JPH0548152A - Manufacture of thermoelectric converter material - Google Patents

Manufacture of thermoelectric converter material

Info

Publication number
JPH0548152A
JPH0548152A JP3197946A JP19794691A JPH0548152A JP H0548152 A JPH0548152 A JP H0548152A JP 3197946 A JP3197946 A JP 3197946A JP 19794691 A JP19794691 A JP 19794691A JP H0548152 A JPH0548152 A JP H0548152A
Authority
JP
Japan
Prior art keywords
powder
thermoelectric conversion
manufacturing
conversion element
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3197946A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nishimura
宣彦 西村
Keiichi Iwamoto
啓一 岩本
Masahiro Umada
政寛 馬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3197946A priority Critical patent/JPH0548152A/en
Publication of JPH0548152A publication Critical patent/JPH0548152A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a thermoelectric converter material to be used for a cooler, a generator, etc. CONSTITUTION:A method for manufacturing a thermoelectric converter made of compound semiconductor containing Bi, Te, Sb and Se as main ingredients, comprises the steps of melting the materials, pulverizing an ingot obtained by cooling it, irradiating the surface of the obtained powder with a hydrogen plasma, and pressure burning the material powder irradiated with the plasma at a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電変換素子を用いた冷
却装置、発電装置に用いられる熱電変換素子の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device using a thermoelectric conversion element and a method for manufacturing a thermoelectric conversion element used in a power generator.

【0002】[0002]

【従来の技術】従来から、熱電変換素子を利用した冷却
装置または発電装置に利用される熱電変換素子としては
Bi,Te,Sb,Seを主成分とする化合物半導体
(以後単にBi−Te系素子と略す)が用いられている
が、製造法としてはチョコラルスキー法に代表される半
導体の単結晶育成法が採用されてきた。また、これに代
わる方法として近年、通常の方法で溶解したBi−Te
系素子インゴットを粉砕して高温で加圧、焼成する方法
(以後ホットプレス法と略す)も採用されてきている。
2. Description of the Related Art Conventionally, as a thermoelectric conversion element used in a cooling device or a power generation device using a thermoelectric conversion element, a compound semiconductor containing Bi, Te, Sb, and Se as a main component (hereinafter simply referred to as Bi-Te element) is used. Abbreviated) is used, but a semiconductor single crystal growth method represented by the Czochralski method has been adopted as a manufacturing method. In addition, as an alternative method to this, Bi-Te dissolved in a usual method has been recently used.
A method of crushing a system element ingot and pressurizing and firing at high temperature (hereinafter abbreviated as hot pressing method) has also been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した単結
晶育成法では石英管等のるつぼ内に真空あるいは不活性
ガス雰囲気に封入された原料を徐々に溶解していく必要
があるうえに、得られたインゴットは凝固方向に成分の
ばらつきがあることから、該インゴットのうち素子とし
てはその中央部しか用いることができなかった。さら
に、これを素子とするためにはある寸法にインゴットを
切断、成型する必要があり、歩留まりが悪く製造に時間
がかかることから素子の製造コストが高かった。
However, in the above-described single crystal growth method, it is necessary to gradually dissolve the raw material enclosed in a crucible such as a quartz tube in a vacuum or an inert gas atmosphere, and at the same time, it is advantageous. Since the obtained ingot has a variation in components in the solidification direction, only the central portion of the ingot could be used as an element. Further, in order to use this as an element, it is necessary to cut and mold an ingot to a certain size, and the yield is poor and it takes time to manufacture, so the element manufacturing cost is high.

【0004】また、ホットプレス法は切断することなく
必要とする素子の最終形状に製造できることから歩留ま
りはよく製造を自動化できる利点はあるが、原料粉砕の
過程で粉末表面が酸化されるために成型後の素子の電気
抵抗が高く、素子の効率が低かった。
Further, the hot pressing method has an advantage that the yield is good and the manufacturing can be automated because the required final shape of the element can be manufactured without cutting, but the surface of the powder is oxidized in the process of pulverizing the raw material, so that the molding is performed. The electric resistance of the latter element was high and the efficiency of the element was low.

【0005】[0005]

【課題を解決するための手段】上記事情に鑑み、本発明
者等は熱電変換素子の製造コストの低下と性能向上につ
いて検討し、製造コストの低下についてはホットプレス
法が有効と考え、これを採用することにし、一方、素子
性能の向上についてはホットプレス法による製造の過程
で必要な溶解インゴットの粉砕後の酸化粉末を除去する
ことを目的として粉末表面に水素プラズマを照射するよ
うにした。
In view of the above circumstances, the inventors of the present invention have examined reduction of manufacturing cost and improvement of performance of thermoelectric conversion elements, and consider that the hot pressing method is effective for reduction of manufacturing cost. On the other hand, in order to improve the device performance, on the other hand, the surface of the powder was irradiated with hydrogen plasma for the purpose of removing the oxide powder after the crushing of the molten ingot necessary in the manufacturing process by the hot pressing method.

【0006】すなわち、本発明はBi,Te,Sb,S
eを主成分とする化合物半導体からなる熱電変換素子の
製造方法において、各原料を溶解する工程と、それを冷
却して得られたインゴットを粉砕する工程と、得られた
粉末の表面に水素プラズマを照射する工程と、水素プラ
ズマを照射した原料粉末を高温下で加圧焼成する工程と
を具備することを特徴とする熱電変換素子の製造方法で
ある。
That is, the present invention is based on Bi, Te, Sb, S
In a method for manufacturing a thermoelectric conversion element composed of a compound semiconductor containing e as a main component, a step of melting each raw material, a step of crushing an ingot obtained by cooling the raw material, and a hydrogen plasma on a surface of the obtained powder. And a step of firing the raw material powder irradiated with hydrogen plasma under pressure at a high temperature.

【0007】[0007]

【作用】熱電変換素子は素子の両端に温度差をかけたと
きに生じる熱起電力を利用して発電を行なうか、あるい
は素子の両端に電位差を与えたときに生じる吸熱効果
(ペルチェ効果)を利用して冷却を行なうが、素子内の
電気抵抗が大きいと、これを発電素子として利用する場
合、内部抵抗が大きくなり、取り出せる電流が小さくな
って発電効率が悪くなる。また、冷却素子として利用す
る場合には、素子内の電気抵抗が大きいとジュール熱に
よって素子内が発熱し冷却効率が悪くなる。従って、熱
電変換素子を用いて発電、冷却しようとする場合には素
子の電気抵抗が低いほどよい。
The thermoelectric conversion element uses the thermoelectromotive force generated when a temperature difference is applied to both ends of the element to generate electricity, or the endothermic effect (Peltier effect) generated when a potential difference is applied to both ends of the element. Although it is used for cooling, if the electric resistance in the element is large, when it is used as a power generating element, the internal resistance becomes large, the current that can be taken out becomes small, and the power generation efficiency deteriorates. When used as a cooling element, if the electric resistance inside the element is large, Joule heat causes heat generation inside the element, resulting in poor cooling efficiency. Therefore, when power generation and cooling are performed using the thermoelectric conversion element, the lower the electric resistance of the element, the better.

【0008】一方、Bi−Te系素子は表面が酸化しや
すく、ホットプレス法で素子を製造するうえで必要な原
料の粉砕過程で粉末の表面が酸化され、これをプレス成
型した場合にできる原料粉末の境界、すなわち結晶粒界
に酸化層が生成される。この酸化層は不導体であるため
に電気抵抗が高い。本発明によると、この原料粉末の酸
化層を水素プラズマによって取り除くとともに、粉末表
面に水素化物を形成させることができることから処理後
の粉末を大気中にさらしたときに再度酸化することを防
ぐことができるために、処理後の粉末を高温で加圧して
得られた成型体の旧粉末表面である結晶粒界に酸化物層
が生成することなく、電気抵抗の低い熱電変換半導体を
得ることができる。
On the other hand, the surface of the Bi-Te-based element is easily oxidized, and the surface of the powder is oxidized in the crushing process of the raw material necessary for manufacturing the element by the hot pressing method. An oxide layer is formed at the boundary of the powder, that is, the grain boundary. Since this oxide layer is a non-conductor, it has a high electric resistance. According to the present invention, the oxide layer of the raw material powder can be removed by hydrogen plasma, and a hydride can be formed on the powder surface. Therefore, it is possible to prevent the powder after treatment from being oxidized again when exposed to the atmosphere. Therefore, it is possible to obtain a thermoelectric conversion semiconductor having low electric resistance without forming an oxide layer at a crystal grain boundary which is the old powder surface of a molded body obtained by pressurizing the treated powder at a high temperature. .

【0009】[0009]

【実施例】以下、本発明における一実施例をあげ、本発
明の効果を立証する。Bi:54.17wt%、Te:
36.69wt%、Se:6.14wt%を秤量して、
石英管の中に装着し、真空排気した後、5%水素ガスを
含むアルゴンガスを約1/3気圧封入した。封入後の石
英管を電気炉中に挿入して750℃で1時間保持して原
料を溶解し、その後石英管ごと約20℃の水中に投入冷
却し、Bi2 (Te 0.8 Se0.2 3 の化学式からなる
Bi−Te系n型熱電変換素子インゴットを得た。
EXAMPLE An example of the present invention will be given below.
Prove the effect of Ming. Bi: 54.17 wt%, Te:
Weigh 36.69 wt% and Se: 6.14 wt%,
After mounting in a quartz tube and evacuating it, add 5% hydrogen gas.
The contained argon gas was sealed at about 1/3 atmospheric pressure. Stone after inclusion
Insert the English tube into the electric furnace and keep it at 750 ℃ for 1 hour.
Dissolve the material, and then put the quartz tube in water at about 20 ° C and cool.
Reject, Bi2(Te 0.8Se0.2)3Consisting of the chemical formula
A Bi-Te-based n-type thermoelectric conversion element ingot was obtained.

【0010】その後、このインゴットを転動ボールミル
で粉砕し、平均粒径約10μmの粉末を得た。この粉末
を高周波誘導結合方式のプラズマ発生装置内に装着し、
0.6Torrに減圧後、Ar+H2 ガスを導入し12
kWの出力でプラズマを発生させ、該粉末上に水素プラ
ズマを照射させた。プラズマ照射は30分毎に装置を止
めて該粉末を攪拌させながら、計4回(2時間)行なっ
た。得られた該粉末を所定形状のグラファイト製の金型
に装着し、Ar雰囲気中で450℃に昇温し、300k
gf/mm2 の圧力で10分間加圧して成型体を得た。
Then, this ingot was crushed by a rolling ball mill to obtain a powder having an average particle size of about 10 μm. This powder was placed in a high frequency inductively coupled plasma generator,
After reducing the pressure to 0.6 Torr, introduce Ar + H 2 gas and
Plasma was generated at an output of kW, and hydrogen plasma was irradiated on the powder. The plasma irradiation was performed 4 times (2 hours) in total, while stopping the apparatus every 30 minutes and stirring the powder. The obtained powder is mounted on a graphite mold having a predetermined shape, heated to 450 ° C. in an Ar atmosphere, and heated to 300 k
A molded body was obtained by applying a pressure of gf / mm 2 for 10 minutes.

【0011】図1に本発明において試作した該成型体
と、本発明と同様の方法で溶解、粉砕し、プラズマ処理
をすることなく高温で加圧、成型した成型体(即ち、従
来法による成型体)のゼーベック係数の温度依存性の測
定結果を示す。なお、ゼーベック係数とは熱電変換素子
の性能を表す特性値の一つで、素子の両端に1℃の温度
差を与えたときの熱起電力を示し、この価が大きいほう
が素子特性はよい。図1に示したようにプラズマ処理を
行なった素子のゼーベック係数はプラズマ処理を行わな
かった従来法による素子のゼーベック係数よりも高い値
を示しており、本発明方法によって熱電変換素子の特性
に関与するゼーベック係数が向上することがわかった。
FIG. 1 shows the molded product prototyped in the present invention, and a molded product obtained by melting and crushing in the same manner as in the present invention and pressurizing and molding at a high temperature without plasma treatment (that is, molding by a conventional method). The measurement result of the temperature dependence of the Seebeck coefficient of (body) is shown. The Seebeck coefficient is one of the characteristic values representing the performance of the thermoelectric conversion element, and represents the thermoelectromotive force when a temperature difference of 1 ° C. is applied to both ends of the element. The larger the value, the better the element characteristic. As shown in FIG. 1, the Seebeck coefficient of the element subjected to the plasma treatment is higher than the Seebeck coefficient of the element not subjected to the plasma treatment according to the conventional method, which contributes to the characteristics of the thermoelectric conversion element by the method of the present invention. It was found that the Seebeck coefficient of

【0012】さらに、図2には本発明において試作した
該成型体と、従来法による成型体の電気抵抗率の温度依
存性の測定結果を示す。プラズマ処理を行なった素子の
電気抵抗率は従来法による素子の電気抵抗率よりも低
く、本発明方法によって熱電変換素子の特性に関与する
電気抵抗率が向上することがわかった。
Further, FIG. 2 shows the results of measurement of the temperature dependence of the electrical resistivity of the molded product prototyped in the present invention and the molded product by the conventional method. It was found that the electric resistance of the element subjected to the plasma treatment was lower than that of the element obtained by the conventional method, and that the electric resistance relating to the characteristics of the thermoelectric conversion element was improved by the method of the present invention.

【0013】[0013]

【発明の効果】以上詳述したように、本発明方法によれ
ば、熱電変換素子を用いた発電装置、冷却装置の効率を
向上させることができ、装置の高効率化、小型化に寄与
することができることができる。
As described above in detail, according to the method of the present invention, it is possible to improve the efficiency of the power generator and the cooling device using the thermoelectric conversion element, which contributes to higher efficiency and downsizing of the device. Can be able to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例として試作した熱電変換素子
と、本発明と同様の方法で溶解、粉砕し、プラズマ処理
をすることなく高温で加圧、成型した従来法による素子
のゼーベック係数の温度依存性の測定結果を示す図表。
FIG. 1 shows the Seebeck coefficient of a thermoelectric conversion device prototyped as an example of the present invention and a conventional device that was melted and pulverized by the same method as the present invention and pressed and molded at a high temperature without plasma treatment. The chart which shows the measurement result of temperature dependence.

【図2】本発明において試作した熱電変換素子と、従来
法による熱電変換素子の電気抵抗率の温度依存性の測定
結果を示す図表。
FIG. 2 is a chart showing the measurement results of the temperature dependence of the electrical resistivity of the thermoelectric conversion element prototyped in the present invention and the conventional thermoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Bi,Te,Sb,Seを主成分とする
化合物半導体からなる熱電変換素子の製造方法におい
て、各原料を溶解する工程と、それを冷却して得られた
インゴットを粉砕する工程と、得られた粉末の表面に水
素プラズマを照射する工程と、水素プラズマを照射した
原料粉末を高温下で加圧焼成する工程とを具備すること
を特徴とする熱電変換素子の製造方法。
1. A method of manufacturing a thermoelectric conversion element composed of a compound semiconductor containing Bi, Te, Sb, and Se as main components, a step of melting each raw material, and a step of crushing an ingot obtained by cooling the raw material. And a step of irradiating the surface of the obtained powder with hydrogen plasma, and a step of press-baking the raw material powder irradiated with hydrogen plasma under high temperature, the method of manufacturing a thermoelectric conversion element.
JP3197946A 1991-08-07 1991-08-07 Manufacture of thermoelectric converter material Withdrawn JPH0548152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197946A JPH0548152A (en) 1991-08-07 1991-08-07 Manufacture of thermoelectric converter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197946A JPH0548152A (en) 1991-08-07 1991-08-07 Manufacture of thermoelectric converter material

Publications (1)

Publication Number Publication Date
JPH0548152A true JPH0548152A (en) 1993-02-26

Family

ID=16382935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197946A Withdrawn JPH0548152A (en) 1991-08-07 1991-08-07 Manufacture of thermoelectric converter material

Country Status (1)

Country Link
JP (1) JPH0548152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same

Similar Documents

Publication Publication Date Title
JP2829415B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP2002285274A (en) Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JPH01106478A (en) Manufacture of thermoelectric material
JP3572939B2 (en) Thermoelectric material and method for manufacturing the same
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JPH0548152A (en) Manufacture of thermoelectric converter material
JPH10317086A (en) Beta-fesi2 material and its production
JPH06144825A (en) Production of thermoelectric element
CN103173650B (en) Thermoelectric material, method for manufacturing the same, and thermoelectric module including the same
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
CN101307393A (en) Process for preparing silicon-germanium-based thermoelectric material by liquid quenching cooperated with spark plasma sintering
JP3523600B2 (en) Thermoelectric element manufacturing method
JP3929880B2 (en) Thermoelectric material
JP2001135865A (en) Thermoelectric conversion material and manufacturing method for it
US4717788A (en) Method for producing thermoelectric elements
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP2008311247A (en) Thermoelectric material and its manufacturing method
Choi et al. Thermoelectric properties of n-type (Pb/sub 1-x/Ge/sub x/) Te fabricated by hot pressing method
JPH11274583A (en) Manufacture of thermoelectric semiconductor
JP2003089804A (en) METHOD FOR MANUFACTURING Bi-Te-BASED THERMOELECTRIC MATERIAL
JP7291322B2 (en) Thermoelectric element manufacturing method
JP3552390B2 (en) Manufacturing method of thermoelectric semiconductor
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112