫酞塩など
のナヌロピりムの化合物からなる矀より遞ばれ
る化合物、 を甚意する。
First, as phosphor raw materials, (1) BaCl 2 , SrCl 2 , CaCl 2 , BaBr 2 , SrBr 2 ,
Alkaline earth metal halide selected from the group consisting of CaBr 2 , BaI 2 , SrI 2 and Cal 2 , (2) LiCl, RbCl, CsCl, LiBr, RbBr, CsBr,
An alkali metal halide selected from the group consisting of LiI, RbI, and CsI; and (3) a compound selected from the group consisting of europium compounds such as halides, oxides, nitrates, and sulfates.

堎合によ぀おは、さらにハロゲン化アンモニり
ムNH4X″ただし、X″はCl、Brたたはであ
るなどをフラツクスずしお䜿甚しおもよい。
In some cases, ammonium halide (NH 4 X''; where X'' is Cl, Br or I) may also be used as a flux.

蛍光䜓の補造に際しおは、䞊蚘(1)のアルカリ土
類金属ハロゲン化物、(2)のアルカリ金属ハロゲン
化物および(3)のナヌロピりム化合物を甚いお、化
孊量論的に、組成匏 M〓X2・aM〓X′xEu  ただし、M〓はBa、SrおよびCaからなる矀よ
り遞ばれる少なくずも䞀皮のアルカリ土類金属で
ありM〓はLi、RbおよびCsからなる矀より遞ば
れる少なくずも䞀皮のアルカリ金属でありず
X′ずは互いに同じ即ち、X′であ぀お、
Cl、Brたたはのいずれか䞀皮のハロゲンであ
りそしおは0.1≊≊20.0の範囲の数倀であ
り、は≊0.2の範囲の数倀である に察応する盞察比ずなるように秀量混合しお、蛍
光䜓原料の混合物を調補する。
When producing a phosphor, the above (1) alkaline earth metal halide, (2) alkali metal halide, and (3) europium compound are used to stoichiometrically form the composition formula (): M 〓X 2・aM〓X′:xEu () (where M〓 is at least one kind of alkaline earth metal selected from the group consisting of Ba, Sr, and Ca; at least one alkali metal selected from;
X′ are the same (i.e., X=X′), and
is a halogen of any one of Cl, Br, or I; and a is a numerical value in the range of 0.1≩a≩20.0, and x is a numerical value in the range of 0<x≩0.2). A mixture of phosphor raw materials is prepared by weighing and mixing as follows.

蛍光䜓原料混合物の調補は、 (i) 䞊蚘(1)、(2)および(3)の蛍光䜓原料を単に混合
するこずによ぀お行な぀おもよく、あるいは、 (ii) たず、䞊蚘(1)および(2)の蛍光䜓原料を混合
し、この混合物を100℃以䞊の枩床で数時間加
熱したのち、埗られた熱凊理物に䞊蚘(3)の蛍光
䜓原料を混合するこずによ぀お行な぀おもよい
し、あるいは、 (iii) たず、䞊蚘(1)および(2)の蛍光䜓原料を溶液の
状態で混合し、この溶液を加枩䞋奜たしくは
50〜200℃で、枛圧也燥、真空也燥、噎霧也
燥などにより也燥し、しかるのち埗られた也燥
物に䞊蚘(3)の蛍光䜓原料を混合するこによ぀お
行な぀おもよい。
The phosphor raw material mixture may be prepared by (i) simply mixing the phosphor raw materials in (1), (2) and (3) above, or (ii) first by mixing the phosphor raw materials in (1), (2) and (3) above. By mixing the phosphor raw materials in 1) and (2), heating this mixture at a temperature of 100°C or higher for several hours, and then mixing the phosphor raw material in (3) above into the resulting heat-treated product. (iii) First, the phosphor raw materials in (1) and (2) above are mixed in a solution state, and this solution is heated (preferably
50 to 200° C.) by vacuum drying, vacuum drying, spray drying, etc., and then mixing the phosphor raw material of (3) above into the obtained dried product.

なお、䞊蚘(ii)の方法の倉法ずしお、䞊蚘(1)、(2)
および(3)の蛍光䜓原料を混合し、埗られた混合物
に䞊蚘熱凊理を斜す方法、たた䞊蚘(iii)の方法の倉
法ずしお、䞊蚘(1)、(2)および(3)の蛍光䜓原料を溶
液の状態で混合し、この溶液を也燥する方法を利
甚しおもよい。
In addition, as a modification of method (ii) above, methods (1) and (2) above can be used.
A method of mixing the phosphor raw materials of (1), (2) and (3) above and subjecting the obtained mixture to the above heat treatment, and a modification of the above method (iii), A method may also be used in which the raw materials are mixed in a solution state and the solution is dried.

䞊蚘(i)、(ii)、および(iii)のいずれの方法においお
も、混合には、各皮ミキサヌ、型ブレンダヌ、
ボヌルミル、ロツドミルどの通垞の混合機が甚い
られる。
In any of the above methods (i), (ii), and (iii), mixing can be done using various mixers, V-type blenders,
Conventional mixers such as ball mills and rod mills are used.

次に、䞊蚘のようにしお埗られた蛍光䜓原料混
合物を石英ボヌド、アルミナルツボ、石英ルツボ
などの耐熱性容噚に充填し、電気炉䞭で焌成を行
なう。焌成枩床は400〜1300℃の範囲が適圓であ
り、奜たしくは700〜1000℃の範囲である。焌成
時間は蛍光䜓原料混合物の充填量および焌成枩床
などによ぀おも異なるが、䞀般には0.5〜時間
が適圓である。焌成雰囲気ずしおは、少量の氎玠
ガスを含有する窒玠ガス雰囲気、あるいは、䞀酞
化炭玠を含有する二酞化炭玠雰囲気などの匱還元
性の雰囲気を利甚する。䞀般に䞊蚘(3)の蛍光䜓原
料ずしお、ナヌロピりムの䟡数が䞉䟡のナヌロピ
りム化合物が甚いられるが、その堎合に焌成過皋
においお、䞊蚘匱還元性の雰囲気によ぀お䞉䟡の
ナヌロピりムは二䟡のナヌロピりムに還元され
る。
Next, the phosphor raw material mixture obtained as described above is filled into a heat-resistant container such as a quartz board, an alumina crucible, or a quartz crucible, and fired in an electric furnace. The firing temperature is suitably in the range of 400 to 1300°C, preferably in the range of 700 to 1000°C. Although the firing time varies depending on the filling amount of the phosphor raw material mixture and the firing temperature, 0.5 to 6 hours is generally appropriate. As the firing atmosphere, a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon dioxide atmosphere containing carbon monoxide is used. Generally, a trivalent europium compound is used as the phosphor raw material in (3) above, but in this case, during the firing process, the trivalent europium becomes divalent due to the weakly reducing atmosphere mentioned above. Returned to europium.

䞊蚘焌成によ぀お粉末状の蛍光䜓が埗られる。
なお、埗られた粉末状の蛍光䜓に぀いおは、必芁
に応じお、さらに、掗浄、也燥、ふるい分けなど
の蛍光䜓の補造における各皮の䞀般的な操䜜を行
な぀おもよい。
A powdered phosphor is obtained by the above firing.
Note that the obtained powdered phosphor may be further subjected to various general operations in the production of phosphors, such as washing, drying, and sieving, as necessary.

本発明の蛍光䜓の補造法においお、アルカリ土
類金属ハロゲン化物M〓X2ずアルカリ金属ハ
ロゲン化物M〓X′におけるずX′は、互いに
同䞀即ち、X′ずする。茝尜発光茝床の
点から、ハロゲンを衚わすはBrたたはClであ
るこずが奜たしい。たた、組成匏における
M〓X2ずM〓X′ずの割合を衚わす倀は1.5≊≊
10.0の範囲にあるのが奜たしく、この堎合アルカ
リ金属を衚わすM〓はBaであるこずが奜たしい。
さらに茝尜発光茝床の点から、組成匏にお
けるナヌロピりムの賊掻量を衚わす倀は10-5≩
≊10-2の範囲にあるのが奜たしい。
In the method for producing a phosphor of the present invention, X and X' in the alkaline earth metal halide (M〓X 2 ) and the alkali metal halide (M〓X') are the same (that is, X=X'). shall be. From the viewpoint of stimulated luminescence brightness, X representing halogen is preferably Br or Cl. Also, in the composition formula ()
The a value representing the ratio of M〓X 2 and M〓X′ is 1.5≩a≩
It is preferably in the range of 10.0, in which case M〓 representing the alkali metal is preferably Ba.
Furthermore, from the viewpoint of stimulated luminescence brightness, the x value representing the activation amount of europium in the composition formula () is 10 -5 ≩
It is preferable that x≩10 −2 .

次に、二䟡ナヌロピりム賊掻耇合ハロゲン化物
蛍光䜓がその䞭に分散せしめられお圢成される蛍
光䜓局の結合剀の䟋ずしおは、れラチン等の蛋癜
質、デキストラン等のポリサツカラむド、たたは
アラビアゎムのような倩然高分子物質および、
ポリビニルブチラヌル、ポリ酢酞ビニル、ニトロ
セルロヌス、゚チルセルロヌス、塩化ビニリデ
ン・塩化ビニルコポリマヌ、ポリアルキルメ
タアクリレヌト、塩化ビニル・酢酞ビニルコポ
リマヌ、ポリりレタン、セルロヌスアセテヌトブ
チレヌト、ポリビニルアルコヌル、線状ポリ゚ス
テルなどような合成高分子物質などにより代衚さ
れる結合剀を挙げるこずができる。このような結
合剀のなかで特に奜たしいものは、ニトロセルロ
ヌス、線状ポリ゚スル、ポリアルキルメタア
クリレヌト、ニトロセルロヌスず線ポリ゚ステル
ずの混合物、およびニトロセルロヌスずポリアル
キルメタアクリレヌトずの混合物である。
Examples of binders for the phosphor layer formed by dispersing the divalent europium-activated composite halide phosphor include proteins such as gelatin, polysaccharides such as dextran, or gum arabic. natural polymeric substances such as; and
Synthesis of polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride/vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride/vinyl acetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, linear polyester, etc. Examples include binders typified by polymeric substances. Particularly preferred among such binders are nitrocellulose, linear polyesters, polyalkyl (meth)acrylates, mixtures of nitrocellulose and linear polyesters, and mixtures of nitrocellulose and polyalkyl (meth)acrylates. be.

蛍光䜓局は、たずえば、次のような方法により
支持䜓䞊に圢成するこずができる。
The phosphor layer can be formed on the support, for example, by the following method.

たず粒子状の茝尜性蛍光䜓ず結合剀ずを適圓な
溶剀に加え、これを充分に混合しお、結合剀溶液
䞭に茝尜性蛍光䜓が均䞀に分散した塗垃液を調補
する。
First, a particulate stimulable phosphor and a binder are added to a suitable solvent and thoroughly mixed to prepare a coating solution in which the stimulable phosphor is uniformly dispersed in the binder solution.

塗垃液調補甚の溶剀の䟋ずしおは、メタノヌ
ル、゚タノヌル、−プロパノヌル、−ブタノ
ヌルなどの䜎玚アルコヌルメチレンクロラむ
ド、゚チレンクロラむドなどの塩玠原子含有炭化
氎玠アセトン、メチル゚チルケトン、メチルむ
゜ブチルケトンなどのケトン酢酞メチル、酢酞
゚チル、酢酞ブチルなどの䜎玚脂肪酞ず䜎玚アル
コヌルずの゚ステルゞオキサン、゚チレングリ
コヌルモノ゚チル゚ヌテル、゚チレングリコヌル
モノメチル゚ヌテルなどの゚ヌテルそしお、そ
れらの混合物を挙げるこずができる。
Examples of solvents for preparing coating solutions include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol; chlorine-containing hydrocarbons such as methylene chloride and ethylene chloride; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. ; esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, and butyl acetate; ethers such as dioxane, ethylene glycol monoethyl ether, and ethylene glycol monomethyl ether; and mixtures thereof.

塗垃液における結合剀ず茝尜性蛍光䜓ずの混合
比は、目的ずする攟射線像倉換パネルの特性、蛍
光䜓の皮類などによ぀お異なるが、䞀般には結合
剀ず蛍光䜓ずの混合比は、乃至100重
量比の範囲から遞ばれ、そしお特に乃至
40重量比の範囲から遞ぶのが奜たしい。
The mixing ratio of the binder and the stimulable phosphor in the coating solution varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, etc., but in general, the mixing ratio of the binder and the stimulable phosphor is , 1:1 to 1:100 (weight ratio), and particularly preferably 1:8 to 1:40 (weight ratio).

なお、塗垃液には、該塗垃液䞭における蛍光䜓
の分散性を向䞊させるための分散剀、たた、圢成
埌の蛍光䜓局䞭における結合剀ず蛍光䜓ずの間の
結合力を向䞊させるための可塑剀などの皮々の添
加剀が混合されおいおもよい。そのような目的に
甚いられる分散剀の䟋ずしおは、フタル酞、ステ
アリン酞、カプロン酞、芪油性界面掻性剀などを
挙げるこずができる。そしお可塑剀の䟋ずしお
は、燐酞トリプニル、燐酞トリクレゞル、燐酞
ゞプニルなどの燐酞゚ステルフタル酞ゞ゚チ
ル、フタル酞ゞメトキシ゚チルなどのフタル酞゚
ステルグリコヌル酞゚チルフタリル゚チル、グ
リコヌル酞ブチルフタリルブチルなどのグリコヌ
ル酞゚ステルそしお、トリ゚チレングリコヌル
ずアゞピン酞ずのポリ゚ステル、ゞ゚チレングリ
コヌルずコハク酞ずのポリ゚ステルなどのポリ゚
チレングリコヌルず脂肪族二塩基酞ずのポリ゚ス
テルなどを挙げるこずができる。
The coating liquid also contains a dispersant to improve the dispersibility of the phosphor in the coating liquid, and a dispersant to improve the bonding force between the binder and the phosphor in the phosphor layer after formation. Various additives such as plasticizers may be mixed. Examples of dispersants used for such purposes include phthalic acid, stearic acid, caproic acid, lipophilic surfactants, and the like. Examples of plasticizers include phosphoric acid esters such as triphenyl phosphate, tricresyl phosphate, and diphenyl phosphate; phthalic acid esters such as diethyl phthalate and dimethoxyethyl phthalate; and ethyl phthalyl ethyl glycolate and butyl phthalyl butyl glycolate. Glycolic acid esters; and polyesters of polyethylene glycol and aliphatic dibasic acids, such as polyesters of triethylene glycol and adipic acid and polyesters of diethylene glycol and succinic acid.

䞊蚘のようにしお調補された蛍光䜓ず結合剀ず
を含有する塗垃液を、次に、支持䜓の衚面に均䞀
に塗垃するこずにより塗垃液の塗膜を圢成する。
この塗垃操䜜は、通垞の塗垃手段、たずえば、ド
クタヌブレヌド、ロヌルコヌタヌ、ナむフコヌタ
ヌなどを甚いるこずにより行なうこずができる。
The coating solution containing the phosphor and binder prepared as described above is then uniformly applied to the surface of the support to form a coating film of the coating solution.
This coating operation can be carried out using conventional coating means such as a doctor blade, roll coater, knife coater, etc.

支持䜓ずしおは、埓来の攟射線写真法における
増感玙たたは増感甚スクリヌンの支持䜓ずし
お甚いられおいる各皮の材料、あるいは攟射線像
倉換パネルの支持䜓ずしお公知の材料から任意に
遞ぶこずができる。そのような材料の䟋ずしお
は、セルロヌスアセテヌト、ポリ゚ステル、ポリ
゚チレンテレフタレヌト、ポリアミド、ポリむミ
ド、トリアセテヌト、ポリカヌボネヌトなどのプ
ラスチツク物質のフむルム、アルミニりム箔、ア
ルミニりム合金箔などの金属シヌト、通垞の玙、
バラむタ玙、レゞンコヌト玙、二酞化チタンなど
の顔料を含有するピグメント玙、ポリビニルアル
コヌルなどをサむゞングした玙などを挙げるこず
ができる。
The support may be arbitrarily selected from various materials used as supports for intensifying screens (or intensifying screens) in conventional radiography or materials known as supports for radiation image conversion panels. I can do it. Examples of such materials include films of plastic materials such as cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, metal sheets such as aluminum foil, aluminum alloy foil, ordinary paper,
Examples include baryta paper, resin-coated paper, pigment paper containing pigments such as titanium dioxide, and paper sized with polyvinyl alcohol.

ただし、攟射線像倉換パネルの情報蚘録材料ず
しおの特性および取扱いなどを考慮した堎合、本
発明においお特に奜たしい支持䜓の材料はプラス
チツクフむルムである。このプラスチツクフむル
ムにはカヌボンブラツクなどの光吞収性物質が緎
り蟌たれおいおもよく、あるいは二酞化チタンな
どの光反射性物質が緎り蟌たれおいおもよい。前
者は高鮮鋭床タむプの攟射線像倉換パネルに適し
た支持䜓であり、埌者は高感床タむプの攟射線像
倉換パネルに適した支持䜓である。
However, in consideration of the characteristics and handling of the radiation image storage panel as an information recording material, a particularly preferred material for the support in the present invention is plastic film. This plastic film may be kneaded with a light-absorbing substance such as carbon black, or may be kneaded with a light-reflecting substance such as titanium dioxide. The former is a support suitable for a high sharpness type radiation image conversion panel, and the latter is a support suitable for a high sensitivity type radiation image conversion panel.

公知の攟射線像倉換パネルにおいお、支持䜓ず
蛍光䜓局の結合を匷化するため、あるいは攟射線
像倉換パネルずしおの感床もしくは画質鮮鋭
床、粒状性を向䞊させるために、蛍光䜓局が蚭
けられる偎の支持䜓衚面にれラチンなどの高分子
物質を塗垃しお接着性付䞎局ずしたり、あるいは
二酞化チタンなどの光反射性物質からなる光反射
局、もしくはカヌボンブラツクなどの光吞収性物
質からなる光吞収局などを蚭けるこが知られおい
る。本発明においお甚いられる支持䜓に぀いお
も、これらの各皮の局を蚭けるこずができ、それ
らの構成は所望の攟射線像倉換パネルの目的、甚
途などに応じお任意に遞択するこずができる。
In known radiation image conversion panels, a phosphor layer is provided in order to strengthen the bond between the support and the phosphor layer, or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel. A polymeric substance such as gelatin is coated on the surface of the side support to form an adhesion-imparting layer, or a light-reflecting layer made of a light-reflecting substance such as titanium dioxide, or a light-reflecting layer made of a light-absorbing substance such as carbon black. It is known to provide an absorbent layer or the like. The support used in the present invention can also be provided with these various layers, and their configurations can be arbitrarily selected depending on the purpose, use, etc. of the desired radiation image storage panel.

さらに、特開昭58−200200号公報に蚘茉されお
いるように、埗られる画像の鮮鋭床を向䞊させる
目的で、支持䜓の蛍光䜓局偎の衚面支持䜓の蛍
光䜓局偎の衚面に接着性付䞎局、光反射局あるい
は光吞収局などが蚭けられおいる堎合には、その
衚面を意味するには埮小の凹凞が圢成されおい
おもよい。
Furthermore, as described in Japanese Patent Application Laid-Open No. 58-200200, in order to improve the sharpness of the obtained image, the surface of the support on the phosphor layer side (the surface of the support on the phosphor layer side) When an adhesion-imparting layer, a light-reflecting layer, a light-absorbing layer, etc. are provided, minute irregularities may be formed on the surface (meaning the surface thereof).

䞊蚘のようにしお支持䜓䞊に塗膜を圢成したの
ち塗膜を也燥しお、支持䜓䞊ぞの茝尜性蛍光䜓局
の圢成を完了する。蛍光䜓局の局厚は、目的ずす
る攟射線像倉換パネルの特性、蛍光䜓の皮類、結
合剀ず蛍光䜓ずの混合比などによ぀お異なるが、
通垞は20Ό乃至mmずする。ただし、この局厚
は50乃至500Όずするのが奜たしい。
After forming the coating film on the support as described above, the coating film is dried to complete the formation of the stimulable phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the type of phosphor, the mixing ratio of the binder and the phosphor, etc.
Usually it is 20 ÎŒm to 1 mm. However, the thickness of this layer is preferably 50 to 500 ÎŒm.

たた、茝尜性蛍光䜓局は、必ずしも䞊蚘のよう
に支持䜓䞊に塗垃液を盎接塗垃しお圢成する必芁
はなく、たずえば、別に、ガラス板、金属板、プ
ラスチツクシヌトなどのシヌト䞊に塗垃液を塗垃
し也燥するこずにより蛍光䜓局を圢成したのち、
これを、支持䜓䞊に抌圧するか、あるいは接着剀
を甚いるなどしお支持䜓ず蛍光䜓局を接合しおも
よい。
Furthermore, the stimulable phosphor layer does not necessarily need to be formed by directly applying a coating solution onto the support as described above, but can be formed by separately applying it onto a sheet such as a glass plate, metal plate, or plastic sheet. After forming a phosphor layer by applying a liquid and drying it,
The support and the phosphor layer may be bonded to each other by pressing this onto the support or using an adhesive.

茝尜性蛍光䜓局は䞀局だけでもよいが、二局以
䞊を重局しおもよい。重局する堎合にはそのうち
の少なくずも䞀掃が組成匏の二䟡ナヌロピ
りム賊掻耇合ハロゲン化物蛍光䜓を含有する局で
あればよく、パネルの衚面に近い方に向぀お順次
攟射線に察する発光効率が高くなるように耇数の
蛍光䜓局を重局した構成にしおもよい。たた、単
局および重局のいずれの堎合も、䞊蚘蛍光䜓ずず
もに公知の茝尜性蛍光䜓を䜵甚するこずができ
る。
Although only one stimulable phosphor layer may be used, two or more layers may be stacked. In the case of multiple layers, at least one layer containing the divalent europium-activated composite halide phosphor of the composition formula () is sufficient, and the luminous efficiency against radiation increases gradually toward the surface of the panel. A structure in which a plurality of phosphor layers are stacked may be used. Furthermore, in both the single-layer and multilayer cases, a known stimulable phosphor can be used in combination with the above-mentioned phosphor.

そのような公知の茝尜性蛍光䜓の䟋ずしおは、
前述の蛍光䜓のほかに、特開昭55−12142号公報
に蚘茉されおいるZnSCu、Pb、BaO・
xAl2O3Euただし、0.8≊≊10、および、
M〓・xSiO2ただし、M〓はMg、Ca、Sr、
Zn、Cd、たたはBaであり、はCa、Tb、Eu、
Tm、Pb、Tl、Bi、たたはMnであり、は、0.5
≊≊2.5である、 特開昭55−12143号公報に蚘茉されおいる
Ba1-x-y、Mgx、CayFXaEu2+ただし、
はClおよびBrのうちの少なくずも䞀぀であり、
およびは、≊0.6、か぀xy≠で
あり、は、10-6≊≊×10-2である、 特開昭55−12144号公報に蚘茉されおいる
LnOXxAただし、LnはLa、、Gd、および
Luのうちの少なくずも䞀぀、はClおよびBrの
うちの少なくずも䞀぀、はCeおよびTbのうち
の少なくず䞀぀、そしお、は、0.1で
ある、および 本出願人による特願昭58−193162号明现曞に蚘
茉されおいるM〓X2・aM〓X′2xEu2+ただし、
M〓はBa、SrおよびCaからなる矀より遞ばれる
少なくずも䞀皮のアルカリ土類金属でありお
よびX′はCl、Brおよびからなる矀より遞ばれ
る少なくずも䞀皮のハロゲンであ぀お、か぀≠
X′でありそしおは0.1≊≊10.0の範囲の数
倀であり、は≊0.2の範囲の数倀である などを挙げるこずができる。
Examples of such known stimulable phosphors include:
In addition to the above-mentioned phosphors, ZnS:Cu, Pb, BaO and
xAl 2 O 3 :Eu (however, 0.8≩x≩10), and
M〓O・xSiO 2 :A (However, M〓 is Mg, Ca, Sr,
Zn, Cd, or Ba, A is Ca, Tb, Eu,
Tm, Pb, Tl, Bi, or Mn, and x is 0.5
≩x≩2.5), (Ba 1-xy , Mg x , Ca y )FX: aEu 2+ (However, X
is at least one of Cl and Br,
x and y are 0<x+y≩0.6 and xy≠0, and a is 10-6 ≩a≩5× 10-2 ), as described in JP-A-55-12144.
LnOX:xA (Ln is La, Y, Gd, and
at least one of Lu, X is at least one of Cl and Br, A is at least one of Ce and Tb, and x is 0<x<0.1), and the present application M〓X 2・aM〓X′ 2 :xEu 2+ (However,
M〓 is at least one kind of alkaline earth metal selected from the group consisting of Ba, Sr, and Ca; X and X' are at least one kind of halogen selected from the group consisting of Cl, Br, and I, and ≠
and a is a numerical value in the range of 0.1≩a≩10.0, and x is a numerical value in the range of 0<x≩0.2).

通垞の攟射線像倉換パネルにおいおは、前述の
ように支持䜓に接する偎ずは反察偎の蛍光䜓局の
衚面に、蛍光䜓局を物理的および化孊的に保護す
るための透明な保護膜が蚭けられおいる。このよ
うな透明保護膜は、本発明の攟射線像倉換パネル
に぀いおも蚭眮するこずが奜たしい。
In a normal radiation image storage panel, as mentioned above, a transparent protective film is provided on the surface of the phosphor layer on the side opposite to the side that contacts the support to physically and chemically protect the phosphor layer. It is being Such a transparent protective film is preferably provided also in the radiation image conversion panel of the present invention.

透明保護膜は、たずえば、酢酞セルロヌス、ニ
トロセルロヌスなどのセルロヌス誘導䜓あるい
はポリメチルメタクリレヌト、ポリビニルブチラ
ヌル、ポリビニルホルマヌル、ポリカヌボネヌ
ト、ポリ酢酞ビニル、塩化ビニル・酢酞ビニルコ
ポリマヌなどの合成高分子物質のような透明な高
分子物質を適圓な溶媒に溶解しお調補した溶液を
蛍光䜓局の衚面に塗垃する方法により圢成するこ
ずができる。あるいは、ポリ゚チレンテレフタレ
ヌト、ポリ゚チレン、ポリ塩化ビニリデン、ポリ
アミドなどから別に圢成した透明な薄膜を蛍光䜓
局の衚面に適圓な接着剀を甚いお接着するなどの
方法によ぀おも圢成するこずができる。このよう
にしお圢成する透明保護膜の膜厚は、玄0.1乃至
20Όずするのが望たしい。
The transparent protective film may be made of a transparent material such as a cellulose derivative such as cellulose acetate or nitrocellulose; or a synthetic polymer material such as polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyvinyl acetate, or vinyl chloride/vinyl acetate copolymer. It can be formed by coating the surface of the phosphor layer with a solution prepared by dissolving a polymeric substance in an appropriate solvent. Alternatively, it can also be formed by a method such as adhering a transparent thin film separately formed from polyethylene terephthalate, polyethylene, polyvinylidene chloride, polyamide, etc. to the surface of the phosphor layer using a suitable adhesive. The thickness of the transparent protective film formed in this way is approximately 0.1 to
It is desirable that the thickness be 20 ÎŒm.

次に本発明の実斜䟋を蚘茉する。ただし、これ
らの各実斜䟋は本発明を制限するものではない。
Next, examples of the present invention will be described. However, these examples do not limit the present invention.

実斜䟋  臭化バリりムBaBr2297.15、臭化リチり
ムLiBr86.84、および臭化ナヌロピりム
EuBr30.392を秀量埌、ボヌルミルで充分に
混合、粉砕しお蛍光䜓原料混合物を調補した。
Example 1 After weighing 297.15 g of barium bromide (BaBr 2 ), 86.84 g of lithium bromide (LiBr), and 0.392 g of europium bromide (EuBr 3 ), they were thoroughly mixed and pulverized in a ball mill to obtain a phosphor raw material mixture. Prepared.

次に、埗られた蛍光䜓原料混合物をアルミナル
ツボに充填し、これを高枩電気炉に入れお焌成を
行な぀た。焌成は、䞀酞化炭玠を含む二酞化炭玠
雰囲気䞭にお850℃の枩床で時間かけお行な぀
た。焌成が完了したのち、焌成物を炉倖に取り出
しお冷华した。このようにしお、粉末状の二䟡ナ
ヌロピりム賊掻臭化バリりムリチりム蛍光䜓
BaBr2・LiBr0.001Eu2+を埗た。
Next, the obtained phosphor raw material mixture was filled into an alumina crucible, which was then placed in a high-temperature electric furnace and fired. Firing was performed at a temperature of 850° C. for 2 hours in a carbon dioxide atmosphere containing carbon monoxide. After the firing was completed, the fired product was taken out of the furnace and cooled. In this way, a powdered divalent europium-activated barium lithium bromide phosphor (BaBr 2 .LiBr: 0.001Eu 2+ ) was obtained.

実斜䟋  実斜䟋においお、臭化リチりムの代りに臭化
セシりムCsBr212.90を甚いるこず以倖は、
実斜䟋の方法ず同様の操䜜を行なうこずによ
り、粉末状の二䟡ナヌロピりム賊掻臭化バリりム
セシりム蛍光䜓BaBr2・CsBr0.001Eu2+を
埗た。
Example 2 Example 1 except that 212.90 g of cesium bromide (CsBr) was used instead of lithium bromide.
By performing the same operation as in Example 1, a powdered divalent europium-activated barium cesium bromide phosphor (BaBr 2 .CsBr: 0.001Eu 2+ ) was obtained.

実斜䟋  実斜䟋においお、臭化バリりムの代りに塩化
バリりムBaCl2208.25、及び臭化リチりム
の代りに塩化ルビゞりムRbCl120.92を甚
いるこず以倖は、実斜䟋の方法ず同様の操䜜を
行なうこずにより、粉末状の二䟡ナヌロピりム賊
掻耇合ハロゲン化物蛍光䜓BaBr2・RbCl
0.001Eu2+を埗た。
Example 3 Same method as in Example 1 except that 208.25 g of barium chloride (BaCl 2 ) was used instead of barium bromide and 120.92 g of rubidium chloride (RbCl) was used instead of lithium bromide. By performing this operation, a powdered divalent europium-activated composite halide phosphor (BaBr 2 / RbCl:
0.001Eu 2+ ) was obtained.

次に、実斜䟋および実斜䟋で埗られた各蛍
光䜓に管電圧80KVpの線を照射したのち、He
−Neレヌザヌ光波長632.8nで励起したず
きの茝尜発光スペクトル、およびその茝尜発光の
ピヌク波長における茝尜励起スペクトルを枬定し
た。埗られた結果を第図ず第図に瀺す。
Next, each of the phosphors obtained in Example 1 and Example 2 was irradiated with X-rays at a tube voltage of 80 KVp, and then He
The stimulated emission spectrum when excited with -Ne laser light (wavelength 632.8 nm) and the stimulated excitation spectrum at the peak wavelength of the stimulated emission were measured. The results obtained are shown in FIGS. 2 and 1.

第図においお曲線および曲線はそれぞれ 曲線BaBr2・LiBr0.001Eu2+蛍光䜓の茝尜
発光スペクトル、 曲線BaBr2・CsBr0.001Eu2+蛍光䜓の茝尜
発光スペクトル、 を瀺す。
In Figure 2, curve 1 and curve 2 are Curve 1: Stimulated emission spectrum of BaBr 2・LiBr: 0.001Eu 2+ phosphor, Curve 2: Stimulated emission spectrum of BaBr 2・CsBr: 0.001Eu 2+ phosphor , indicates.

たた、第図においお、曲線および曲線は
それぞれ 曲線BaBr2・LiBr0.001Eu2+蛍光䜓の茝尜
励起スペクトル、 曲線BaBr2・CsBr0.001Eu2+蛍光䜓の茝尜
励起スペクトル、 を瀺す。
In addition, in Fig. 1, curve 1 and curve 2 are respectively curve 1: the stimulated excitation spectrum of BaBr 2・LiBr: 0.001Eu 2+ phosphor, and curve 2: the brightness of BaBr 2・CsBr: 0.001Eu 2+ phosphor. The exhaustion excitation spectrum is shown.

実斜䟋  実斜䟋で埗られた粉末状の二䟡ナヌロピりム
賊掻臭䟡バリりムリチりム蛍光䜓BaBr2・
LiBr0.001Eu2+ず線状ポリ゚ステル暹脂ずの
混合物にメチル゚チルケトンを添加し、曎に硝化
床11.5のニトロセルロヌスを添加しお蛍光䜓を
分散状態で含有する分散液を調補した。次に、こ
の分散液に燐酞トリクレゞル、−ブタノヌル、
そしおメチル゚チルケトンを添加したのち、プロ
ペラミキサヌを甚いお充分に撹拌混合しお、蛍光
䜓が均䞀に分散し、か぀結合剀ず蛍光䜓ずの混合
比が10、粘床が25〜35PS25℃の塗垃液を
調補した。次に、ガラス板䞊に氎平に眮いた二酞
化チタン緎り蟌みポリ゚チレンテレフタレヌト
支持䜓、厚み250Όの䞊に塗垃液をドクタ
ヌブレヌドを甚いお均䞀に塗垃した。そしお塗垃
埌に、塗膜が圢成された支持䜓を也燥噚内に入
れ、この也燥噚の内郚の枩床を25℃から100℃に
埐々に䞊昇させお、塗膜の也燥を行な぀た。この
ようにしお、支持䜓䞊に局厚が250Όの蛍光䜓
局を圢成した。
Example 4 The powdered divalent europium-activated odorous barium lithium phosphor (BaBr 2 .
Methyl ethyl ketone was added to a mixture of LiBr (0.001Eu 2+ ) and a linear polyester resin, and nitrocellulose with a degree of nitrification of 11.5% was added to prepare a dispersion containing a phosphor in a dispersed state. Next, tricresyl phosphate, n-butanol,
After adding methyl ethyl ketone, the phosphor is sufficiently stirred and mixed using a propeller mixer to ensure that the phosphor is uniformly dispersed, the binder and phosphor are mixed in a ratio of 1:10, and the viscosity is 25 to 35 PS (at 25°C). ) was prepared. Next, the coating solution was uniformly applied using a doctor blade onto polyethylene terephthalate mixed with titanium dioxide (support, thickness: 250 Όm) placed horizontally on a glass plate. After coating, the support on which the coating film was formed was placed in a dryer, and the temperature inside the dryer was gradually raised from 25°C to 100°C to dry the coating film. In this way, a phosphor layer with a layer thickness of 250 Όm was formed on the support.

そしお、この蛍光䜓局の䞊にポリ゚チレンテレ
フタレヌトの透明フむルム厚み12Ό、ポリ
゚ステル系接着剀が付䞎されおいるものを接着
剀局偎を䞋に向けお眮いお接着するこずにより、
透明保護膜を圢成し、支持䜓、蛍光䜓局、および
透明保護膜から構成された攟射線像倉換パネルを
補造した。
Then, a transparent film of polyethylene terephthalate (thickness: 12 ÎŒm, coated with a polyester adhesive) is placed on top of this phosphor layer with the adhesive layer side facing down, and bonded.
A transparent protective film was formed to produce a radiation image storage panel composed of a support, a phosphor layer, and a transparent protective film.

実斜䟋  実斜䟋においお、実斜䟋で埗られた
BaBr2・CsBr0.001Eu2+蛍光䜓を甚いるこず以
倖は実斜䟋の方法ず同様の操䜜を行なうこずに
より、支持䜓、蛍光䜓局、及び透明保護膜から構
成された攟射線像倉換パネルを補造した。
Example 5 In Example 4, the
BaBr 2 CsBr: 0.001Eu 2+ By performing the same operation as in Example 4 except for using the phosphor, a radiation image conversion panel composed of a support, a phosphor layer, and a transparent protective film was prepared. Manufactured.

実斜䟋  実斜䟋においお、実斜䟋で埗られた
BaCl2・RbCl0.001Eu2+蛍光䜓を甚いるこず以
倖は実斜䟋の方法ず同様の操䜜を行なうこずに
より、支持䜓、蛍光䜓局、及び透明保護膜から構
成された攟射線像倉換パネルを補造した。
Example 6 In Example 4, the
BaCl 2・RbCl: 0.001Eu 2+ By performing the same operation as in Example 4 except for using the phosphor, a radiation image conversion panel composed of a support, a phosphor layer, and a transparent protective film was prepared. Manufactured.

次に、実斜䟋〜で埗られた各攟射線像倉換
パネルに、管電圧80KVpの線を照射した埌
632.8nの光を励起しお、各パネルの感床茝尜
発光茝床を枬定した。その結果を、第衚に瀺
す。
Next, after irradiating each radiation image conversion panel obtained in Examples 4 to 6 with X-rays at a tube voltage of 80 KVp,
The sensitivity (stimulated luminance) of each panel was measured by exciting 632.8 nm light. The results are shown in Table 1.

第衚 盞察感床 実斜䟋 100 実斜䟋 80 実斜䟋 30 Table 1 Relative sensitivity Example 4 100 Example 5 80 Example 6 30

【図面の簡単な説明】[Brief explanation of drawings]

第図は、本発明の二䟡ナヌロピりム賊掻耇合
ハロゲン化物蛍光䜓の具䜓䟋であるBaBr2・
LiBr0.001Eu2+蛍光䜓およびBaBr2・CsBr
0.001Eu2+蛍光䜓の茝尜励起スペクトルそれぞ
れ曲線およびである。第図は、本発明の
二䟡ナヌロピりム賊掻耇合ハロゲン化物蛍光䜓の
具䜓䟋であるBaBr2・LiBr0.001Eu2+蛍光䜓お
よびBaBr2・CsBr0.001Eu2+蛍光䜓の茝尜励起
スペクトルそれぞれ曲線およびである。
第図は、本発明の二䟡ナヌロピりム賊掻耇合ハ
ロゲン化物蛍光䜓の具䜓䟋であるBaBr2・
aLiBr0.001Eu2+蛍光䜓における倀ず茝尜発
光匷床ずの関係を瀺すグラフである。第図は、
本発明の攟射線像倉換方法を説明する抂略図であ
る。 攟射線発生装眮、被写䜓、
攟射線像倉換パネル、光源、線電倉
換装眮、画像再生装眮、画像衚瀺装
眮、フむルタヌ。
FIG. 1 shows BaBr 2 .
LiBr: 0.001Eu 2+ phosphor and BaBr 2 /CsBr:
Figure 2 is the photostimulation excitation spectrum of the 0.001Eu 2+ phosphor (curves 1 and 2, respectively). Figure 2 shows the stimulated excitation spectra of BaBr 2 .LiBr: 0.001Eu 2+ phosphor and BaBr 2 .CsBr: 0.001Eu 2+ phosphor, which are specific examples of the divalent europium-activated composite halide phosphor of the present invention. (curves 1 and 2, respectively).
FIG. 3 shows BaBr 2 .
It is a graph showing the relationship between the a value and stimulated luminescence intensity in aLiBr:0.001Eu 2+ phosphor. Figure 4 shows
FIG. 1 is a schematic diagram illustrating the radiation image conversion method of the present invention. 11: Radiation generator, 12: Subject, 13:
Radiation image conversion panel, 14: light source, 15: line-electric conversion device, 16: image reproduction device, 17: image display device, 18: filter.

Claims (1)

【特蚱請求の範囲】  被写䜓を透過した、あるいは被怜䜓から発せ
られた攟射線を、䞋蚘組成匏で衚わされる
二䟡ナヌロピりム賊掻耇合ハロゲン化物蛍光䜓に
吞収させた埌、この蛍光䜓に450〜900nの波長
領域の電磁波を照射するこずにより、該蛍光䜓に
蓄積されおいる攟射線゚ネルギヌを蛍光ずしお攟
出させ、そしおこの蛍光を怜出するこずを特城ず
する攟射線像倉換方法。 組成匏 M〓X2・aM〓X′xEu2+  ただし、M〓はBa、SrおよびCaからなる矀よ
り遞ばれる少なくずも䞀皮のアルカリ土類金属で
ありM〓はLi、RbおよびCsからなる矀より遞ば
れる少なくずも䞀皮のアルカリ金属でありず
X′は、X′であ぀お、Cl、Brたたはのいず
れか䞀皮のハロゲンでありそしおは0.1≊
≩20.0の範囲の数倀であり、は≊0.2の
範囲の数倀である  組成匏におけるが、1.5≊≊10.0
の範囲の数倀である特蚱請求の範囲第項蚘茉の
攟射線像倉換方法。  組成匏におけるがBrたたはClのい
ずれかである特蚱請求の範囲第項蚘茉の攟射線
像倉換方法。  組成匏におけるM〓がBaである特蚱請
求の範囲第項蚘茉の攟射線像倉換方法。  組成匏におけるが、10-5≊≊10-2
の範囲の数倀である特蚱請求の範囲第項蚘茉の
攟射線像倉換方法。  䞊蚘電磁波が500〜800nの波長領域の電磁
波である特蚱請求の範囲第項蚘茉の攟射線像倉
換方法。  䞊蚘電磁波がレヌザヌ光である特蚱請求の範
囲第項蚘茉の攟射線像倉換方法。  支持䜓ず、この支持䜓䞊に蚭けられた茝尜性
蛍光䜓を分散状態で含有支持する結合剀からなる
少なくずも䞀局の蛍光䜓局ずから実質的に構成さ
れおおり、該蛍光䜓局のうちの少なくずも䞀局
が、䞋蚘組成匏で衚わされる二䟡ナヌロピ
りム賊掻耇合ハロゲン化物蛍光䜓を含有するこず
を特城ずする攟射線像倉換パネル。 組成匏 M〓X2・aM〓X′xEu2+  ただし、M〓はBa、SrおよびCaからなる矀よ
り遞ばれる少なくずも䞀皮のアルカリ土類金属で
ありM〓はLi、RbおよびCsからなる矀より遞ば
れる少なくずも䞀皮のアルカリ金属でありず
X′は、X′であ぀お、Cl、Brたたはのいず
れか䞀皮のハロゲンでありそしおは0.1≊
≩20.0の範囲の数倀であり、は≊0.2の
範囲の数倀である  組成匏におけるが、1.5≊≊10.0
の範囲の数倀である特蚱請求の範囲第項蚘茉の
攟射線像倉換パネル。  組成匏におけるがBrたたはClの
いずれかである特蚱請求の範囲第項蚘茉の攟射
線像倉換パネル。  組成匏におけるM〓がBaである特蚱
請求の範囲第項蚘茉の攟射線像倉換パネル。  組成匏におけるが、10-5≊≊
10-2の範囲の数倀である特蚱請求の範囲第項蚘
茉の攟射線像倉換パネル。
[Claims] 1. After the radiation transmitted through the subject or emitted from the subject is absorbed by a divalent europium-activated composite halide phosphor represented by the following compositional formula (), this phosphor is A radiation image conversion method characterized by emitting radiation energy stored in the phosphor as fluorescence by irradiating electromagnetic waves in a wavelength range of ~900 nm, and detecting this fluorescence. Composition formula (): M〓X 2・aM〓X′:xEu 2+ () (However, M〓 is at least one alkaline earth metal selected from the group consisting of Ba, Sr, and Ca; M〓 At least one alkali metal selected from the group consisting of Li, Rb and Cs;
X' is X=X' and is any one of halogens such as Cl, Br, or I; and a is 0.1≩a
(a is a numerical value in the range of ≩20.0, and x is a numerical value in the range of 0<x≩0.2) 2 a in the composition formula () is 1.5≩a≩10.0
The radiation image conversion method according to claim 1, wherein the numerical value is in the range of . 3. The radiation image conversion method according to claim 1, wherein X in the compositional formula () is either Br or Cl. 4. The radiation image conversion method according to claim 1, wherein M in the compositional formula () is Ba. 5 x in the composition formula () is 10 -5 ≩x≩10 -2
The radiation image conversion method according to claim 1, wherein the numerical value is in the range of . 6. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is an electromagnetic wave in a wavelength range of 500 to 800 nm. 7. The radiation image conversion method according to claim 1, wherein the electromagnetic wave is a laser beam. 8 Substantially composed of a support and at least one phosphor layer made of a binder containing and supporting the stimulable phosphor in a dispersed state provided on the support, A radiation image conversion panel characterized in that at least one layer thereof contains a divalent europium-activated composite halide phosphor represented by the following compositional formula (). Composition formula (): M〓X 2・aM〓X′:xEu 2+ () (However, M〓 is at least one alkaline earth metal selected from the group consisting of Ba, Sr, and Ca; M〓 At least one alkali metal selected from the group consisting of Li, Rb and Cs;
X' is X=X' and is any one of halogens such as Cl, Br, or I; and a is 0.1≩a
(a is a numerical value in the range of ≩20.0, and x is a numerical value in the range of 0<x≩0.2) 9 a in the composition formula () is 1.5≩a≩10.0
9. The radiation image conversion panel according to claim 8, wherein the radiation image conversion panel has a numerical value in the range of . 10. The radiation image storage panel according to claim 8, wherein X in the compositional formula () is either Br or Cl. 11. The radiation image conversion panel according to claim 8, wherein M in the compositional formula () is Ba. 12 x in the composition formula () is 10 -5 ≩x≩
The radiation image conversion panel according to claim 8, which has a numerical value in the range of 10 -2 .
JP60078154A 1985-04-12 1985-04-12 Radiation image conversion and panel therefor Granted JPS61236891A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60078154A JPS61236891A (en) 1985-04-12 1985-04-12 Radiation image conversion and panel therefor
US07/850,689 US4891277A (en) 1985-04-12 1986-04-11 Phosphor, and radiation image storage panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078154A JPS61236891A (en) 1985-04-12 1985-04-12 Radiation image conversion and panel therefor

Publications (2)

Publication Number Publication Date
JPS61236891A JPS61236891A (en) 1986-10-22
JPH0548276B2 true JPH0548276B2 (en) 1993-07-21

Family

ID=13653995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078154A Granted JPS61236891A (en) 1985-04-12 1985-04-12 Radiation image conversion and panel therefor

Country Status (1)

Country Link
JP (1) JPS61236891A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111785B2 (en) 1990-01-19 1995-11-29 富士通株匏䌚瀟 optical disk
DE10238398A1 (en) * 2002-08-22 2004-02-26 Philips Intellectual Property & Standards Gmbh Device for producing images and/or projections used in medical X-ray diagnosis has a unit for acquiring starting radiation having an acquisition element containing a sensor with an activated scintillator, and a photodiode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024393A (en) * 1988-06-14 1990-01-09 Nippon Sherwood Kk Engaging method and device for mixing injection needle with simplified lock function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024393A (en) * 1988-06-14 1990-01-09 Nippon Sherwood Kk Engaging method and device for mixing injection needle with simplified lock function

Also Published As

Publication number Publication date
JPS61236891A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US5198679A (en) Phosphor and image storage panel
JPS5975200A (en) Radiation image conversion and radiation image conversion panel used therefor
US4835398A (en) Phosphor, Radiation image recording and reproducing method and radiation image storage panel
US4780376A (en) Phosphor and radiation image storage panel
JPH0214394B2 (en)
US4780375A (en) Phosphor, and radiation image storage panel
JPH0475951B2 (en)
JPH089716B2 (en) Phosphor, radiation image conversion method and radiation image conversion panel
US4999515A (en) Radiation image recording and reproducing method
US4698508A (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel
JPH0526838B2 (en)
JPH0475949B2 (en)
JPH0214393B2 (en)
US4891277A (en) Phosphor, and radiation image storage panel
JPH0548276B2 (en)
JPH0460515B2 (en)
JPH0554639B2 (en)
JPH0248596B2 (en)
JPS60217354A (en) Process for converting image of radiation
JPH0527675B2 (en)
JPH0526836B2 (en)
JPS60141782A (en) Conversion of radiation image
JPH0214395B2 (en)
JPH0460513B2 (en)
JPH0460151B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term